
Fast Hardware-Software Co-simulation Using VHDL Models

Bassam Tabbara� Enrica Filippi Luciano Lavagno
Marco Sgroi

Alberto Sangiovanni-Vincentelli

EECS Department CSELT y Cadence Berkeley Labs
U.C. Berkeley V. Reiss Romoli 274 2001 Addison St., 3rd Floor

Berkeley, CA 94720, USA I-10148 Torino, Italy Berkeley, CA 94704, USA

Abstract
We describe a technique for hardware-

software co-simulation that is almost cycle-accurate, and
does not require the use of interprocess communication nor
a C language interface for the software components. Soft-
ware is modeled by using behavioral VHDL constructs, an-
notated with timing information derived from basic block-
level timing estimates. Hardware is also modeled in VHDL,
and can be either pre-existing Intellectual Property or syn-
thesized to RTL from a functional specification. Execution of
the VHDL processes modeling software tasks is coordinated
by a process emulating the target RTOS behavior. The effects
of changing the hardware/software partition can be quickly
estimated by changing a process parameter defining its tar-
get implementationand the processor on which it is running.

1 Introduction
Embedded systems include hardware and software com-

ponents cooperating together to achieve a common goal, like
implementing a cellular phone, controlling a motor or an en-
gine, and so on. Their validation according to the current de-
sign practice requires performance simulation of both hard-
ware and software, in order to assess the overall performance
of the system and to check the correctness of the interfaces.

One common method used to perform such co-simulation
involves running the software on a hardware model of the
processor [15]. This solution has a major problem: RTL
or behavioral processor models are difficult to develop, ex-
pensive and slow (up to tens of clock cycles per second for
RTL and thousands of clock cycles per second for behav-
ioral). Hence designers often use bus-functional processor
models, that represent the bit-true behavior of the processor
bus, but with a statistical model of the application. These
models can be used to exercise and debug the hardware side
of the hardware/software interface. The software code, on

�SRC Graduate Fellow
yCentro Studi e Laboratori Telecomunicazioni

the other hand, is executed and debugged on instruction set
(ISA) processor models. Such models represent explicit pro-
cessor registers and interpret its binary code. Their speed can
be up to tens of thousands of clock cycles per second [22],
but they handle only approximate timing information, even
at the clock cycle level, or no timing at all.

Recent commercial solutions, such as the Seamless envi-
ronment described in [11], filter the data sent between the
instruction set simulator (which must have cycle-exact sim-
ulation capabilities) and the hardware simulator. Even this
approach, though, is not completely satisfactory, because it
requires extensive manual intervention to “abstract” the in-
terface, by hiding events such as instruction fetches or some
memory accesses from the hardware simulation.

The co-simulation methodology described in this paper
is aimed exactly at filling this “validation gap” between fast
models without enough information (e.g., instructions with-
out timing or bus cycles without instructions) and slow mod-
els with full detail. It assumes that execution time estimates
are available for each basic block of software [12]. In partic-
ular, such estimates are easily available if one uses a software
synthesis-based approach to co-design, as described in [18].

The basic idea is to create a behavioral model of the soft-
ware and an RTL model of the synthesized hardware, with
delay information derived from the timing estimation. The
synthesized hardware and software can thus be simulated to-
gether with existing hardware components also modeled in
VHDL. Moreover, changing processor or assigning a com-
ponent to the hardware partition can be done by simply mod-
ifying a parameter that selects the timing estimates to be used
for each basic block (or waits for the next clock edge in the
case of hardware implementation).

The performance of the behavioral model can be much
higher than that of an RTL processor model, because it re-
duces both the number of simulation events, and the number
of simulated bits. Both reductions are effective when using
an event-driven hardware simulator, and only the latter is ef-

1

fective when using a cycle-based hardware simulator.
Our approach is different from those described e.g. in [9,

13, 14], that rely on a single custom simulator for hardware
and software, because we can use any commercial VHDL
simulator. It is also different from the class of solutions de-
scribed e.g. in [11, 19, 20, 6, 21] that execute the software
and hardware partitions in separate processes, keeping track
of time independently in the two domains, because it does
not require elaborate mechanisms to synchronize them. In
particular, we do not need a cycle-accurate nor a bus-cycle
model of the target processor. Only performance estimate
numbers for the software components are needed. The ad-
vantage in terms of simplicity and performance, of course,
has a cost in terms of precision, as will be discussed below.

