Fast Har dwar e-Softwar e Co-smulation Using VHDL Models

Bassam Tabbara* Enrica Filippi Luciano Lavagno
Marco Sgroi
Alberto Sangiovanni-Vincentelli
EECS Department CSELT ' Cadence Berkeley Labs
U.C. Berkeley V. Reiss Romoli 274 2001 Addison St., 3rd Floor

Berkeley, CA 94720, USA

Abstract

We describe a technique for hardware-
software co-simulation that is almost cycle-accurate, and
does not require the use of interprocess communication nor
a C language interface for the software components. Soft-
ware is modeled by using behavioral VHDL constructs, an-
notated with timing information derived from basic block-
level timing estimates. Hardware isalso modeled in VHDL,
and can be either pre-existing Intellectual Property or syn-
thesized to RTL froma functional specification. Execution of
the VHDL processes modeling software tasks is coordinated
by a process emulatingthetarget RTOS behavior. The effects
of changing the hardware/software partition can be quickly
estimated by changing a process parameter defining its tar-
get implementationand the processor onwhichitisrunning.

1 Introduction

Embedded systems include hardware and software com-
ponents cooperating together to achieve acommon goal, like
implementing acellular phone, controlling amotor or an en-
gine, and so on. Their validation according to the current de-
sign practice requires performance simulation of both hard-
ware and software, in order to assessthe overal performance
of the system and to check the correctness of theinterfaces.

One common method used to perform such co-simulation
involves running the software on a hardware mode of the
processor [15]. This solution has a mgjor problem: RTL
or behavioral processor models are difficult to devel op, ex-
pensive and slow (up to tens of clock cycles per second for
RTL and thousands of clock cycles per second for behav-
ioral). Hence designers often use bus-functional processor
models, that represent the bit-true behavior of the processor
bus, but with a statistical model of the application. These
models can be used to exercise and debug the hardware side
of the hardware/software interface. The software code, on

*SRC Graduate Fellow
t Centro Studi e Laboratori Telecomunicazioni

[-10148 Torino, Italy Berkeley, CA 94704, USA

the other hand, is executed and debugged on instruction set
(ISA) processor models. Such model srepresent explicit pro-
cessor registersand interpretitsbinary code. Their speed can
be up to tens of thousands of clock cycles per second [22],
but they handle only approximate timing information, even
at the clock cycle level, or notiming at dl.

Recent commercial solutions, such as the Seamless envi-
ronment described in [11], filter the data sent between the
instruction set simulator (which must have cycle-exact sim-
ulation capabilities) and the hardware simulator. Even this
approach, though, is not completely satisfactory, because it
requires extensive manua intervention to “abstract” thein-
terface, by hiding events such as instruction fetches or some
memory accesses from the hardware simulation.

The co-simulation methodology described in this paper
isaimed exactly at filling this“validation gap” between fast
model s without enough information (e.g., instructionswith-
out timing or bus cycles without instructions) and slow mod-
elswith full detail. It assumes that execution time estimates
are available for each basic block of software[12]. In partic-
ular, such estimates are easily availableif oneusesasoftware
synthesis-based approach to co-design, as described in [18].

Thebasicideaisto creste abehavioral model of the soft-
ware and an RTL model of the synthesized hardware, with
delay information derived from the timing estimation. The
synthesized hardware and software can thus be simul ated to-
gether with existing hardware components also modeled in
VHDL. Moreover, changing processor or assigning a com-
ponent to the hardware partition can be done by simply mod-
ifyingaparameter that sel ectsthetiming estimatesto be used
for each basic block (or waits for the next clock edge in the
case of hardware implementation).

The performance of the behavioral mode can be much
higher than that of an RTL processor moddl, because it re-
duces both the number of simulation events, and the number
of simulated bits. Both reductions are effective when using
an event-driven hardware simulator, and only the latter is ef-

fective when using a cycle-based hardware simul ator.

Our approach is different from those described e.g. in [9,
13, 14], that rely on a single custom simulator for hardware
and software, because we can use any commercial VHDL
simulator. It isalso different from the class of solutionsde-
scribed eg. in [11, 19, 20, 6, 21] that execute the software
and hardware partitionsin separate processes, keeping track
of time independently in the two domains, because it does
not require elaborate mechanisms to synchronize them. In
particular, we do not need a cycle-accurate nor a bus-cycle
model of the target processor. Only performance estimate
numbers for the software components are needed. The ad-
vantage in terms of simplicity and performance, of course,
has a cost in terms of precision, as will be discussed bel ow.

