
111

1

Synthesis and optimization
of domino logic

Min Zhao and Sachin Sapatnekar
Department of Electrical Engineering

University of Minnesota
Minneapolis, MN 55455

2

Outline

n Introduction to domino logic

n Domino logic synthesis flow

n Technology mapping of domino logic

n Timing-driven static-domino partitioning

222

3

Basics of domino logic

 clk

Tc,f T c,r Tc,f + P

y

x
z

out

clk

 d

 d: dynamic node

out
 precharge evaluation

4

Advantages of domino logic

n Speed advantages
– Reduced fighting during transitions
– Fewer transistors per gate, lower capacitive load

n Area advantages
– Mainly consists of NMOS
– N+4 transistors instead of 2N transistor per gate

n Therefore, domino logic is widely used in high-
performance circuit design.

333

5

Disadvantages of domino logic

n Disadvantages
– Non-inverting nature may require logic duplication
– Strict timing constraints
– Charge sharing, noise susceptibility
– High clock routing overhead

n Need automated techniques considering these
issues for domino circuit design

6

Domino logic synthesis flow

Logic description(BLIF, Verilog)

Technology independent optimization

Partitioning - static-domino, between clock phases

Parameterized library technology mapping

Timing verification and optimization

Noise verification and optimization

Physical design

Timing constraints

Clocking strategy

Library layout
synthesizer

444

7

Technology mapping of domino
logic

8

What is technology mapping?

n Implement input network with gates in a library.

a
b

c

d

e
f

g
h

555

9

Parameterized library

n Large NMOS pull-down network of domino gate.
– Small short circuit current and small driven load.
– No complementary part.
– The delay overhead of inverter may offset the advantage

of fast switch speeds in small gates.

n Dramatical increase of library number with the
increase of length(s) and width(p) of gate.

– (s,p): (3,6): 6877; (4,4): 3503; (4,6): 222943

n A parameterized library is applied for technology
mapping of domino logic.

10

Problem definition

n A parameterized library
n A collection of gates that satisfy the constraints on

the width and height of the pull-down(pull-up)
implementation of a gate.

n Cell layout produced on the fly

n Technology mapping of domino logic
– Given

n An optimized Boolean network
n A constraint on the width and height of domino gates

– Find
n Minimum cost solution to the problem that nodes in

the network are implemented in domino logic

666

11

General technology mapping
algorithm
n Dynamic programming algorithm is applied.
n At each network node

– pattern matching
– cost calculation for each possible matching

n The cost will be large if the library is large.

12

Parameterized library mapping
algorithm

n Starting point
n Given an arbitrarily optimized network
n It is first unated
n Then mapped into a two input AND-OR DAG
n Then the DAG is decomposed into trees.

n Complexity
– space complexity: O(WHN)
– time complexity: O(W2H2N)

n W: maximum number of parallel chains
n H: maximum number of series transistors
n N: number of nodes in the tree

777

13

Subsolutions

n Subsolution space at each node.

n Each stored subsolution is optimal for its subtree
under specified constraints

n Physically,
– {S,P}(S≥1 & P ≥ 1) represents a segment of a domino

pull-down whose height and width are S and P
– {1,1} represents a complete domino gate or a PI.

S = 2, S ≤ H
P = 3, P ≤ W

{S,P}H

W

14

Basic Operations

n OR operation: S=max(Sl, Sr), P=Pl+Pr

n AND operation: S=Sl + Sr, P=max(Pl, Pr)
n PI / Gate formation operation: S=1, P=1

– A gate formation operation corresponds to a situation
where the structure collected so far is converted to a
domino gate with an output at that network node.

AND*

PI PI

Gate formation
clk

clk

888

15

Node data structure

n Store the optimal subsolutions for all possible
[height, width] combinations from [1,1] to [H,W].

n Each optimal subsolution can be represented as
{S, P, C, {Sl, Pl}, {Sr, Pr}}

n S (1 ≤ S ≤ H) is the maximum height of the current
solution.

n P (1 ≤ P ≤ W) is the maximum width of the current
solution.

n C is the cost.
n {Sl, Pl}, {Sr, Pr} is the subsolutions of left and right

child whose combination provides the minimal cost
of subsolution {S,P}

16

Node data calculations

n {S, P} (S ≥ 1 & P ≥ 1) subsolution at a parent node
is obtained by combining optimal subsolutions at
child nodes.

n {1, 1} subsolution at a node is obtained from the
subsolution of the same node whose cost is
minimal.

n The procedure consists of
– Node constraint functions
– Node cost functions

999

17

Node cost functions

n Here, cost is area -- the number of transistors.
n Literal operation: C=C+1

– Literal operation corresponds to a primary input or a
situation where a new domino structure is started after
gate formation operation.

n OR/AND operation: C=Literal(Cl) + Literal(Cr)
n Gate formation operation: C=Cmin +4

– The minimal cost solution, Cmin is the minimal value out
of all H*W optimal subsolutions

– ‘4’ includes two clock control transistors + an inverter

18

Node mapping algorithm

 For each valid [height width] subsolution of the left child {
 for each valid [height width] subsolution of the right child{

 {S,P}= Node constraint functions ({Sl, Pl}, {Sr, Pr});
 if {S, P} was within the constraints (H, W)
 {

 C = Node cost functions (Cl, Cr)
 if (C<C[S,P]min) then C[S, P]min = C.
 if (C<Cmin) then Cmin =C.