VHDL is a standard language and many well supported
tools for efficient simulation are commercially available.
This makes integration with external blocks perhaps de-
signed with different methodologies quite straightforward.
This feature of our method has a lot of added value in terms
of:

� design re-use,

� incorporation of Intellectual Property (IP) Libraries,
and

� integration of new co-design techniques into an estab-
lished industrial design flow.

The paper is organized as follows. In Section 2 we pro-
vide some background information. In Section 3 we describe
the co-simulation technique in detail. In Section 4 we show
results for an industrial-size application. Finally, in section 5
we discuss the status of this work and outline directions for
future research.

2 Overview of the Co-design Environment
Our co-simulation methodology is heavily based on the

use of software and hardware synthesis. This simplifies the
estimation of performance without requiring any user in-
put, as well as the customization of the generated code in
order to adapt it to simulation and execution in the target
system. We use the POLIS co-design environment for reac-
tive embedded systems ([8]) for synthesizing software and
hardware, and for analyzing their performance since that co-
design environment is open, available to the public, and pro-
vides software synthesis and estimation capabilities. In this
Section, we briefly describe the hardware and software syn-
thesis strategies in POLIS as they relate to the modeling for
co-simulation.

POLIS is centered around a single Finite State Machine
representation, known as Co-design Finite State Machine
(CFSM). Each element of a network of CFSMs describes a

component of the system to be modeled, and defines the par-
titioning and scheduling granularity. The CFSM model is
based on:

� Extended Finite State Machines, operating on a set of
finite-valued enumerated or integer subrange variables
by using arithmetic, relational, and Boolean operators,
as well as user-defined functions. Each transition of a
CFSM is an atomic operation. All the analysis and syn-
thesis steps ensure that:

1. a snapshot of the system state is taken just before
the transition is executed,

2. the transition is executed, thus updating the inter-
nal state and outputs of the CFSM,

3. the result of the transition is propagated to the
other CFSMs and to the environment.

� The interaction between CFSMs is asynchronous in or-
der to support “neutral” specification of hardware and
software components by means of a single CFSM net-
work. This means that:

– The execution delay of a CFSM transition is un-
known a priori. It is only assumed to be non-
zero in order to avoid the composition problems
of Mealy machines, due to undelayed feedback
loops. The synthesis procedure refines this initial
specification by adding more precise timing infor-
mation as more design choices are made (e.g., par-
titioning, processor selection, and compilation).
The designer or the analysis steps may also add
constraints on this timing information that synthe-
sis must satisfy.

– Communication between CFSMs is not by means
of shared variables (as in the classical composition
of Finite State Machines), but by means of events.

Software synthesis and performance estimation in POLIS

is based on a simplified Control-Data Flow Graph (CDFG)
called S-GRAPH.

An S-GRAPH is a Directed Acyclic Graph (DAG) consist-
ing of the following types of nodes:

� BEGIN, END are the DAG source and sink nodes, and
have one and zero children respectively,

� TEST nodes are labeled with a finite-valued function,
defined over the set of input and output variables of the
S-GRAPH. They have as many children as the possible
values of the associated function.

� ASSIGN nodes are labeled with an output variable and
a function, whose value is assigned to the variable.
They each have one child.

2

Figure 1: The S-GRAPH of a Seat Belt Alarm Controller

Figure 1 shows the S-GRAPH of a simple CFSM imple-
menting a seat belt controller that turns on the alarm if the
driver does not fasten the seat belt 5 seconds after turning on
the ignition key, and turns off the alarm after 10 seconds, or
when the seat belt is fastened.

It should be clear that an S-GRAPH has a straightforward,
efficient implementation as sequential code on a processor.
Moreover, the mapping to object code, whether directly or
via an intermediate high-level language such as C, is almost
1-to-1. This 1-to-1 mapping is used in POLIS to provide ac-
curate estimates of the code size and execution time of each
S-GRAPH node. This estimation method works satisfactorily
if:

1. The cost of each node is accurately analyzed. This
is a relatively well-understood problem, since each S-
GRAPH node corresponds roughly to a basic block of
code, that is a single-input, single-output sequence of C
code statements.

