
Simulation-Oriented Behavioral Veri�cation

Bassam Tabbara�, Abdallah Tabbara

EECS Department, University of California at Berkeley

Berkeley, CA 94720

ftbassam, atabbarag@eecs.berkeley.edu

Abstract

Design validation currently consumes a signi�cant percentage of the design team and takes months of simulation

time. This validation strain is bound to increase as the complexity of designs increases; simulation alone cannot be

expected to keep up with the veri�cation problem. Purely formal techniques for veri�cation have made considerable

progress over the last decade but still fall short of providing the breadth and depth of veri�cation required for most

integrated circuits, and require considerable investment of time and energy on the designer's part.

We have developed a validation approach that lies between simulation and formal veri�cation, and uses a

single speci�cation model. The approach consists of a \golden" deterministic behavior description model, and a

validation procedure to verify the equivalence between this golden model and any valid implementation of it. In

this paper we present our approach where Linear Temporal Logic (LTL) with bounded future-time operators is used

for behavioral property speci�cation. Simulation monitoring and assertion checking is used in a state-of-the-art

mixed Verilog/VHDL simulator (Mentor's ModelSim) in order to validate the design implementation against the

desired properties.

1 Introduction

The single biggest bottleneck in the Register Transfer (RT) level design today is ensuring that the design descrip-
tion, coded in a popular hardware description language meets its speci�cation. A battery of di�erent techniques
are currently applied in an attempt to ensure that this design interpretation is correct. The current challenge is
that the amount of simulation (usually at RTL) required to verify a circuit grows faster than linearly with the
size of the circuit.

While formal veri�cation can be a useful tool for early error detection at high abstraction design levels[1],
extensive simulation is still the most common technique for RTL validation, the aim of this work is to bridge the
gap between simulation and formal veri�cation by incorporating formal property checks into simulation.

2 Related Work

There is a wide variety of approaches to the problem of design veri�cation which seek to integrate formal techniques
with simulation. These approaches include:

� Evaluating simulation coverage: Describing the coverage of a set of simulation vectors against a semi-formal
model of the design being veri�ed.

� Symbolic simulation: Improving the power of simulation techniques by using multi-valued simulation vari-
ables or formal analysis of the simulation output.

� Building a transition system from the simulation semantics for model checking (such as in [3]).

�SRC Graduate Fellow

1



Figure 1: The Behavioral Veri�cation Problem

� Formally directed simulation: Using a formal model of the design to be veri�ed in order to direct simulation
vectors.

� Assertion checking: Integration of formal assertions within a simulation framework [2].

In this e�ort, we focus mainly on Assertion checking, and dynamic simulation monitoring.

3 Behavioral Veri�cation

Figure 1 shows how we view the behavioral veri�cation problem. In this work we address and propose the
following:

� A property speci�cation language to describe the observer block whose job is to verify the conformance
between the desired behavior and the implementation [5]. The language includes both propositional, and
temporal logics to capture the static, and dynamic behavior respectively of the system,

� a validation procedure that operates on formulae in this language, and

� an implementation in a suitable simulation environment, that preserves the validation semantics.

4 Observer Speci�cation Language

Since we will be using simulation, and performing a trace check in order to observe the behavior of the system,
our notion of conformance is that every �nite sequence of observations that may result from executing the detailed
implementation may also result from executing the more abstract \golden" speci�cation model.

4.1 Speci�cation Language Syntax

In general designers have a deterministic �nite speci�cation model in mind, non-determinism and liveness prop-
erties are used to simplify speci�cation in the rather complex formal veri�cation world. We believe that Linear
Temporal Logic (LTL) with bounded future-time operators is quite suitable for simulation-oriented en-
vironments and is su�cient for most practical purposes that designers have in mind.

However, in order to make speci�cation both intuitive for simulation, and applicable for later formal veri�cation
(if required), we decided to use Computation Tree Logic (CTL) notation. In fact, checking a formula over a �nite
simulation trace is equivalent to model checking over an observation structure (also known as Kripke structure)
where each state has one successor. In this context the semantics of the CTL operators EG, EF, EX, and EU

coincide with the semantics of the corresponding linear time operators provided it is understood that all future-
time operators are bounded by the time of the simulation completion. These operators will be the work-horse of
the property speci�cation mechanism.

2



4.1.1 Propositional Formulae

Propositional formulae are Boolean formulae and have the usual associated operators and semantics, but are
evaluated lazily [2]. In other words, assignments are evaluated only to see if they hold (true) or not (false).

4.1.2 Temporal Formulae

The eight basic temporal logic operators in CTL describe computation paths in the design space tree [8]. A
temporal logic operator consists of two parts: the path quanti�ers and the temporal operator. There are two
path quanti�ers: A which means on all paths, and E which means for some path. There are four basic temporal
operators: G which means always; F which means eventually; X which means next; and U which means until.

