
1

Xilinx Research Labs
San Jose, CA

Concurrent models of computation
for embedded software

Jörn W. Janneck
Researcher

Xilinx Research Labs

Writing actors: the CAL actor language

and hardware !

2
Xilinx Research Labs

San Jose, CA
Writing actors: the CAL actor language
Jörn W. Janneck

overview

CAL actor language
– what it looks like

semantics
– what it means and how it relates

designing an actor language
– actor properties and how to represent them

using the language
– working with actor descriptions

what Xilinx does with actors

2

3
Xilinx Research Labs

San Jose, CA
Writing actors: the CAL actor language
Jörn W. Janneck

CAL actor language

simple actors

actor ID () In ==> Out :

action In: [a] ==> Out: [a] end
end

actor Add () Input1, Input2 ==> Output:

action [a], [b] ==> [a + b] end
end

actor ID () In ==> Out :
action [a] ==> [a] end

end

actor AddSeq () Input ==> Output:

action [a, b] ==> [a + b] end
end

4
Xilinx Research Labs

San Jose, CA
Writing actors: the CAL actor language
Jörn W. Janneck

CAL actor language

parameters

actor Scale (k) Input ==> Output:

action [a] ==> [k * a] end
end

parametric actor definitions
represent a family of actors

3

5
Xilinx Research Labs

San Jose, CA
Writing actors: the CAL actor language
Jörn W. Janneck

CAL actor language

actions ≈ firing rules + firing functions

actor Add () Input1, Input2 ==> Output:

action [a], [b] ==> [a + b] end
end

{ }
)()(),(:

,:)(),(

babaf

babaU

+

∈=

a

Zactions like these describe
firing rules and firing function:

6
Xilinx Research Labs

San Jose, CA
Writing actors: the CAL actor language
Jörn W. Janneck

CAL actor language

multiple actions

actor NDMerge () Input1, Input2 ==> Output:

action Input1: [x] ==> [x] end
action Input2: [x] ==> [x] end

end

multiple actions result in multiple firing rules and functions:

{ }
{ })()(,:,:)(,

)(),(:,:),(

22

11

aafaaU

aafaaU

a

a

⊥∈⊥=

⊥∈⊥=

Z

Z

such actors may be non-deterministic

4

7
Xilinx Research Labs

San Jose, CA
Writing actors: the CAL actor language
Jörn W. Janneck

CAL actor language

nondeterminism
actor NDMerge () Input1, Input2 ==> Output:

action Input1: [x] ==> [x] end
action Input2: [x] ==> [x] end

end

actor NDSplit () Input ==> Output1, Output2:

action [x] ==> Output1: [x] end
action [x] ==> Output2: [x] end

end

... but it gets even worse...

{ }
{ })()(,:,:)(,

)(),(:,:),(

22

11

aafaaU

aafaaU

a

a

⊥∈⊥=

⊥∈⊥=

Z

Z

{ }
{ })(,)(:,:)(

),()(:,:)(

22

11

aafaaU

aafaaU

⊥∈=

⊥∈=

a

a

Z

Z

different actions may result in overlapping (here: identical) sets of firing rules,
and different firing functions: the combined firing function isn’t (a function)!!!

the resulting process is no longer functional

what could this possibly be useful for???

8
Xilinx Research Labs

San Jose, CA
Writing actors: the CAL actor language
Jörn W. Janneck

CAL actor language

guarded actions

actor Split () Input ==> Y, N:

action [a] ==> Y: [a]
guard P(a) end
action [a] ==> N: [a]
guard not P(a) end

end

guards may constrain the tokens accepted by an action:

(){ } ()
(){ } ())(,:,:)(

),(:,:)(

22

11

aafaPaU

aafaPaU

⊥¬=

⊥=

a

a

5

9
Xilinx Research Labs

San Jose, CA
Writing actors: the CAL actor language
Jörn W. Janneck

CAL actor language

guarded actions

actor Select () S, A, B ==> Output:

action S: [sel], A: [v] ==> [v]
guard sel end
action S: [sel], B: [v] ==> [v]
guard not sel end

end

cf Lect. 15, slide 8

{ }
{ })()(,),false(:,:)(,),false(

)(),(),true(:,:),(),true(

22

11

vvfvvU

vvfvvU

a

a

⊥∈⊥=

⊥∈⊥=

Z

Z

10
Xilinx Research Labs

San Jose, CA
Writing actors: the CAL actor language
Jörn W. Janneck

CAL actor language

actors with state
actor Sum () Input ==> Output:

sum := 0;

action [a] ==> [sum]
do

sum := sum + a;
end

end

refers to state
at the end
of the action execution

state requires an extension of the actor model:
• the firing rules may depend on the state (will see this later)
• the firing function takes [state, input] to [state, output]