2. The interaction between nodes is limited (also known as
the “additivity hypothesis” in the literature). This is ap-
proximately true in the case of an S-GRAPH, since there
is little regularity that even an optimizing compiler can
exploit (no looping, etc.).

If the level of accuracy is not sufficient, one could use
the techniques described in [12] in order to refine the estima-
tion. Note that in this case the S-GRAPH structural restric-
tions mean that no user input to the estimation tool would be
required.

In the POLIS system, code cost (size in bytes and time in
clock cycles) is computed by analyzing the structure of each
S-GRAPH node, for example:

� the number of children of a TEST node (a different tim-
ing cost is associated with each child),

� the type of tested expression. For example, a test for
event presence must include the RTOS overhead for
event handling, and reading an external value must in-
clude the execution time of the driver routine.

A set of cost parameters is associated with every such
aspect, and is used to estimate the total cost of each node.
These costs are then used by the co-simulation environment
to accumulate clock cycles, and hence to synchronize the
execution of software CFSMs with each other and with the
rest of the system (hardware CFSMs and the environment).
In this way, neither estimation nor co-simulation require the
designer to have access to any sort of model (RTL, instruc-
tion set, user’s manual) for a processor whose performance
is to be evaluated for a given application. Only the values
of the set of parameters are necessary. These are part of a li-
brary distributed with POLIS for a growing number of micro-
controllers.

Clearly a more accurate analysis technique, for example
based on a cycle-accurate model of the processor [15, 11], is
needed to validate the final implementation. But the archi-
tecture exploration phase can be carried out much faster, as
long as the precision of estimation (currently within 20%) is
acceptable for the task at hand.

CFSMs implemented in hardware are currently synthe-
sized assuming that each transition requires exactly one
clock cycle, by using classical RTL and logic synthesis tech-
niques.

3 High-level Co-simulation Using VHDL
Our approach to co-simulation is based on the decompo-

sition of the system into three classes of components:

1. software CFSMs, synthesized by POLIS and executed on
a single processor under the control of a Real-Time Op-
erating System (RTOS). The RTOS, also synthesized
by POLIS, handles communication within the processor
and with the rest of the system (the limitation to only
one processor is not inherent in our method, but is only
due to the current status of the RTOS synthesis),

2. hardware CFSMs, also synthesized by POLIS and com-
municating via a standardized protocol with the rest of
the system,

3. existing pieces of hardware IP, modeled in VHDL (be-
havioral or RTL).

We synthesize a VHDL model for each CFSM, for the
RTOS scheduler, and for the interfaces. We assume that ex-
isting IP has been adapted to use the POLIS communication
protocol, as described below. This adaptation task proved to
be very simple in the case study discussed in Section 4, and
techniques such as those described in [17] can be used to au-
tomate it. In this section we describe each element in detail.

3

3.1 Modeling The Software Tasks
The behavioral VHDL simulation model of a piece of

software implementing a CFSM is generated automatically
using the same mechanism that is used for software synthe-
sis. In this way, we keep a 1-to-1 correspondence between
C basic blocks (S-GRAPH nodes) in the implementation and
groups of VHDL statements in the simulation model. Each
such group is annotated with the performance numbers for
the target processor, so as to keep track of the estimated tim-
ing while executing the VHDL simulation.

Behavioral VHDL lacks the infamous goto statement,
that is the basis of the 1-to-1 S-GRAPH implementation in
C. Hence, representing an S-GRAPH in VHDL using if and
case statements could potentially lead to an exponential ex-
plosion in code size. Thus a mechanism is needed to retain
linear complexity also for the VHDL implementation.

The basic idea of our modeling approach hence is as fol-
lows: the S-GRAPH is interpreted as an FSM, with one state
for each S-GRAPH node. The execution of the S-GRAPH

from BEGIN to END then becomes an ordered traversal of
a sequence of states of this FSM. In some sense, this FSM is
a sequential implementation of the transition function of the
CFSM, just like the synthesized C code. The structure of the
VHDL code for the belt controller software task described in
Section 2 is shown in Figure 2.

