CPO of Continuous Functions

EECS 290N, Spring 2009

Edward Lee, EECS Department, UC Berkeley

February 25, 2009

Theorem: For CPOs (A, \leq) and (C, \leq), let $X \subset[A \rightarrow C]$ be the set of all continuous total functions from A to C. Then (X, \leq) is a CPO under the pointwise order \leq.

Proof: First we need to show that X has a bottom element. This is easy. The bottom element is a function $g \in X$ where for all $a \in A, g(a)=\perp$. This function is obviously continuous and total, and hence is in X.

Second, we need to show that any chain of functions in X has a LUB and that the LUB is continuous. Consider a chain of functions

$$
C=\left\{f_{1}, f_{2}, \ldots\right\} \subset X
$$

Since each of these functions is continuous (and hence monotonic), then for any $a \in A$, the following set is also a chain,

$$
C_{a}^{\prime}=\left\{f_{1}(a), f_{2}(a), \ldots\right\} \subset C
$$

Since C is a CPO, this set has a LUB. Define the function $g: A \rightarrow C$ such that for all $a \in A$,

$$
g(a)=\bigvee C_{a}^{\prime}
$$

Then in the pointwise order, it must be that

$$
g=\bigvee C=\bigvee\left\{f_{1}, f_{2}, \ldots\right\} .
$$

It remains to show that g is in X. To show this, we must show that it is continuous. We must show that for all chains $D \subset A$,

$$
g(\bigvee D)=\bigvee \hat{g}(D)
$$

Writing the elements of $D=\left\{d_{1}, d_{2}, \ldots\right\}$, observe that

$$
\begin{aligned}
\bigvee \hat{g}(D) & =\bigvee\left\{g\left(d_{1}\right), g\left(d_{2}\right), \ldots\right\} \\
& =\bigvee\left\{\bigvee\left\{f_{1}\left(d_{1}\right), f_{2}\left(d_{1}\right), \ldots\right\}, \bigvee\left\{f_{1}\left(d_{2}\right), f_{2}\left(d_{2}\right), \ldots\right\} \ldots\right\} \\
& =\bigvee\left\{\bigvee\left\{f_{1}\left(d_{1}\right), f_{1}\left(d_{2}\right), \ldots\right\}, \bigvee\left\{f_{2}\left(d_{1}\right), f_{2}\left(d_{2}\right), \ldots\right\} \ldots\right\} \\
& =\bigvee\left\{\bigvee \hat{f}_{1}(D), \bigvee \hat{f}_{2}(D), \ldots\right\} \\
& =\bigvee\left\{f_{1}(\bigvee D), f_{2}(\bigvee D), \ldots\right\} \\
& =g(\bigvee D) .
\end{aligned}
$$

Note that the above use the axiom of choice, which states that given a set of sets, one can construct a new set by collecting one element from each of the sets in the set of sets.

