Homework 3

EE 290n - Advanced Topics in Systems Theory

Edward A. Lee

 Let (A,≤) and (B,≤) be CPOs. We can form a poset (A × B,≤) where the order is a lexicographic order, where for all (a₁,b₁), (a₂,b₂) ∈ A × B,

$$(a_1, b_1) \le (a_2, b_2) \iff (a_1 = a_2 \text{ and } b_1 \le b_2) \text{ or } (a_1 \ne a_2 \text{ and } a_1 \le a_2).$$

With this order, determine whether $(A \times B, \leq)$ is a CPO. Prove that it is or is not.

2. In the definition of a **sequential** function, we need to first assume that the function is continuous. This problem explores why that assumption is necessary. In particular, let $A = T^{\omega}$ for some set *T* and assume that $f : A^n \to A^m$ is a function for some natural numbers *n* and *m* where for all $a, b \in A^n$ such that $a \sqsubseteq b$, there exists an $i \in \{1, ..., n\}$ such that

$$\pi_i(a) = \pi_i(b) \Rightarrow f(a) = f(b).$$

Show that, by itself, this is not enough to guarantee that f is continuous for any n.

- The LUB of a chain can be interpreted as a limit, but it is not always the limit that one would expect intuitively. This problem explores this issue for the set T = {t, f} and the CPO (A = T^ω, ⊑), and offers an alternative way to construct limits.
 - (a) As a warm up, find the LUB of the following set, or show that it has no LUB:

$$\{(t), (t, f), (t, f, t), (t, f, t, f), \dots\}.$$

(b) Show that the following set has no LUB:

$$\{a_1, a_2, a_3, \ldots\} = \{(t, f), (t, t, f), (t, t, t, f), \ldots\}.$$

- (c) Given a set A, a metric is a function $d: A \times A \rightarrow Reals$ such that three properties are satisfied for all $a, b, c \in A$:
 - i. d(a,b) = d(b,a), ii. d(a,a) = 0 and iii. $d(a,b) + d(b,c) \ge d(a,c)$.

With $A = T^{\omega}$, we can define a metric *d* where for all $a, b \in A$,

$$d(a,b) = 1/n$$

where *n* is the index of the first position at which *a* and *b* differ, and is zero if a = b. For example, d((t), (f)) = 1 and d((t), (t, f)) = 1/2. Show that *d* is a metric.

(d) For the set in part (b), a_i is defined to be the sequence starting with *i* instances of *t* followed by one *f*. Let

$$a = (t, t, t, \ldots)$$

(an infinite sequence of *t*). Show that a_i converges to *a* as $i \to \infty$ in the sense that for any real number $\varepsilon > 0$, there is an integer *K* such that for all i > K,

$$d(a_i,a) < \varepsilon.$$

4. In process networks, a two-input, two-output identity function is not implementable as a sequential function. However, using a well-designed nondeterministic merge, a deterministic two-input, two-output identity function can be defined as a composite actor. Use or adapt the nondeterministic merge that you created in the previous homework to build such a composite actor, and construct models that demonstrate that it properly functions as an identity function.