Parameter SW_CLOCK determines the time unit for a CPU
clock cycle, and is used to keep the simulation synchronized
with the hardware partition and with the external world. In
this case the delays were estimated assuming the use of a Mo-
torola 68HC11 micro-controller.

This solution is slower than using a “tree-like” explosion
of the S-GRAPH structure with VHDL if-then-else
and case statements, because an event must be posted to
the global VHDL timing queue once for each traversed S-
GRAPH node, rather than once for each CFSM transition.
However, we chose this solution for two main reasons: First,
it keeps the synthesized code small (linear in the size of the
S-GRAPH, and hence of the code that will be loaded on the
target processor), and second, it makes modeling the soft-
ware scheduler (Real Time Operating System) much easier.

3.2 Modeling The Scheduler
A scheduler VHDL process is necessary to coordinate

those implementing software CFSMs. The scheduler must
ensure that such CFSMs are active one at a time, by receiving
a request from every one of them, and deciding which one
is going to use the processor next. All other software CFSM

processes will be delayed by the appropriate time to allow
the current CFSM to complete one transition. If the scheduler
is preemptive, such request/acknowledge should take place
once for each instruction execution on the simulated CPU,
since the currently executing CFSM may be interrupted in
the middle of a transition to allow a higher-priority CFSM to

��Round Robin Scheduler
scheduler round robin:
process
begin
��first task
if (activate belt control =’1’) then

move belt control<=’1’;
wait until ready belt control’event and

(ready belt control =’0’);
move belt control<=’0’;
wait until ready belt control’event and

(ready belt control =’1’);
end if;
��second task
if (activate ... =’1’) then move ...<=’1’;
...
end process scheduler round robin;

��Event polling processes
activate belt control<= (mid belt control or

e END 1 to belt control...);
activate ...<= ...

Figure 3: The Behavioral VHDL Code for a Round Robin
Scheduler

respond to an urgent request. This can be quite inefficient,
since it requires performing signal-based handshaking once
for each simulated CPU instruction. The mechanism for im-
plementing an S-GRAPH in VHDL allows us to choose an in-
termediate solution: to allow pre-emption at the S-GRAPH

node level. This solution has a relatively low overhead (one
handshake for several target CPU instructions, implement-
ing one S-GRAPH node) and a generally satisfactory level of
granularity in responding to preemption requests (e.g. from
interrupt sources). Figure 3 shows an illustrative example
of a Round Robin scheduler and an I/O polling task for the
belt controller (priority-based scheduling has also been im-
plemented).

3.3 Modeling Hardware and Interfaces
The technique used for modeling hardware components

of the embedded system depends on whether they have been
synthesized from CFSMs or have been designed by using dif-
ferent techniques (e.g. directly in synthesizable VHDL). In
the former case, we can just use the same S-GRAPH-like
VHDL model, by just setting the task execution delay to the
number of clock cycles that will be used for the final hard-
ware implementation. In the latter case, the designer must
make sure that those modules use the CFSM communication
protocol (1 bit active for 1 cycle for an event, and n bits
sampled only when the corresponding event is at 1 for the

4

Architecture CFSM of belt is
��internal signal (sender side)
signal e timer e end 5 o tmp : bit :=’0’;
��internal signal (receiver side)
signal e timer e end 5 to belt control : bit :=’0’;
��input from environment
signal e key on to belt control : bit :=’0’;
��task activation and scheduling signals
signal move belt control : BIT :=’0’;
signal ready belt control : BIT :=’1’;
signal cleanup belt control : BIT :=’0’;

Begin
belt control: process
type S Type is (STB,ST1,...,STend);��s�graph nodes
variable Lbl, Next Lbl: S Type := STB;
...
variable e key on tmp: bit;��buffered event
variable e timer e end 5 tmp: bit;��buffered event

begin
wait on move belt control;
if (move belt control =’1’) then

ready belt control<=’0’;��trigger to move
Lbl := Next Lbl;

else

case Lbl is
when STB =>

mid belt control<=’1’;��starting transition
�� sample input events
e key on tmp := e key on to belt control;
e timer e end 5 tmp := e timer e end 5 to belt control;
...
cleanup belt control<=’1’;
��base delay
ready belt control<=’1’after 56 * SW CLOCK;

...
when ST2 =>

if (e key on tmp =’1’) then�� check event key on
Next Lbl := ST17;
ready belt control<=’1’after 40 * SW CLOCK;

else
Next Lbl := ST3;
ready belt control<=’1’after 26 * SW CLOCK;

end if;
...
when ST9 =>
�� check event end 5
if (e timer e end 5 tmp =’1’) then
...

