Homework 5

EE 290n - Advanced Topics in Systems Theory
Edward A. Lee

1. Suppose V is some set and $S=V^{* *}$ is the set of finite and infinite sequences of elements of V. This exercise explores some of the properties of the CPO S^{n} with the pointwise prefix order, for some non-negative integer n.
(a) Show that any two elements $a, b \in S^{n}$ that have an upper bound have a least upper bound.
(b) Let $U \subset S^{n}$ be such that no two distinct elements of U are joinable. Prove that for all $s \in S^{n}$ there is at most one $u \in U$ such that $u \sqsubseteq s$.
(c) Given $s \in S^{n}$, suppose that $Q(s) \subset S^{n}$ is a joinable set where for all $q \in Q(s), q \sqsubseteq s$. Then show that there is an s^{\prime} such that $s=(\bigvee Q(s)) \cdot s^{\prime}$.

Solution.

(a) Let c be an upper bound of a and b. The $a \sqsubseteq c$ and $b \sqsubseteq c$. Under the pointwise prefix order, this implies that $\pi_{i}(a) \sqsubseteq \pi_{i}(c)$ and $\pi_{i}(b) \sqsubseteq \pi_{i}(c)$ for each $i \in\{1, \cdots, n\}$. Since $\pi_{i}(a)$ and $\pi_{i}(b)$ are ordinary sequences, if they are both prefixes of the same sequence $\pi_{i}(c)$, then it must be that either $\pi_{i}(a) \sqsubseteq \pi_{i}(b)$ or $\pi_{i}(b) \sqsubseteq \pi_{i}(a)$. We can construct a $d \in S^{n}$ where $\pi_{i}(d)$ is defined to be $\pi_{i}(b)$ if $\pi_{i}(a) \sqsubseteq \pi_{i}(b)$, and is defined to be $\pi_{i}(a)$ otherwise, for each $i \in\{1, \cdots, n\}$. Then clearly d is an upper bound of a and b, and moreover, $\pi_{i}(d) \sqsubseteq \pi_{i}(c)$ for each $i \in\{1, \cdots, n\}$, so d is a least upper bound under the pointwise prefix order.
(b) Note first that the theorem is trivially true for $n=0$. For $n>0$, assume to the contrary that you have two distinct $u, u^{\prime} \in U$ such that $u \sqsubseteq s$ and $u^{\prime} \sqsubseteq s$ for some $s \in S^{n}$. Then s is an upper bound for $\left\{u, u^{\prime}\right\}$. From part (a), $\left\{u, u^{\prime}\right\}$ has a least upper bound, and hence u and u^{\prime} are joinable, contradicting the assumption that no two distinct elements of U are joinable.
(c) It is sufficient to show that $\bigvee Q(s) \sqsubseteq s$. Note first this is trivially true for $n=0$, so we henceforth assume $n>0$. Consider each dimension $i \in\{1, \cdots, n\}$. For each such i, there is a $q \in Q(s)$ such that $\pi_{i}(\bigvee Q(s))=\pi_{i}(q)$. We know that $\pi_{i}(q) \sqsubseteq \pi_{i}(s)$, so we conclude that $\pi_{i}(\bigvee Q(s)) \sqsubseteq \pi_{i}(s)$ for each such i. Hence, $\bigvee Q(s) \sqsubseteq s$.
2. Consider the model shown in figure 1. Assume that data types are all $V=\{0,1\}$. Assume f is a dataflow actor that implements an identity function and that Const is an actor that produces an infinite sequence $(0,0,0, \cdots)$. Obviously, the overall output of this model should be this same infinite sequence. The box labeled g indicates a composite actor. Find firing rules and firing function g for the composite actor to satisfy conditions 1 and 3 covered in class. Note that the composite actor has one input and two outputs.

Solution. Let $U=\{(0),(1), \perp\}$ be the set of firing rules. Note that subsets $\{(0), \perp\}$ and $\{(1), \perp\}$ are joinable. Notice that the greatest lower bound of each of these sets is \perp, so the
first part of rule 3 is satisfied. Let g be defined so that

$$
\begin{align*}
g((0)) & =((0), \perp) \tag{1}\\
g((1)) & =((1), \perp) \tag{2}\\
g(\perp) & =(\perp,(0)) . \tag{3}
\end{align*}
$$

Note that this firing function yields, as desired, and infinite sequence $(0,0,0, \cdots)$. Note now that if $u=(0)$ and $u^{\prime}=\perp$, then

$$
g(u) \cdot g\left(u^{\prime}\right)=g\left(u^{\prime}\right) \cdot g(u) .
$$

The same is true if $u=(1)$ and $u^{\prime}=\perp$, so the rest of rule 3 is satisfied.
3. Extra credit. In theory, dataflow models with only boolean data types, switch, select, and logic functions are Turing complete. A simple function that should be implementable, but is not easy to implement using such primitives, is one that, given a sequence $\left(v_{1}, v_{2}, \cdots\right)$ produces a sequence where every block of five inputs is reversed, yielding

$$
\left(v_{5}, v_{4}, v_{3}, v_{2}, v_{1}, v_{10}, v_{9}, \cdots\right) .
$$

I am looking for elegant dataflow models using the dynamic dataflow (DDF) director in Ptolemy II (under ExperimentalDirectors). An extension of this would use integer data types and given three sequences $v=\left(v_{1}, v_{2}, \cdots\right),\left(n_{1}, n_{2}, \cdots\right)$, and $\left(m_{1}, m_{2}, \cdots\right)$ that would behave as follows: for every integer $i>0$, it would consume n_{i} tokens from v and push them onto a stack, then pop m_{i} tokens from the stack (reversing their order) and produce them on the output. I am looking for an elegant dataflow model that performs this function. Note that I do not have a solution to this problem.
Solution. I got several solutions, all with nice ideas. The one I like the best is given by Xiaojun Liu. It can be found at:
http://embedded.eecs.berkeley.edu/concurrency/homework /Dataflow/XiaojunLiu_ExtraCredit.xml

Figure 1: A model.