VHDL is a standard language and many well supported
tools for efficient simulation are commercially available.
This makes integration with externa blocks perhaps de-
signed with different methodol ogies quite straightforward.
Thisfeature of our method has alot of added valuein terms
of:

o designre-use,

o incorporation of Intellectual Property (IP) Libraries,
and

o integration of new co-design techniquesinto an estab-
lished industrial design flow.

The paper is organized as follows. In Section 2 we pro-
vide some backgroundinformation. In Section 3 we describe
the co-simulation technique in detail. In Section 4 we show
resultsfor anindustrial-sizeapplication. Finally, in section 5
we discuss the status of thiswork and outline directions for
future research.

2 Overview of the Co-design Environment

Our co-simulation methodology is heavily based on the
use of software and hardware synthesis. This simplifiesthe
estimation of performance without requiring any user in-
put, as well as the customization of the generated code in
order to adapt it to simulation and execution in the target
system. We use the POLIS co-design environment for reac-
tive embedded systems ([8]) for synthesizing software and
hardware, and for analyzing their performance since that co-
design environment is open, availableto the public, and pro-
vides software synthesis and estimation capabilities. In this
Section, we briefly describe the hardware and software syn-
thesis strategies in POLIS as they relate to the modeling for
co-simulation.

POLIS is centered around a single Finite State Machine
representation, known as Co-design Finite State Machine
(CFSM). Each element of a network of CFsms describes a

component of the system to be modeled, and defines the par-
titioning and scheduling granularity. The cFsM model is
based on:

o Extended Finite State Machines, operating on a set of
finite-valued enumerated or integer subrange variables
by using arithmetic, relational, and Boolean operators,
as well as user-defined functions. Each transition of a
CFSM is an atomic operation. All the analysis and syn-
thesis steps ensure that:

1. asnapshot of the system state is taken just before
the transition is executed,

2. thetransition is executed, thus updating the inter-
nal state and outputs of the CFsM,

3. the result of the transition is propagated to the
other cFsMs and to the environment.

e The interaction between CFSMs is asynchronousin or-
der to support “neutral” specification of hardware and
software components by means of a single CFSM net-
work. This means that:

— The execution delay of a CFSM transition is un-
known a priori. It is only assumed to be non-
zero in order to avoid the composition problems
of Mealy machines, due to undelayed feedback
loops. The synthesis procedure refines thisinitial
specification by adding more precisetiming infor-
mation asmore design choicesare made (e.g., par-
titioning, processor selection, and compilation).
The designer or the analysis steps may also add
constraints on thistiming information that synthe-
sismust satisfy.

— Communication between CFsSMs is not by means
of shared variables(asin theclassical composition
of Finite State Machines), but by means of events.

Software synthesis and performance estimation in POLIS
is based on a simplified Control-Data Flow Graph (CDFG)
caled S-GRAPH.

An S-GRAPH isaDirected Acyclic Graph (DAG) consist-
ing of the following types of nodes:

e BEGIN, END arethe DAG source and sink nodes, and
have one and zero children respectively,

e TEST nodes are labeled with a finite-valued function,
defined over the set of input and output variables of the
S-GRAPH. They have as many children as the possible
values of the associated function.

o ASSIGN nodes are labeled with an output variable and
a function, whose value is assigned to the variable.
They each have one child.

state
CFF WAIT ALARM INIT

| state = WAIT

‘ START =1

Figure1: The S-GRAPH of a Seat Belt Alarm Controller

Figure 1 shows the S-GRAPH of a simple CFsM imple-
menting a seat belt controller that turns on the alarm if the
driver does not fasten the seat belt 5 seconds after turningon
theignition key, and turns off the larm after 10 seconds, or
when the sest belt isfastened.

It should be clear that an S-GRAPH has a straightforward,
efficient implementation as sequentia code on a processor.
Moreover, the mapping to object code, whether directly or
viaan intermediate high-level language such as C, is almost
1-to-1. This1-to-1 mapping isused in POLIS to provide ac-
curate estimates of the code size and execution time of each
S-GRAPH node. Thisestimation method works satisfactorily
if:

1. The cost of each node is accurately analyzed. This
isareatively well-understood problem, since each S-
GRAPH node corresponds roughly to a basic block of
code, that isasingle-input, single-output sequence of C
code statements.