Figure 2: The Behavioral VHDL Code for the Software Seat Belt Controller

value). The simple buffers, automatically inserted by the
VHDL code generator to implement the hardware side of the
interfaces (including those with the test-bench) are shown in
Figure 4.

4 A Practical Case Study: An ATM Server
The co-simulation technique described in this paper has

been used to validate the design of an industrial case study
from the communication networks domain: an ATM server
suitable for implementing Virtual Private Networks (VPN)
in ATM nodes, which is a re-engineering of the system de-
scribed in [5].

Our target system is essentially a statistical multiplexing
unit capable of performing traffic management functions like
controllingthe bandwidth of the outgoingflows, and preserv-
ing the flow integrity at the message level. Message discard-
ing techniques and a per-flow queuing service discipline are
implemented.

The input of the system is a stream of ATM cells belong-
ing to the set of active Virtual Channel Connections (VCC).
Cells are buffered inside the server. The buffer is divided into
FIFO queues, one for each output Virtual Path Connection
(VPC). The incoming cells are forwarded to the proper FIFO
according to the entries in the internal routing table as shown
in Figure 5. The timing constraints of the system are tight.

�� communication interfaces
��between 2 SW processes
process
begin
wait until e timer e end 5 o tmp =’1’;
e timer e end 5 to belt control<=’1’;
wait until cleanup belt control =’1’;
e timer e end 5 to belt control<=’0’;

end process;

��between external world and SW process
process
begin
wait until e key on =’1’;
e key on to belt control<=’1’;
wait until cleanup belt control =’1’;
e key on to belt control<=’0’;

end process;

Figure 4: The Behavioral VHDL Code for the Communica-
tion Interfaces

5

 VC
 VP VP

Figure 5: Operational View of the Buffers Inside the ATM
Server

 MSD

Check Queue_Status
Insert_Cell

Extract_Cell

(Cid,Pti)

(Pop)

(Push)

Update

 Cell Header

Supervisor Internal Tables

Virtual Clock
Scheduler Sorter

Cell
Extractor

Buffer_Manager

Figure 6: A High Level Description of the ATM Server Con-
trol Unit

The processing of every incoming cell has to be done before
the next cell arrives, i.e. within 2:72�s, for a link rate of 155
Mbit/s.

The system is composed of two parts: a fast hardware data
path, and a control unit.

The fast data path includes two standard inter-
faces (UTOPIA see [1]), an ATM cell address lookup unit,
a buffer logic queue manager, and a large buffer memory. It
is implemented with a set of VHDL synthesizable IP models
[7] and some commercial memories.

The control unit has been designed using POLIS, and im-
plements the server core custom functionalities:

� Buffer management: the Message Selective Discarding
(MSD) technique avoids node congestion by preserving
the integrity of messages.

� Egress policing: the bandwidth of the outgoing flows is
controlled by a Virtual Clock scheduling technique, that
provides fair bandwidth allocation among the queues.

In Figure 6 a high-level description of the control unit
functional blocks is given.

VHDL co-simulation has been used to validate the whole
system (including both the data path and the control unit).
The ATM server design is composed of about 14000 VHDL

Figure 7: Screen Capture of a Simulation Run

Implementation Clock Cycles per CPU Sec.

All SW (no scheduler) 50,000
All SW 214,000
All HW 7,000

Mixed HW/SW 15,000

Table 1: VHDL Co-simulation Results for ATM Switch

code lines, of which about 7000 lines are from RT-level
IP modules, about 6700 lines have been synthesized from
CFSMs, and the rest come from hand-written code. In other
words, one half of the design comes from reusable IP RT-
level code.