 }
 }

 }
 C[1,1] = Gate formation (Cmin)

101010

19

An example

n Of all (S,P) mapping subsolutions for the children only those with
minimal cost are stored

AND node:
 C = Cl+Cr
 P = max(Pl,Pr)
 S = Sl+Sr
Or node:
 C = Cl+Cr
 P = Pl + Pr
 S = max(Sl, Sr)
Gate formation:
 C = Cmin + 4
 S = 1
 P = 1

OR

{1,2,2}
{1,1,6}

PI

{1,1,0}

{2,2,3}
{2,1,8}
{1,1,7}

{2,3,5}
{3,2,7}
{1,1,9}

AND

ORAND

8,{2,2},{2,3}
13,{2,1},{2,3}

Cmin=8

{S, P, C}

{4,3,8}
{4,2,15}
{3,3,13}
{3,2,13}
{3,1,18}
{2,1,18}
{1,1,12}

20

Wide domino gate

n NAND, NOR gate can be used to replace inverter.
– Break up large stacks of series

transistors into parallel chains

111111

21

Wide AND/OR domino gate
mapping

n Enlarged subsolution space is used.

n Region a: standard domino gate mapping
n Region b: wide AND domino gate mapping
n Region c: wide OR domino gate mapping

H

W

2W

2H

c
a

b

a

22

Dual-monotonic gate

n A common dual-monotonic XOR gate.

n The presence of an XOR/XNOR function
decomposes the input network into small
mapping trees, which causes a larger area and
delay cost.

O=a XOR b

clk clk

clk clk
O=a XNOR b

a a

b

a a

b

121212

23

Dual-monotonic gate mapping

n Recognize the XOR/XNOR logic of the network by pattern
matching.

n Perform the technology mapping on the AND/OR/XOR/
XNOR subject network, mapping AND/OR nodes to the
standard domino gate and XOR/XNOR nodes to dual-
monotonic gate.

n Permitted mapping scheme.

XOR/XNOR

XOR/XNOR OTHER
NODES

XOR/XNOR

 AND/OR OTHER
NODES

24

Implementation and results(1)

n Execution time: < 10 seconds
n Comparison with another domino mapper

n Comparison of various mapping methods

Circuits Our approach
#trans/#level

Prasad et al.
#trans/#level

Reduction
%

c8 289/6 328/7 13.5%
I6 890/2 890/3 0%
C880 1056/9 1499/7 42.0%

Circuits Basic mapping
#trans/#level

Wide AND/OR gate
#trans/#level

Dual-mono gate
#trans/#level

C1355 1824/9 1824/9 1360/7
C1908 1978/18 1965/18 1588/14
 k2 2884/16 2738/15 2884/16

131313

25

Circuits Domino
#trans/#levels

SIS: 44-3.genlib
#trans/#levels

Reduction
%

Dup-ratio
%

 i6 761/3 1194/5 36.3% 13%
C1355 1360/7 1378/20 1.3% 77%
C3540 4002/20 3140/34 -27.5% 92%

Experimental results

n Domino mapping vs. static mapping

26

Partitioning: Motivation

n Use domino gates to speed up parts of the circuit;
remainder is implemented in static CMOS

n Domino logic is typically multiphase
n General clocking strategy

CLK

Domino chain
Evaluated in ph1
Precharged in ph2

 L
at

ch
 o

n
ph

1

 L
at

ch
 o

n
ph

2

 S
ta

tic

 S
ta

tic

Domino chain
Evaluated in ph2
Precharged in ph1

 L
at

ch
 o

n
ph

1

141414

27

Another consideration

n Observation: duplication cost can be reduced by
proper partitioning

n An example

n In addition to the partitioning cost,
implementation cost varies with partitions.

* *
*

*

++

*

++

static

domino

CUT A

CUT B

c

28

Problem definition

n Static-domino partitioning problem
– Given

n An optimized combinational circuit
n The delay specification on the output of the network

– Implement the nodes with domino+static logic
n Minimize the cost while meeting delay specs
n Satisfy the precedence constraints that no static

logic gate is permitted to fan out a domino gate

n Two-way domino partitioning
n Partition the domino implementation into two

phases, with inverters permitted between the phases.

151515

29

The timing-driven static-domino
partitioning algorithm

n Cost: area or power.
n Outline of the algorithm

n Perform fast static and domino mapping on the
entire logic network.

n Apply a PERT based timing analysis method to find
the candidate cut nodes in the network.

n Build the flow network from the candidate cut nodes.
The edge capacities are determined from the cost
difference of static and domino implementations.

