
1

Homework 5

EE 290n - Advanced Topics in Systems Theory

Edward A. Lee

1. SupposeV is some set andS= V∗∗ is the set of finite and infinite sequences of elements ofV.
This exercise explores some of the properties of the CPOSn with the pointwise prefix order,
for some non-negative integern.

(a) Show that any two elementsa,b∈Sn that have an upper bound have a least upper bound.

(b) Let U ⊂ Sn be such that no two distinct elements ofU are joinable. Prove that for all
s∈ Sn there is at most oneu∈U such thatuv s.

(c) Givens∈Sn, suppose thatQ(s)⊂Sn is a joinable set where for allq∈Q(s), qv s. Then
show that there is ans′ such thats= (

W
Q(s)).s′.

Solution.

(a) Let c be an upper bound ofa andb. Theav c andbv c. Under the pointwise prefix
order, this implies thatπi(a) v πi(c) andπi(b) v πi(c) for eachi ∈ {1, · · · ,n}. Since
πi(a) andπi(b) are ordinary sequences, if they are both prefixes of the same sequence
πi(c), then it must be that eitherπi(a) v πi(b) or πi(b) v πi(a). We can construct a
d ∈ Sn whereπi(d) is defined to beπi(b) if πi(a) v πi(b), and is defined to beπi(a)
otherwise, for eachi ∈ {1, · · · ,n}. Then clearlyd is an upper bound ofa andb, and
moreover,πi(d) v πi(c) for eachi ∈ {1, · · · ,n}, sod is a least upper bound under the
pointwise prefix order.

(b) Note first that the theorem is trivially true forn = 0. Forn > 0, assume to the contrary
that you have two distinctu,u′ ∈U such thatuv sandu′ v s for somes∈ Sn. Thens is
an upper bound for{u,u′}. From part (a),{u,u′} has a least upper bound, and henceu
andu′ are joinable, contradicting the assumption that no two distinct elements ofU are
joinable.

(c) It is sufficient to show that
W

Q(s) v s. Note first this is trivially true forn = 0, so we
henceforth assumen> 0. Consider each dimensioni ∈ {1, · · · ,n}. For each suchi, there
is aq∈Q(s) such thatπi(

W
Q(s)) = πi(q). We know thatπi(q)v πi(s), so we conclude

thatπi(
W

Q(s))v πi(s) for each suchi. Hence,
W

Q(s)v s.

2

2. Consider the model shown in figure1. Assume that data types are allV = {0,1}. Assumef is
a dataflow actor that implements an identity function and that Const is an actor that produces
an infinite sequence(0,0,0, · · ·). Obviously, the overall output of this model should be this
same infinite sequence. The box labeledg indicates a composite actor. Find firing rules and
firing functiong for the composite actor to satisfy conditions 1 and 3 covered in class. Note
that the composite actor has one input and two outputs.

Solution. Let U = {(0),(1),⊥} be the set of firing rules. Note that subsets{(0),⊥} and
{(1),⊥} are joinable. Notice that the greatest lower bound of each of these sets is⊥, so the



2

first part of rule 3 is satisfied. Letg be defined so that

g((0)) = ((0),⊥) (1)

g((1)) = ((1),⊥) (2)

g(⊥) = (⊥,(0)). (3)

Note that this firing function yields, as desired, and infinite sequence(0,0,0, · · ·). Note now
that if u = (0) andu′ =⊥, then

g(u).g(u′) = g(u′).g(u).

The same is true ifu = (1) andu′ =⊥, so the rest of rule 3 is satisfied.2

3. Extra credit . In theory, dataflow models with only boolean data types, switch, select, and
logic functions are Turing complete. A simple function that should be implementable, but
is not easy to implement using such primitives, is one that, given a sequence(v1,v2, · · ·)
produces a sequence where every block of five inputs is reversed, yielding

(v5,v4,v3,v2,v1,v10,v9, · · ·).
I am looking for elegant dataflow models using the dynamic dataflow (DDF) director in
Ptolemy II (under ExperimentalDirectors). An extension of this would use integer data types
and given three sequencesv = (v1,v2, · · ·), (n1,n2, · · ·), and(m1,m2, · · ·) that would behave
as follows: for every integeri > 0, it would consumeni tokens fromv and push them onto
a stack, then popmi tokens from the stack (reversing their order) and produce them on the
output. I am looking for an elegant dataflow model that performs this function. Note that I do
not have a solution to this problem.

Solution. I got several solutions, all with nice ideas. The one I like the best is given by
Xiaojun Liu. It can be found at:

http://embedded.eecs.berkeley.edu/concurrency/homework
/Dataflow/XiaojunLiu_ExtraCredit.xml

2

Figure 1: A model.