The control unit has been modeled as a network of 25
CFSMs in POLIS, resulting in the 6700 lines of behavioral
VHDL mentioned above or about 2450 lines of C code (used
for the final implementation on a microprocessor). In the fol-
lowing we report results relative only to the part of the design
that has been fully synthesized using POLIS.

A screen capture of a simulation run is shown in Figure 7.
The VHDL description took less than a minute to compile.

The co-simulation results for different system implementa-
tion alternatives are displayed in Table 1(data collected from
a commercial VHDL simulator on a Sun Ultra 2 workstation
with 256MB of memory and 2 CPUs). The first row in the
results table is for a concurrent software implementation (no
scheduler). The second row is for an entirely software imple-
mentation with a Round Robin scheduler. The third row is
for an entirely hardware implementation. The last row is for
an implementation where the MSD, Virtual Clock Scheduler,
Cell Extractor, and Supervisor tasks of Figure 6 were imple-
mented in software and the Sorter, Buffer Manager, and In-
ternal Tables tasks in hardware.

5 Conclusions and Future Work
In this paper we have presented a mechanism for co-

simulating synthesized hardware and software together with
existing hardware Intellectual Property in a single VHDL-
based environment. This technique uses software timing
estimation to efficiently synchronize the VHDL processes

6

modeling software tasks with those modeling hardware com-
ponents and the test-bench. It permits easy exploration of the
design space in terms of choice of the:

� partition,

� processor, and

� target clock(s) speed.

Since the VHDL entity (that is, the interface to the ex-
ternal world) does not depend on the chosen partition, no
changes are needed in the VHDL test-bench code when a dif-
ferent partition is tried. Also, as a side effect of the fact that
our approach does not require costly microprocessor models,
and that hardware and software clock cycles are generic pa-
rameters, a quick and cheap evaluation of many different pro-
cessors is possible.

The VHDL code generated by our package within POLIS

can be integrated with other VHDL blocks into a global sys-
tem test-bench. Usually however, external pre-existingmod-
ules (in our test case, IP blocks and memories) do not fol-
low the POLIS event-based communication model, and some
hand-written protocol adapters are required. In most cases
the needed interfaces are very simple and efficient.

Integrating modules which are intrinsically based on
rendez-vous protocols (like memories) results in an expected
performance loss at the implementation level; some exten-
sions to the POLIS hardware to hardware, and hardware to
software interface models would help to improve overall per-
formance in this case. However, the current POLIS imple-
mentation of software CFSMs is tuned to reactive systems in
which events have little temporal correlation. Hence the im-
plementation of tight handshaking sequences, such as for ex-
ample the address and data generation for a memory, would
require a different software and RTOS synthesis strategy.
When IP blocks with complex functionalities are used, some
events are usually more important than others, and behave as
“trigger” events for the whole system; our strategy is to use
some interrupts in this case and that usually alleviates the loss
in performance.

The need to achieve fast simulation speed within a single
co-simulation environment has forced us to ignore some as-
pects of the final embedded system implementation. These
include:

� the overhead due to the scheduling mechanism, which
may depend on the number of tasks (e.g., for priority-
based schemes the choice of a task is generally logarith-
mic in the number of tasks in the worst case),

� the cost of inter-processor or hardware/software com-
munication

We plan to look at lifting both limitations as part of our fu-
ture development work. Lifting the first limitation is straight-
forward, as it is easy to also include the RTOS performance
figures with the chosen approach. Lifting the second limita-
tion requires modeling bus resource contention (see [16, 10]
for a good discussion of this issue).

In the future we also plan to explore the trade-off be-
tween simulation speed and VHDL code size due to using
the “FSM-like” mechanism for unstructured, goto-based
programming. This trade-off also involves the precision at
which the preemptive scheduling mechanism must be mod-
eled. Most likely, the final choice will be a mix of “state-
based” and “if-based” implementation, to get the best perfor-
mance with a bounded increase in code size.

References
[1] The ATM Forum “Utopia, An ATM-PHY Interface

Specification, Level 1, v2.01” March 1994.