[]{ }
[] [])(,)(,:

,:)(,
σσσ

σσ
++

∈=
aaaf

aaU
a

Z

here, the state space is isomorphic to Z---thus:

note: we will omit singleton
state for stateless actors

6

11
Xilinx Research Labs

San Jose, CA
Writing actors: the CAL actor language
Jörn W. Janneck

CAL actor language

actors with state: rationale

could state not be realized by direct feedback?

yes, but state is special in a number of practical ways...
• there is but one instance of it
• it is always directly fed back
• it is not shared with other actors

more fundamentally, state is what allows for actors to be compositional:

a dataflow network cannot in general be represented
by a single stateless actor (the queues contain state)

12
Xilinx Research Labs

San Jose, CA
Writing actors: the CAL actor language
Jörn W. Janneck

CAL actor language

state-dependent guards
actor Select () S, A, B ==> Output:

state = 0;

action S: [sel] ==>
guard state = 0 do

if sel then
state := 1;

else
state := 2;

end
end
action A: [v] ==> [v]
guard state = 1 do

state := 0;
end
action B: [v] ==> [v]
guard state = 2 do

state := 0;
end

end cf Lect. 15, slide 8

()[] ()[]{ }
()[] []
()[] []

⊥⊥⊥
⊥⊥⊥

⊥⊥⊥⊥=

,2,,false,0
,1,,true,0

:

,,false,0,,,true,0

1

1

a

a
f

U

()[]{ }
()[] ()[] Z

Z

∈⊥⊥

∈⊥⊥=

aforaaf

aaU

,0,,,2:

:,,,2

3

3

a

()[]{ }
()[] ()[] Z

Z

∈⊥⊥

∈⊥⊥=

aforaaf

aaU

,0,,,1:

:,,,1

2

2

a

7

13
Xilinx Research Labs

San Jose, CA
Writing actors: the CAL actor language
Jörn W. Janneck

CAL actor language

priorities (when order matters)

actor ProcessStream () In, Config ==> Out:

c := initialConfig();

action Config: [newC] ==>
do

c := newC;
end
action In: [data]

==> [compute(data, c)] end
end

actor ProcessStream () In, Config ==> Out:

c := initialConfig();

config: action Config: [newC] ==>
do

c := newC;
end

process: action In: [data]
==> [compute(data, c)] end

priority
config > process;

end
end

how to enforce firing of one action
over another?

intuition:
among the enabled actions,
one with maximal priority is
fired

14
Xilinx Research Labs

San Jose, CA
Writing actors: the CAL actor language
Jörn W. Janneck

CAL actor language

priorities (the harmless case)

actor Route () A ==> X, Y, Z:

action [v] ==> X: [v]
guard P(v) end
action [v] ==> Y: [v]
guard Q(v) and not P(v) end
action [v] ==> Z: [v]
guard not Q(v) and not P(v) end

end

actor Route () A ==> X, Y, Z:

toX: action [v] ==> X: [v]
guard P(v) end

toY: action [v] ==> Y: [v]
guard Q(v) end

toZ: action [v] ==> Z: [v] end
priority

toX > toY > toZ;
end

end

8

15
Xilinx Research Labs

San Jose, CA
Writing actors: the CAL actor language
Jörn W. Janneck

CAL actor language

priorities (more merging)

actor BiasedMerge ()
Input1, Input2 ==> Output:

A: action Input1: [x] ==> [x] end
B: action Input2: [x] ==> [x] end

priority A > B end
end

actor PrettyFairMerge ()
Input1, Input2 ==> Output:

Both: action [x], [y] ==> [x, y] end
Both: action [x], [y] ==> [y, x] end
One: action Input1: [x] ==> [x] end
One: action Input2: [x] ==> [x] end

priority Both > One end
end

16
Xilinx Research Labs

San Jose, CA
Writing actors: the CAL actor language
Jörn W. Janneck

CAL actor language

formal version of a CAL actor (pre-semantics)

set of n action indices: { }

II

nI

I
×⊂

Σ∈
Σ
=

f

K

0

,,1

σinitial state:

state space:

Σ×→

×Σ⊆
n
finii

m
fini

ii

SUf

SU

fU

:

,each action i is defined as:

(non-joinable) firing rules:

firing function:

non-reflexive partial order on I:

allowing for some handwaving about exactly how this information
is derived from the actor source text

I

Iiii fU f,,,0 ∈
σ

9

17
Xilinx Research Labs

San Jose, CA
Writing actors: the CAL actor language
Jörn W. Janneck

semantics

actor descriptions and actors

L

A

[]L

[]⋅

actor Split () Input ==> Y, N:

action [a] ==> Y: [a]
guard P(a) end
action [a] ==> N: [a]
guard not P(a) end

end

?