Since in simulation traces the branching operators have no meaning, we will negate the formulae that contain
A thus changing those into the equivalent E formulae. In fact, path quantors have no signi�cance in the context
of LTL since we have a speci�c chosen path, therefore we go one step further and remove the E from formulae,
and work with temporal quanti�ers only.

4.1.3 Speci�cation Language Semantics

An excellent discussion of the semantics of using traces in order to perform formal veri�cation is presented by
Can�eld et. al. in [2]. Our notions are quite similar, but we do not use a custom simulation environment; our
semantics are integrated in a straightforward fashion into the Discrete Event (DE) domain semantics. In what
follows, we discuss the semantics of the chosen speci�cation language, when possible we use the same terminology
and build on the concepts introduced by Can�eld et. al.

The semantics associated with our speci�cation language are consistent with simulation concepts in a cycle-
based simulator or an event-based simulator. Therefore our system can handle any HDL abstract or primitive
data type1. Signals represent values on wires, and can be of any HDL type. Variables are temporary locations
were computations are stored and can also be any valid HDL data object.

The values of signals and variables can be observed at discrete time points, each such interval is referred to as
a cycle. The state of a module is a valuation of all its observable signals at the observation point at the end of a
cycle. A simulation trace is a �nite sequence consisting of the observed state of some module. A golden behavior

model of some module is an unordered collection of formulae in the observer that conform to the syntax given
earlier. Note that since we will be working from within the simulator we can observe all signals and variables no
matter what their scope is2. Our role will therefore be that of a monitor only, we will not be tampering with any
internal data structures (like the event or timing queue for example).

Rule violation is de�ned in terms of the �rst cycle of the trace, which corresponds to the usual way temporal
logic is evaluated relative to an observation structure. Since simulation operates on �nite traces, there are three
possibilities for the truth value of a speci�cation rule: true, false, and undetermined.

We briey mention here that we could conceivably expand on this 3-valued logic (used in [2]), by adding
a probabilistic aspect to the undetermined value thus giving the user a degree of con�dence measure. This
probabilistic concept is not new to the simulation domain at large, it is similar to concepts like probabilistic fault
coverage, but to our knowledge has never been applied to account for the �niteness of simulation traces before.
This feature is provided as a convenience to the user and involves only a minor syntactic change in the monitor
procedures. To avoid distraction we will neglect this aspect in the sequel.

4.2 Validation Procedure

During a validation run, the observer will use its LTL speci�cation to monitor dynamically the progress of
the implementation under simulation. This approach should be contrasted to a static trace comparison of the
implementation against the formal \golden" simulation trace, which is quite time and resource consuming. The
static trace comparison approach requires running the entire simulation while an error could have occurred early
on in the run.

1This will depend on the actual HDL, VHDL for example supports Abstract Data Types (ADTs) while Verilog does not
2This is a marked di�erence from other approaches that have to modify the given design description in order to make internal

variables and signals visible to the outside observer

3



Because of the existence of temporal operators in the speci�cation, the evaluation result cannot be known
immediately in the same cycle since this result can depend on valuations at future cycles. All future operators
are however bounded with a upper limit, once that cycle is reached the undetermined valuation will be turned
to true or false as the case may be.

The validation procedure we have presented can be quali�ed as simulation of LTL formula for each property to
be validated and is polynomial in the size of the LTL formula. Evaluation optimizations that improve e�ciency
of this procedure include:

� A property determined to be false or true is dropped from the active list of properties to be checked.

� A \sensitivity list" is used for properties so that those whose symbols (variables and signals) have not
changed from the previous cycle are not re-evaluated.

5 Implementation of the Simulation-Oriented Veri�cation Approach

We have implemented our veri�cation approach in a state-of-the-art mixed Verilog/VHDL simulator Mentor's

ModelSim EE.
We provide the user with a Formal Assertion Interface where he/she can enter the formula in the notational

subset of CTL we de�ned earlier provided in the form of a Formal Assertion Library. The user can write assertions
about any signal or variable in the design. The interface is integrated into the simulator so the user need only
copy and paste signal and variable names and write any formula in LTL consisting of temporal and boolean
propositions, and valuations for these signals and variables (see Section 6 for a sample template).

Once editing of this input �le3 is complete, the entered description is used to automatically generate the
observer monitor that checks the formal assertions at each cycle. A test bench is used in order to provide the
simulation test vectors. The user can also choose to exercise the design using this script (thus guiding the
simulation) in a formal or random manner using the force macro (see [7] for ags and syntax).

We chose to use Tcl because it seems to be the most suited for the task at hand i.e. implementing a monitor
script, and most simulators leave such a handle for users. Alternatives include writing the monitor processes in
VHDL, or using the VHDL Foreign Language Interface (FLI) and then implementing the algorithms in C code
for example. Both these latter approaches, however, su�er from a large overhead (code size, and execution time),
and have serious limitations on the observations of signals and variables.

It should be noted that (as mentioned earlier) the monitor overhead consists of evaluating the validity of the
entered properties at each clock cycle4. The cost is therefore additive and linear in the number of properties. We
do not interfere in any of the inner workings of the simulator and preserve its discrete event operation.