[2] G. Berry, 1996. See http://cma.cma.fr/Esterel

[3] M. Chiodo, P. Giusto,
H. Hsieh, A. Jurecska, L. Lavagno, and A. Sangiovanni-
Vincentelli. “Hardware/software Codesign of Embedded
Systems” IEEE Micro, Vol. 14, Number 4, pp. 26-36,
1994.

[4] M.
Chiodo, P. Giusto, H. Hsieh, A. Jurecska, L. Lavagno,
and A. Sangiovanni-Vincentelli. “Synthesis of Software
Programs from CFSM Specifications” Proceedings of the
Design Automation Conference, June 1995.

[5] P. Coppo, M. D’Ambrosio, V. Vercellone “The A-VPN
Server, a Solution for ATM Virtual Private Networks”
ICCS, November 1994.

[6] J. Ernst, C. Prasad,
G.S. Thurston “Cosimulation with Heterogeneous Sim-
ulation Algorithms Using Distributed Objects” Summer
Computer Simulation Conference, July 1997.

[7] E. Filippi, L. Licciardi, A. Montanaro, M. Paolini, M.
Turolla, M. Taliercio “The Virtual Chip Set: A Paramet-
ric IP Library for System on a Chip Design” CICC, Santa
Clara, May 1998.

[8] The POLIS group, POLIS Home Page, http://www-
cad.eecs.berkeley.edu/˜polis

[9] R. K. Gupta, C. N. C. Jr., and G. D. Micheli “Synthesis
and Simulation of Digital Systems Containing Interact-
ing Hardware and Software Components” In Proceed-
ings of the Design Automation Conference, June 1992.

7

[10] K. Hines, G. Borriello “Selective Focus as a Means of
Improving Geographically Distributed Embedded Sys-
tem Co-simulation. IEEE International Workshop on
Rapid System Prototyping p. 58-62, 1997.

[11] R. Klein and S. Leef “New Technology Links Hard-
ware and Software Simulators” In Electronic Engineer-
ing Times, June 1996.

[12] Y. Li and S. Malik “Performance Analysis of Embed-
ded Software Using Implicit Path Enumeration” In Pro-
ceedings of the Design Automation Conference, June
1995.

[13] K.A. Olukotun, R. Helaihel, J. Levitt, R. Ramirez
“A Software-Hardware Cosynthesis Approach to Digital
System Simulation” IEEE Micro, vol. 14(4):48-58, Aug.
1994.

[14] C. Passerone, L. Lavagno, C. Sansoè, M. Chiodo, A.
Sangiovanni-Vincentelli “Trade-off Evaluation in Em-
bedded System Design Via Co-simulation ASPDAC,
Jan. 1997.

[15] J. Rowson “Hardware/Software Co-simulation” In
Proceedings of the Design Automation Conference, pp.
439-440, June 1994.

[16] J. Rowson “Interface-Based Design” In Proceedings of
the Design Automation Conference, June 1997.

[17] A. Seawright, U. Holtmann, W. Meyer, B. Pangrle,
et. al. “A System for Compiling and Debugging Struc-
tured Data Processing Controllers” EURO-DAC p. 86-
91, Sept. 1996.

[18] K. Suzuki and A. Sangiovanni-Vincentelli “Efficient
Software Performance Estimation Methods for Hard-
ware/Software Codesign” In Proceedings of the Design
Automation Conference, pp. 605-610, June 1996.

[19] K. Ten Hagen and H. Meyr “Timed and Untimed
Hardware/Software Co-simulation: Application and Ef-
ficient Implementation” In Proceedings of the Interna-
tional Workshop on Hardware-Software Codesign, Oc-
tober 1993.

[20] D.E. Thomas, J.K. Adams, H. Schmit “A Model and
Methodology for Hardware-Software Codesign” IEEE
Design and Test of Computers, vol. 10(3):6-15, Sept.
1993.

[21] C.A. Valderrama, A. Changuel, A.A. Jerraya “Vir-
tual Prototyping for Modular and Flexible Hardware-
Software Systems” Design Automation for Embedded
Systems, vol. 2(3-4):267-82, May 1997.

[22] V. Zivojnovic and H. Meyr “Compiled HW/SW Co-
simulation” In Proceedings of the Design Automation
Conference, June 1996.

8

