Homework 5

EE 290n - Advanced Topics in Systems Theory

Edward A. Lee

- 1. Suppose V is some set and $S = V^{**}$ is the set of finite and infinite sequences of elements of V. This exercise explores some of the properties of the CPO S^n with the pointwise prefix order, for some non-negative integer n.
 - (a) Show that any two elements $a, b \in S^n$ that have an upper bound have a least upper bound.
 - (b) Let $U \subset S^n$ be such that no two distinct elements of U are joinable. Prove that for all $s \in S^n$ there is at most one $u \in U$ such that $u \sqsubseteq s$.
 - (c) Given $s \in S^n$, suppose that $Q(s) \subset S^n$ is a joinable set where for all $q \in Q(s)$, $q \sqsubseteq s$. Then show that there is an s' such that $s = (\bigvee Q(s)).s'$.

Solution.

- (a) Let *c* be an upper bound of *a* and *b*. The *a* ⊆ *c* and *b* ⊆ *c*. Under the pointwise prefix order, this implies that π_i(*a*) ⊆ π_i(*c*) and π_i(*b*) ⊆ π_i(*c*) for each *i* ∈ {1, ..., *n*}. Since π_i(*a*) and π_i(*b*) are ordinary sequences, if they are both prefixes of the same sequence π_i(*c*), then it must be that either π_i(*a*) ⊆ π_i(*b*) or π_i(*b*) ⊆ π_i(*a*). We can construct a *d* ∈ *Sⁿ* where π_i(*d*) is defined to be π_i(*b*) if π_i(*a*) ⊆ π_i(*b*), and is defined to be π_i(*a*) otherwise, for each *i* ∈ {1,..., *n*}. Then clearly *d* is an upper bound of *a* and *b*, and moreover, π_i(*d*) ⊆ π_i(*c*) for each *i* ∈ {1,..., *n*}, so *d* is a least upper bound under the pointwise prefix order.
- (b) Note first that the theorem is trivially true for n = 0. For n > 0, assume to the contrary that you have two distinct $u, u' \in U$ such that $u \sqsubseteq s$ and $u' \sqsubseteq s$ for some $s \in S^n$. Then *s* is an upper bound for $\{u, u'\}$. From part (a), $\{u, u'\}$ has a least upper bound, and hence *u* and *u'* are joinable, contradicting the assumption that no two distinct elements of *U* are joinable.
- (c) It is sufficient to show that $\bigvee Q(s) \sqsubseteq s$. Note first this is trivially true for n = 0, so we henceforth assume n > 0. Consider each dimension $i \in \{1, \dots, n\}$. For each such *i*, there is a $q \in Q(s)$ such that $\pi_i(\bigvee Q(s)) = \pi_i(q)$. We know that $\pi_i(q) \sqsubseteq \pi_i(s)$, so we conclude that $\pi_i(\bigvee Q(s)) \sqsubseteq \pi_i(s)$ for each such *i*. Hence, $\bigvee Q(s) \sqsubseteq s$.
- 2. Consider the model shown in figure 1. Assume that data types are all $V = \{0, 1\}$. Assume *f* is a dataflow actor that implements an identity function and that Const is an actor that produces an infinite sequence $(0, 0, 0, \cdots)$. Obviously, the overall output of this model should be this same infinite sequence. The box labeled *g* indicates a composite actor. Find firing rules and firing function *g* for the composite actor to satisfy conditions 1 and 3 covered in class. Note that the composite actor has one input and two outputs.

Solution. Let $U = \{(0), (1), \bot\}$ be the set of firing rules. Note that subsets $\{(0), \bot\}$ and $\{(1), \bot\}$ are joinable. Notice that the greatest lower bound of each of these sets is \bot , so the

first part of rule 3 is satisfied. Let g be defined so that

$$g((0)) = ((0), \bot)$$
 (1)

$$g((1)) = ((1), \perp)$$
 (2)

$$g(\bot) = (\bot, (0)). \tag{3}$$

Note that this firing function yields, as desired, and infinite sequence $(0, 0, 0, \dots)$. Note now that if u = (0) and $u' = \bot$, then

$$g(u).g(u') = g(u').g(u).$$

The same is true if u = (1) and $u' = \bot$, so the rest of rule 3 is satisfied. \Box

3. **Extra credit**. In theory, dataflow models with only boolean data types, switch, select, and logic functions are Turing complete. A simple function that should be implementable, but is not easy to implement using such primitives, is one that, given a sequence (v_1, v_2, \cdots) produces a sequence where every block of five inputs is reversed, yielding

$$(v_5, v_4, v_3, v_2, v_1, v_{10}, v_9, \cdots).$$

I am looking for elegant dataflow models using the dynamic dataflow (DDF) director in Ptolemy II (under ExperimentalDirectors). An extension of this would use integer data types and given three sequences $v = (v_1, v_2, \dots)$, (n_1, n_2, \dots) , and (m_1, m_2, \dots) that would behave as follows: for every integer i > 0, it would consume n_i tokens from v and push them onto a stack, then pop m_i tokens from the stack (reversing their order) and produce them on the output. I am looking for an elegant dataflow model that performs this function. Note that I do not have a solution to this problem.

Solution. I got several solutions, all with nice ideas. The one I like the best is given by Xiaojun Liu. It can be found at:

```
http://embedded.eecs.berkeley.edu/concurrency/homework
/Dataflow/XiaojunLiu ExtraCredit.xml
```

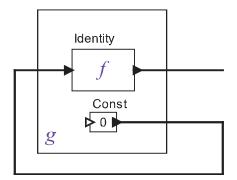


Figure 1: A model.