6 Hardware Veri�cation Example: Cache Coherency Protocol

In this section we describe our validation experiments with a representative digital, synchronous, control-dominated
design that has been used as a typical benchmark [6] in the literature on applied formal veri�cation: a cache
coherency protocol. The implementation example is taken from the VIS [9] release examples.

Protocols that maintain coherency for multiple processors are called cache coherency protocols. The protocol
design described here is directory based that is the information about any one block of physical memory is kept
in just one location. Information in the directory usually includes which caches have copies of the block, and
whether that copy is dirty or not [4]. The design was implemented in Finite State Machine with Data path
(FSMD) Register Transfer Level (RTL) VHDL.

6.1 List of Properties to be Validated

Two sample properties to be validated are (taken from VIS release [9]):

3Actually it is a Tcl script but the user deals only with macros and cumbersome syntax is minimized
4at the positive edge of the clock as currently implemented

4



Figure 2: The Observer Script Editor

1. Liveness: If a processor requests a read then it will eventually be serviced.

2. Safety: If the block is in state EXCLUSIVE in the cache controller, its corresponding bit is set in the Write
List (Wlist) of the directory

The simulator was able to show that the second property fails and provide an error trace, as well as give a
con�dence measure for the success of the �rst property.

6.2 Validation Using the Simulation-Oriented Approach

We validated the properties listed in Section 6.1 in the ModelSim VHDL simulator augmented with formal
assertion. The following subsections provide more detail.

For the speci�c example at hand we wrote an observer script using the macros provided in the formal assertion
library as shown in Figure 2 which displays the script editor window.

In Figure 3 we show a simulation run screenshot at the time the simulator determines that property 4 (see
Section 6.1) has been violated5. The relevant signal and variable waveforms are also displayed.

7 Conclusions and Future Work

We believe that our work provides a tremendous added value for behavioral and RTL simulators in any shape or
form, and promises to incorporate sound and appropriate formal approaches to the simulation world. By using
a simulation-oriented approach, we need not explore the whole space as in formal veri�cation to determine if a
condition ever happens or not. The user may only be interested in a few speci�c guarantees and does not want
to evaluate all possible scenarios as in the classical veri�cation approach. The designer can therefore use our
proposed approach to improve the coverage.

In this paper we have presented the validation procedure used to verify the equivalence of the \golden" sim-
ulation model and any valid implementation of it. We have developed a proof-of-concept simulation monitor,
within a commercial mixed HDL simulator (Mentor's ModelSim). We use Tcl/Tk scripts in order to guide the
simulation, monitor its progress, and perform the required assertion checking. In this paper we demonstrated our
approach using a typical design benchmark from the veri�cation domain: a cache coherence protocol. We leave
evaluating the approach on industrial size examples to the future.

References

[1] Balarin F.; Chiodo M.; Giusto P.; Hsieh H.; Jurecska A.; Lavagno L.; Passerone C.; Sangiovanni-Vincentelli
A. L.; Sentovich E.; Suzuki K.; and Tabbara B., \Hardware-Software Co-Design of Embedded Systems: The
POLIS Approach", Kluwer Academic Publishers, MA, USA, May 1997.

5This is consistent with the results of VIS

5



Figure 3: Screen Capture of a Simulation Run

[2] W. Can�eld, E. A. Emerson, A. Saha \Checking Formal Speci�cations under Simulation" ICCD, 1997.

[3] E. Encrenaz \A Symbolic Relation for a Subset of VHDL'87 Descriptions and its Application to Symbolic
Model Checking" CHARME, 1995.

[4] J. L. Hennessy, D. A. Patterson \Computer Architecture: A Quantitative Approach" Morgan Kaufmann,
1990.

[5] T. A. Henzinger, S. Qadeer, S. K. Rajamani \You Assume, We Guarantee: Methodology and Case Studies"
CAV, 1998.

[6] Abhijit Jas, Alper Sen, Anand Ramachandran, Cagdas Akturan, ChiaBin Liu, Debaleena Das, I-Min Liu,
Jayanta Bhadra, Justin R. Denison, Kaustubh Das, Malay K. Ganai, Padmini Gopalakrishnan, Parminder S.
Chhabra, Praveen K. Jaini, Rajat Chaudhry, Ram Narayan, Ritu Chaba, Sriraman Padmanabhan, Srivatsan
Srinivasan, Wasim U. Quddus, Zhao Zhe. \Examples of HW Veri�cation using VIS", Texas 97 Veri�cation

Benchmarks, 1997.

[7] ModelSim EE/PLUS Reference Manual \Simulator Command Reference" Reference Manual of ModelSim EE

5.1e, 1998.

[8] T. Schlipf, T. Buechner, R. Fritz, M. Helms, J. Koehl \Formal Veri�cation Made Easy"
http://www.almaden.ibm.com/journal/rd/414/schlipf.html

[9] The VIS Group, \VIS: A system for Veri�cation and Synthesis" CAV, 1996.

6