30

Static-domino mapping algorithm

 Determining candidate cut nodes

n From the static mapping, get
n Di,d(v) (Di,s(v)): the delay from the inputs to node v

using a domino(static) implementation
n Find the maximum delay from output to node v

n If maximum delay from input to
output through node v

n Di,d(v) + Ds,out(v) < Tspec

⇒ v is a candidate cut node

v

Ds,out(v)

Di,d(v)

161616

31

Static-domino partitioning algorithm

Finding the minimum cut

n Notation:
n S1 (D1): the static(domino) implementation cost of

region A
n S2 (D2): the static(domino) implementation cost of

region B

n If regions A and B are implemented in static logic,
– Cost(s) = S1 + S2;

n If A is domino and B is static:
– Cost(d-s) = D1 + S2 = D1 - S1 + Cost(s)

Region B: S2(D2)

Region A: S1(D1)

a
b

c
d

32

Static-domino partitioning algorithm

Finding the minimum cut (Contd.)

n Cost(s) is constant.
n Therefore, minimizing the partitioning cost is to

find the region A whose (D1-S1) is minimized.
n (D1-S1) value of a partitioning

– Σ [d(i)-s(i)] ∀ i ∈ cutset between Region A and B

n Build the flow network
– Edge capacities are [d(i)-s(i)]

for each node i
– Standard technique used to

maintain precedence constraints

Region B: S2(D2)

Region A: S1(D1)

a
b

c
d

171717

33

Building the maximum flow graph

n Build the vertex-cut maximum flow graph from
candidate cut nodes.

+

* *

+

* *

*

+

+

* *

+

* *

*

* *

*
PI

PI

a:[12-20]

c:[30-34] h:[0-0]

b:[12-20]

e:[18-14]

f:[34-33]
g:[21-21]

d:[0-0]

 aread(f)- areas(f)

0
d’

d
-8
a’

a

4
e’

e

0
h’

h
-8
b’

b

-4
c’

c

1
g’

g
0
f’

f

s

T
∞ ∞

∞ ∞ ∞

∞ ∞ ∞ ∞
∞

∞ ∞ ∞
∞

34

Maximum flow graph (contd.)

n Constraints to max-flow min-cut algorithm
– Maintain the predecessor constraints
– Handle edges with negative capacities.

n To solve the problem,
n Heuristically transform the vertex-cut maximum flow

network into an edge-cut maximum flow network
n A positive initial flow is injected into the source node

and distributed into the whole network.
n Edges with capacities of ∞ are introduced into the

graph to force the precedessor constraint.

181818

35

Maximum flow graph: Example

S

T

d

e

a b h

c

gf

0
-8-4 -40

∞ ∞ ∞

0 1

-12

∞

-1

h h

S

T

d

e

a b

c

gf

0+8

-8+8

-4+4 -4+4
0+8

0+18 1+14

-1+62+12

∞

-1+6

∞ ∞ ∞

Initial flow=32
Build edge-cut maximal
flow graph

S

T

d

e

a b

c

gf

8

00 08

18
15

5
14

∞

5 ∞

∞
∞ ∞ ∞

∞

∞
∞

∞ ∞

∞

∞

∞

∞

Add the edges with
capacities of ∞

36

A partitioning flow for a general
two-phase clocking strategy
n Perform static-domino

partitioning on the entire
network into domino region(1)
and static region(2)

n Perform two-way domino
partitioning on region 1 to
obtain phase I region(3) and
phase II region(4)

n Perform static-domino
partitioning on region 3 into
domino region(5) and static
region(6)

1 2

3 4

5 6

2

24

191919

37

Experimental results

n Results of static-domino partitioning (one phase)
Circuits Domino

#trans
Static

#trans/delay
No spec

#trans
Spec=(*1.25)

#trans
Spec=(*1.05)

#trans
CPU

(s)

C3540 4527 2850/1.43 2748 3312 3987 10.9
des 9945 8134/4.25 7527 7536 7536 60.2
 C7552 7919 5464/2.35 5370 5987 6198 30.9

38

Experimental results (Contd.)

n Partitioning flow for two-phase clocking scheme

Circuits Domino
#trans

Static
#trans/delay

Spec=(*1.25)
#trans/#latches

Spec=(*1.05)
#trans/#latches

c2670 1992 1754/1.75 1538/52 1538/52

K2 2884 2896/1.54 2691/157 2795/115

C3540 4527 2850/1.43 3063/60 3235/68

des 9945 8134/4.25 7510/118 7513/119

 C7552 7919 5464/2.35 5754/164 5772/164

202020

39

Conclusion

n Synthesis procedure for domino logic discussed

n Technology mapper: fast, good solutions

n Partitioning between static and domino to gain
advantages of both

n Placed into a flow including transistor sizing and
noise fixes for charge sharing

