Code Generation For PTIDES Models

Jia Zou
Jeff C. Jensen
Isaac Liu

EE290N Project Presentation
5/15/09

PTIDES Programming Model

• Programming Temporally Integrated Distributed Embedded Systems
 – Time is part of the abstraction
 – Based on Discrete-Event model of computation
 • Actors process events in time-stamp order
 • Deterministic under simple causality conditions
Deterministic Data Outputs

\[e_1 = (v_1, \tau_1) \]

\[e_2 = (v_2, \tau_2) \]

Ensures deterministic data outputs

Deterministic Time Outputs

- At sensors and actuators
- Relate model time (\(\tau\)) to physical time (\(t\))

Specification of delay between sensor and actuator.
PTIDES Workflow

Design → Simulation → Code Generation → Schedulability Analysis → Program Analysis → PtidyOS Runtime

PtidyOS

-- All event processing is implemented within interrupt service routines.
-- All interrupts are reentrant, interrupts do not have priority only events do.
-- No dynamic memory allocation.
-- Combines PTIDES semantics with traditional scheduling algorithms (for example Earliest-Deadline-First(EDF)).
Example PTIDES Model

System Structure and Events

- Model Structure
 - Partial evaluation:
 - Static model graph - Use function calls instead of generating actual actor structures
 - Decreases code size and execution time

- Event Structure
 - Events store the data tokens as well as the destination fire function
PTIDES vs Data Flow

Data Flow:
Fires the actor when the firing rule matches (both ports receive an event).

PTIDES:
Fires the actor whenever an input event is received, regardless of which port.

For Code Generation:

Data Flow:
Fire function assumes data from input ports, so no need to check.

PTIDES:
Fire function needs to check which input port has an event, since it could be from different timestamps.

Reading from Inputs
Interfacing with real world

Sensor generated code

- It is an interrupt service routine
 1. Gets Physical Time
 2. Read Value
 3. Generate event with timestamp = physical time
 4. Add event to event queue
Actuator generated code

- A function to setup a timer interrupt
 1. Read event timestamp
 2. Get difference between physical and event timestamp
 3. Setup timer with the difference
- And a fire function which handles the timer interrupt
 - Actually do the actuation

Example PTIDES Model
Live Demo: Time-Triggers Music

- Periodic sensor input
- Expect periodic output
- Correctly played music verifies
 - Periodic actuator output
 - Correct event order (timestamps)

Input: 1-10Hz square wave
Output: Legend of Zelda