2. Theinteractionbetween nodesislimited (also known as
the“additivity hypothesis’ in theliterature). Thisisap-
proximately truein the case of an S-GRAPH, sincethere
islittleregularity that even an optimizing compiler can
exploit (no looping, etc.).

If the level of accuracy is not sufficient, one could use
thetechniques described in [12] in order to refine the estima:
tion. Note that in this case the S-GRAPH structura restric-
tions mean that no user input to the estimation tool would be
required.

Inthe POLIS system, code cost (Size in bytesand timein
clock cycles) iscomputed by anayzing the structure of each
S-GRAPH node, for example:

o thenumber of children of aTEST node (adifferent tim-
ing cost isassociated with each child),

o the type of tested expression. For example, atest for
event presence must include the RTOS overhead for
event handling, and reading an external value must in-
clude the execution time of the driver routine.

A set of cost parameters is associated with every such
aspect, and is used to estimate the total cost of each node.
These costs are then used by the co-simulation environment
to accumulate clock cycles, and hence to synchronize the
execution of software CFSMs with each other and with the
rest of the system (hardware cFsms and the environment).
In thisway, neither estimation nor co-simulation require the
designer to have access to any sort of model (RTL, instruc-
tion set, user’s manual) for a processor whose performance
isto be evaluated for a given application. Only the values
of the set of parameters are necessary. These are part of ali-
brary distributed with PoLIs for agrowing number of micro-
controllers.

Clearly a more accurate analysis technique, for example
based on a cycle-accurate model of the processor [15, 11], is
needed to validate the final implementation. But the archi-
tecture exploration phase can be carried out much faster, as
long as the precision of estimation (currently within 20%) is
acceptable for the task at hand.

CFsMs implemented in hardware are currently synthe-
sized assuming that each transition requires exactly one
clock cycle, by using classical RTL and logic synthesistech-
niques.

3 High-level Co-smulation Usng VHDL
Our approach to co-simulation is based on the decompo-
sition of the system into three classes of components:

1. software CFsSMs, synthesized by poL 1S and executed on
asingle processor under the control of a Real-Time Op-
erating System (RTOS). The RTOS, also synthesized
by PoLIs, handles communi cation within the processor
and with the rest of the system (the limitation to only
one processor is not inherent in our method, but isonly
due to the current status of the RTOS synthesis),

2. hardware cFsMs, aso synthesized by poLIs and com-
municating via a standardized protocol with the rest of
the system,

3. existing pieces of hardware |P, modeled in VHDL (be-
havioral or RTL).

We synthesize a VHDL modd for each crsm, for the
RTOS scheduler, and for the interfaces. We assume that ex-
isting IP has been adapted to use the POLIS communication
protocol, as described below. This adaptation task proved to
be very simplein the case study discussed in Section 4, and
techniques such as those described in[17] can be used to au-
tomateit. In this section we describe each element in detail.

3.1 Modeling The Software Tasks

The behavioral VHDL simulation model of a piece of
software implementing a CFSM is generated automatically
using the same mechanism that is used for software synthe-
sis. In thisway, we keep a 1-to-1 correspondence between
C basic blocks (S-GRAPH nodes) in the implementation and
groups of VHDL statements in the simulation model. Each
such group is annotated with the performance numbers for
the target processor, so asto keep track of the estimated tim-
ing while executing the VHDL simulation.

Behaviora VHDL lacks the infamous got o statement,
that is the basis of the 1-to-1 S-GRAPH implementation in
C. Hence, representingan S-GRAPH in VHDL usingi f and
case statements could potentiallylead to an exponentia ex-
plosion in code size. Thus a mechanism is needed to retain
linear complexity also for the VHDL implementation.

The basic idea of our modeling approach henceis as fol-
lows: the S-GRAPH isinterpreted as an FSM, with one state
for each S-GRAPH node. The execution of the S-GRAPH
from BEGIN to END then becomes an ordered traversa of
asequence of states of thisFSM. In some sense, thisFSM is
a sequential implementation of the transition function of the
CFsM, just likethe synthesized C code. The structure of the
VHDL codefor thebelt controller software task described in
Section 2 isshown in Figure 2.

