Homework 3

EE 290n - Advanced Topics in Systems Theory

Edward A. Lee

1. Let (A, \leq) and (B, \leq) be CPOs. We can form a poset $(A \times B, \leq)$ where the order is a lexicographic order, where for all $\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right) \in A \times B$,

$$
\left(a_{1}, b_{1}\right) \leq\left(a_{2}, b_{2}\right) \Longleftrightarrow\left(a_{1}=a_{2} \text { and } b_{1} \leq b_{2}\right) \text { or }\left(a_{1} \neq a_{2} \text { and } a_{1} \leq a_{2}\right)
$$

With this order, determine whether $(A \times B, \leq)$ is a CPO. Prove that it is or is not.
2. In the definition of a sequential function, we need to first assume that the function is continuous. This problem explores why that assumption is necessary. In particular, let $A=T^{\omega}$ for some set T and assume that $f: A^{n} \rightarrow A^{m}$ is a function for some natural numbers n and m where for all $a, b \in A^{n}$ such that $a \sqsubseteq b$, there exists an $i \in\{1, \ldots, n\}$ such that

$$
\pi_{i}(a)=\pi_{i}(b) \Rightarrow f(a)=f(b)
$$

Show that, by itself, this is not enough to guarantee that f is continuous for any n.
3. The LUB of a chain can be interpreted as a limit, but it is not always the limit that one would expect intuitively. This problem explores this issue for the set $T=\{t, f\}$ and the CPO ($A=T^{\omega}, \sqsubseteq$), and offers an alternative way to construct limits.
(a) As a warm up, find the LUB of the following set, or show that it has no LUB:

$$
\{(t),(t, f),(t, f, t),(t, f, t, f), \ldots\}
$$

(b) Show that the following set has no LUB:

$$
\left\{a_{1}, a_{2}, a_{3}, \ldots\right\}=\{(t, f),(t, t, f),(t, t, t, f), \ldots\}
$$

(c) Given a set A, a metric is a function $d: A \times A \rightarrow$ Reals such that three properties are satisfied for all $a, b, c \in A$:
i. $d(a, b)=d(b, a)$,
ii. $d(a, a)=0$ and
iii. $d(a, b)+d(b, c) \geq d(a, c)$.

With $A=T^{\omega}$, we can define a metric d where for all $a, b \in A$,

$$
d(a, b)=1 / n
$$

where n is the index of the first position at which a and b differ, and is zero if $a=b$. For example, $d((t),(f))=1$ and $d((t),(t, f))=1 / 2$. Show that d is a metric.
(d) For the set in part (b), a_{i} is defined to be the sequence starting with i instances of t followed by one f. Let

$$
a=(t, t, t, \ldots)
$$

(an infinite sequence of t). Show that a_{i} converges to a as $i \rightarrow \infty$ in the sense that for any real number $\varepsilon>0$, there is an integer K such that for all $i>K$,

$$
d\left(a_{i}, a\right)<\varepsilon .
$$

4. In process networks, a two-input, two-output identity function is not implementable as a sequential function. However, using a well-designed nondeterministic merge, a deterministic two-input, two-output identity function can be defined as a composite actor. Use or adapt the nondeterministic merge that you created in the previous homework to build such a composite actor, and construct models that demonstrate that it properly functions as an identity function.