Parameter SW CL OCK determinesthetimeunitfor aCPU
clock cycle, and is used to keep the simul ation synchronized
with the hardware partition and with the external world. In
thiscase the del ayswere estimated assuming theuse of aMo-
torola68HC11 micro-controller.

This solutionis dower than using a “tree-like” explosion
of the S-GRAPH structure with VHDL i f -t hen- el se
and case statements, because an event must be posted to
the global VHDL timing queue once for each traversed S-
GRAPH node, rather than once for each crFsM transition.
However, we chose thissolutionfor two main reasons: First,
it keeps the synthesized code small (linear in the size of the
S-GRAPH, and hence of the code that will be loaded on the
target processor), and second, it makes modeling the soft-
ware scheduler (Real Time Operating System) much easier.

3.2 Modeling The Scheduler

A scheduler VHDL process is necessary to coordinate
those implementing software cFsMs. The scheduler must
ensurethat such cCFsMs are active one at atime, by receiving
a request from every one of them, and deciding which one
is going to use the processor next. All other software CFSM
processes will be delayed by the appropriate time to allow
the current cFsM to compl ete onetransition. If the scheduler
is preemptive, such request/acknowledge should take place
once for each instruction execution on the simulated CPU,
since the currently executing CFSM may be interrupted in
the middle of atransition to alow ahigher-priority cFsm to

——Round Robin Schedul er
schedul er round_robin:
process
begin
——firsttask
if (activate belt control =’ 1’) then
move belt control <=" 1" ;
wait until ready belt control’ eventand
(ready belt_control =’ 0);
move belt control <=" 0’ ;
wait until ready belt control’ eventand
(ready belt_ control =" 1");
endif;
——secondtask
if (activate...=" 1’)thenmove....<="1";

end processscheduler_round_robin;

——Event polling processes

activate belt_control <=(mid belt_control or
e END 1 to belt controal...);

activate... <=...

Figure 3: TheBehaviora VHDL CodeforaRoundRobin

Scheduler

respond to an urgent request. This can be quite inefficient,
since it requires performing signal-based handshaking once
for each simulated CPU instruction. The mechanism for im-
plementing an S-GRAPH in VHDL alowsusto chooseanin-
termediate solution: to allow pre-emption at the S-GRAPH
nodelevel. Thissolution has arelatively low overhead (one
handshake for several target CPU instructions, implement-
ing one S-GRAPH node) and agenerally satisfactory level of
granularity in responding to preemption requests (e.g. from
interrupt sources). Figure 3 shows an illustrative example
of a Round Robin scheduler and an /O polling task for the
belt controller (priority-based scheduling has aso been im-
plemented).

3.3 Modeling Hardware and I nterfaces

The technique used for modeling hardware components
of the embedded system depends on whether they have been
synthesized from crsms or have been designed by using dif-
ferent techniques (e.g. directly in synthesizable VHDL). In
the former case, we can just use the same S-GRAPH-like
VHDL model, by just setting the task execution delay to the
number of clock cycles that will be used for the final hard-
ware implementation. In the latter case, the designer must
make sure that those modules use the CFsM communication
protocol (1 bit active for 1 cycle for an event, and n bits
sampled only when the corresponding event is a 1 for the

ArchitectureCFSM of beltis
——internal signal (sender side)
signal etimer eend 5 o tmp:bit:=" 0’ ;
——internal signal (recelver side)
signal etimer_e end 5 to belt control : bit:=" 0’ ;
——input fromenvironment
signal e key on to belt control : bit:=" 0’ ;
——taskactivationand scheduling signals
signal movebelt_ control : BIT:=" 0" ;
signal ready belt control : BIT:=" 1" ;
signal cleanup belt_control : BIT:=" 0" ;
Begin
belt_control: process
typeS Typeis(STB,ST1,...,.STend); ——s—graphnodes
variableLbl,Next Lbl: S Type:=STB;

variablee key on tmp: bit; ——buffered event
variableetimer e end 5 tmp: bit; ——buffered event
begin
wait on move belt control;
if (movebelt control =" 1')then
ready belt control <=" 0" ; ——trigger tomove
Lbl :=Next Lbl;
else

caselLblis

when STB =>
mid belt control <=" 1’
—— sampleinput events
e key ontmp:=ekey onto belt control;
etimer eend 5 tmp:=etimer e end 5 to belt control;

; ——startingtransition

cleanup belt control <="1";
——basedelay
ready belt control <=" 1" after 56* SW CLOCK;

whenST2=>

if (ekey ontmp="1")then —— checkeventkey on
Next Lbl :=ST17;

ready belt control <=" 1" after 40* SW _ CLOCK;
dse

Next Lbl :=ST3;

ready belt control <=" 1" after 26* SW CLOCK;
endif;

when ST9=>
—— checkeventend 5
if (etimer eend 5tmp="1")then

Figure 2: The Behavioral VHDL Code for the Software Seat Belt Controller

vaue). The simple buffers, automaticaly inserted by the
VHDL code generator toimplement the hardware side of the
interfaces (including those with the test-bench) are shownin
Figure 4.

4 A Practical Case Study: An ATM Server

The co-simulation technique described in this paper has
been used to validate the design of an industria case study
from the communication networks domain: an ATM server
suitable for implementing Virtual Private Networks (VPN)
in ATM nodes, which is a re-engineering of the system de-
scribed in [5].

Our target system is essentially a statistical multiplexing
unit capable of performingtraffic management functionslike
controllingthe bandwi dth of the outgoing flows, and preserv-
ing theflow integrity at the message level. Message discard-
ing techniques and a per-flow queuing service disciplineare
implemented.

The input of the system isa stream of ATM cells bel ong-
ing to the set of active Virtua Channel Connections (VCC).
Cdlsarebufferedinsidetheserver. Thebufferisdividedinto
FIFO queues, one for each output Virtual Path Connection
(VPC). Theincoming cellsare forwarded to the proper FIFO
according to theentriesin theinterna routing table as shown
in Figure 5. The timing constraints of the system are tight.

—— communicationinterfaces

——between 2 SWprocesses

process

begin
wait until etimer eend5o0tmp="1";
etimer eend 5 to belt control <=" 1" ;
wait until cleanup belt control =" 1" ;
etimer eend 5 to belt control <=" 0’ ;

end process,

——between external world and SWprocess
process
begin
waituntilekey on="1";
e key onto belt control <=" 1" ;
wait until cleanup belt control =" 1" ;
e key on to belt control <=" 0" ;
end process,

Figure 4: TheBehaviora VHDL Codefor theCommunica
tion Interfaces

(A S - 0

O

Figure 5: Operationa View of the Buffers Inside the ATM

E_tid

[|1
IRESCLER 68 ERLEN ER 6D 6V CLED €3 6V 63 6N &0 ER 61 EF
\
0 DA T T T
V_PLi 1 HED YT

Update_Tshles |

v_cid

_meue_Status

o o o o

_Mueue_Status

E_Push_Quid |

I LED

v_Push_Quid

E_Pop_fuid

¥_Pop_fuid

|
LER
L

[J51oball Tine

Figure 7: Screen Capture of a Simulation Run

Implementation | Clock Cycles per CPU Sec.

Server
Buffer_Manager Cell
Extract_Cell Extractor
(Pop)
Check Queue_Status Insert.Call
(Push)
Cell Header)
— Virtual Clock
(Cid,P) Scheduler Sorter

/

Update Internal Tables

Figure6: A High Level Description of the ATM Server Con-
trol Unit

Supervisor

The processing of every incoming cell has to be done before
thenext cell arrives, i.e. within2.72us, for alink rate of 155
Mbit/s.

The systemiscomposed of two parts: afast hardwaredata
path, and a control unit.

The fast data path includes two standard inter-
faces (UTOPIA see [1]), an ATM cell address lookup unit,
abuffer logic queue manager, and a large buffer memory. It
isimplemented with aset of VHDL synthesizable |P models
[7] and some commercial memories.

The control unit has been designed using POLIS, and im-
plements the server core custom functionalities:

o Buffer management: the Message Selective Discarding
(M SD) techniqueavoids node congestion by preserving
theintegrity of messages.

e Egresspolicing: the bandwidth of the outgoing flowsis
controlled by aVirtua Clock scheduling technique, that
providesfair bandwidth all ocation among the queues.

In Figure 6 a high-level description of the control unit
functional blocksis given.

VHDL co-simul ation has been used to validate the whole
system (including both the data path and the control unit).
The ATM server design iscomposed of about 14000 VHDL

All SW (no scheduler) 50,000
All SW 214,000

All HW 7,000
Mixed HW/SW 15,000

Table 1: VHDL Co-simulation Resultsfor ATM Switch

code lines, of which about 7000 lines are from RT-level
IP modules, about 6700 lines have been synthesized from
CFsMs, and the rest come from hand-written code. In other
words, one haf of the design comes from reusable IP RT-
level code.

The control unit has been modeled as a network of 25
CFSMs in POLIS, resulting in the 6700 lines of behavioral
VHDL mentioned above or about 2450 lines of C code (used
for thefinal implementation on amicroprocessor). Inthefol-
lowingwereport resultsrelative only to the part of the design
that has been fully synthesized using POLIS.

A screen capture of asimulationrunisshownin Figure?7.

TheVHDL descriptiontook lessthan aminuteto compile.
The co-simulation results for different system implementa-
tionaternatives are displayed in Table 1(data collected from
acommercial VHDL simulator on a Sun Ultra2 workstation
with 256MB of memory and 2 CPUSs). The first row in the
resultstableisfor aconcurrent software implementation (no
scheduler). The second row isfor an entirely softwareimple-
mentation with a Round Robin scheduler. The third row is
for an entirely hardware implementation. The last row isfor
an implementation wherethe MSD, Virtual Clock Scheduler,
Cdll Extractor, and Supervisor tasks of Figure 6 wereimple-
mented in software and the Sorter, Buffer _Manager, and In-
ternal Tables tasksin hardware.

5 Conclusonsand Future Work

In this paper we have presented a mechanism for co-
simul ating synthesized hardware and software together with
existing hardware Intellectual Property in a single VHDL-
based environment. This technique uses software timing
estimation to efficiently synchronize the VHDL processes

modeling softwaretaskswith those modeling hardware com-
ponentsand thetest-bench. It permitseasy exploration of the
design space in terms of choice of the;

e partition,
e processor, and
o target clock(s) speed.

Since the VHDL entity (that is, the interface to the ex-
ternal world) does not depend on the chosen partition, no
changesare needed inthe VHDL test-bench code when adif-
ferent partitionistried. Also, as aside effect of the fact that
our approach does not require costly microprocessor models,
and that hardware and software clock cycles are generic pa
rameters, aquick and cheap eval uation of many different pro-
cessorsispossible.

The VHDL code generated by our package within poLIS
can be integrated with other VHDL blocksinto agloba sys
tem test-bench. Usually however, externa pre-existingmod-
ules (in our test case, IP blocks and memories) do not fol-
low the POLIS event-based communi cation model, and some
hand-written protocol adapters are required. In most cases
the needed interfaces are very simple and efficient.

Integrating modules which are intrinsically based on
rendez-vous protocol s (likememories) resultsin an expected
performance loss at the implementation level; some exten-
sions to the PoLIS hardware to hardware, and hardware to
softwareinterface model swould help toimprove overall per-
formance in this case. However, the current POLIS imple-
mentation of software CFSMsistuned to reactive systemsin
which events have littletempora correlation. Hence theim-
plementation of tight handshaking sequences, such asfor ex-
ample the address and data generation for a memory, would
require a different software and RTOS synthesis strategy.
When I P blockswith complex functionalitiesare used, some
eventsare usualy moreimportant than others, and behave as
“trigger” events for the whole system; our strategy isto use
someinterruptsinthiscase and that usualy aleviatestheloss
in performance.

The need to achieve fast simulation speed within asingle
co-simulation environment has forced us to ignore some as-
pects of the final embedded system implementation. These
include:

o the overhead due to the scheduling mechanism, which
may depend on the number of tasks (e.g., for priority-
based schemes the choi ce of atask isgenerally logarith-
mic in the number of tasksin the worst case),

o the cost of inter-processor or hardware/software com-
munication

Weplantolook at lifting both limitationsas part of our fu-
turedevelopment work. Liftingthefirst limitationisstraight-
forward, asit is easy to aso include the RTOS performance
figures with the chosen approach. Lifting the second limita-
tion requires modeling bus resource contention (see [16, 10]
for agood discussion of thisissue).

In the future we also plan to explore the trade-off be-
tween simulation speed and VHDL code size due to using
the “FSM-like’ mechanism for unstructured, got o- based
programming. This trade-off also involves the precision at
which the preemptive scheduling mechanism must be mod-
eled. Mogt likely, the final choice will be a mix of “state-
based” and “if-based” implementation, to get the best perfor-
mance with a bounded increase in code size.

References

[1] The ATM Forum “Utopia, An ATM-PHY Interface
Specification, Level 1, v2.01” March 1994.

[2] G. Berry, 1996. See http://cma.cmafr/Esterel

[3] M. Chiodo, P Giusto,
H. Hsieh, A. Jurecska, L. Lavagno, and A. Sangiovanni-
Vincentelli.“Hardware/software Codesign of Embedded
Systems’ |EEE Micro, Vol. 14, Number 4, pp. 26-36,
1994,

[4] M.
Chiodo, P. Giusto, H. Hsieh, A. Jurecska, L. Lavagno,
and A. Sangiovanni-Vincentelli. “ Synthesis of Software
Programsfrom crsm Specifications’ Proceedings of the
Design Automation Conference, June 1995.

[5] P. Coppo, M. D’ Ambrosio, V. Vercellone “The A-VPN
Server, a Solution for ATM Virtua Private Networks’
ICCS, November 1994,

[6] J. Ernst, C. Prasad,
G.S. Thurston “ Cosimulation with Heterogeneous Sim-
ulation Algorithms Using Distributed Objects’ Summer
Computer Smulation Conference, July 1997.

[7] E. Filippi, L. Licciardi, A. Montanaro, M. Paolini, M.
Turolla, M. Tdiercio “The Virtual Chip Set: A Paramet-
riclPLibrary for SystemonaChipDesign” CICC, Santa
Clara, May 1998.

[8] The PoLIs group, PoLIS Home Page, http://www-
cad.eecs.berkeley.edu/” polis

[9] R. K. Gupta, C. N. C. Jr., and G. D. Micheli “Synthesis
and Simulation of Digita Systems Containing Interact-
ing Hardware and Software Components’ In Proceed-
ings of the Design Automation Conference, June 1992.

[10] K. Hines, G. Borridllo “ Selective Focus as a Means of
Improving Geographically Distributed Embedded Sys-
tem Co-simulation. |EEE International Workshop on
Rapid System Prototyping p. 58-62, 1997.

[11] R. Klein and S. Leef “New Technology Links Hard-
ware and Software Simulators’ In Electronic Engineer-
ing Times, June 1996.

[12] Y. Li and S. Mdik “Performance Andysis of Embed-
ded Software Using Implicit Path Enumeration” In Pro-
ceedings of the Design Automation Conference, June
1995.

[13] K.A. Olukotun, R. Helaihel, J. Levitt, R. Ramirez
“A Software-Hardware CosynthesisApproach to Digital
System Simulation” |EEE Micro, vol. 14(4):48-58, Aug.
1994,

[14] C. Passerone, L. Lavagno, C. Sansoe, M. Chiodo, A.
Sangiovanni-Vincentelli “Trade-off Evaluation in Em-
bedded System Design Via Co-simulation ASPDAC,
Jan. 1997.

[15] J. Rowson “Hardware/Software Co-simulation” In
Proceedings of the Design Automation Conference, pp.
439-440, June 1994.

[16] J. Rowson “Interface-Based Design” In Proceedings of
the Design Automation Conference, June 1997.

[17] A. Seawright, U. Holtmann, W. Meyer, B. Pangrle,
et. a. “A System for Compiling and Debugging Struc-
tured Data Processing Controllers’ EURO-DAC p. 86-
91, Sept. 1996.

[18] K. Suzuki and A. Sangiovanni-Vincentdli “Efficient
Software Performance Estimation Methods for Hard-
ware/Software Codesign” In Proceedings of the Design
Automation Conference, pp. 605-610, June 1996.

[19] K. Ten Hagen and H. Meyr “Timed and Untimed
Hardware/Software Co-simulation: Applicationand Ef-
ficient Implementation” In Proceedings of the Interna-
tional Workshop on Hardware-Software Codesign, Oc-
tober 1993.

[20] D.E. Thomas, JK. Adams, H. Schmit “A Mode and
Methodology for Hardware-Software Codesign” |EEE
Design and Test of Computers, vol. 10(3):6-15, Sept.
1993.

[21] C.A. Vaderama, A. Changud, A.A. Jerraya “Vir-
tua Prototyping for Modular and Flexible Hardware-
Software Systems’ Design Automation for Embedded
Systems, vol. 2(3-4):267-82, May 1997.

[22] V. Zivojnovic and H. Meyr “Compiled HW/SW Co-
simulation” In Proceedings of the Design Automation
Conference, June 1996.