18
Xilinx Research Labs

San Jose, CA
Writing actors: the CAL actor language
Jörn W. Janneck

semantics

A: actor transition systems (untimed version)

f,,0 τσ

() σστσσ ′ →≡∈′′ ′ssss a,,,

an actor transition system (ATS) in
a state space Σ:

τ

τ

σ

on order partial eirreflexiv

0

f

Σ×××Σ⊆

Σ∈
n
fin

m
fin SS

initial state

transition relation

priority order

notation:

exercise for the reader:
1. what could be a suitable fixed-point semantics for an ATS?

(i.e. what “process” corresponds to an ATS?)
2. what would be a suitable semantics for a network of ATS?

10

19
Xilinx Research Labs

San Jose, CA
Writing actors: the CAL actor language
Jörn W. Janneck

semantics

[·]: semantic mapping

{ }

Σ×→

×Σ⊆

×⊂

Σ∈
=

n
finii

m
fini

I

SUf

SU
II

nI

:

,,1

0

f

K

σ

constructing an ATS from a formal CAL actor in state space Σ:

f,,0 τσ
CAL actor ATS

() [] []() []{ }ssfUsss iii

Ii
i

′′=∧∈′′=

=
∈

,,,:,,, σσσσστ

ττ U

I

Iiii fU f,,,0 ∈
σ

k

I

ji

I

tik:Ik

ttji:Iji,

τ

ττ

∈′∧∈¬∃

∧∈′∧∈∧∈∃

⇔′

f

f

f tt

20
Xilinx Research Labs

San Jose, CA
Writing actors: the CAL actor language
Jörn W. Janneck

semantics

expressiveness

?

()

=∈=∈

=
• →•

∑
=

k

i
ii

n

sfs

akkna

aas

1

1

:min, such that

),,...,(
with

NZ

a

example 1:

[CAL]
ATS

() ()(){ }Z∈••= baba ,:,,,τ

example 2:

(nonfinite/unbounded nondeterminism)

(prefix length depends on token values)

11

21
Xilinx Research Labs

San Jose, CA
Writing actors: the CAL actor language
Jörn W. Janneck

semantics

relation to firing rules/firing function

()(){ }Ussfs ∈••=

∅•

:,,,with
,,
τ

τ

given a set of firing rules and a firing function

fU ,
the corresponding ATS is

[]⋅

CAL

ATS

FR+FF
note: this construction is

injective
up to isomorphism

22
Xilinx Research Labs

San Jose, CA
Writing actors: the CAL actor language
Jörn W. Janneck

semantics

relation to firing rules/firing function

() ()(){ }Z∈••= baba ,:,,,τ

()

=∈=∈

=
• →•

∑
=

k

i
ii

n

sfs

akkna

aas

1

1

:min, such that

),,...,(
with

NZ

a

FR+FF

12

23
Xilinx Research Labs

San Jose, CA
Writing actors: the CAL actor language
Jörn W. Janneck

language design

what CAL actor results in FR+FF?

actor A () X ==> Y:
action [a] ==> [f(a)] end

end

actor C () X ==> Y:
action [a] ==> [f(a)]
guard P(a) end
action [a] ==> [g(a)]
guard Q(a) end

end

actor E () X ==> Y:
A: action [a] ==> [f(a)]

guard P(a) end
B: action [a] ==> [g(a)]

guard Q(a) end
priority A > B; end

end

...
(equivalence,
isomorphism)

actor D () X ==> Y:
action [a] ==> [f(a)]
guard P(a) end
action [a] ==> [g(a)]
guard Q(a) and not P(a) end

end

?

what does it depend on?

actor B () X ==> Y:
action [a] ==> [1] end
action [a] ==> [2] end

end

?

24
Xilinx Research Labs

San Jose, CA
Writing actors: the CAL actor language
Jörn W. Janneck

language design

static properties

[][] 1−∩⊆ LppL
L

A

Lp

[]L
[][] 1−∩ Lp

p

[]Lp

exercise:
name some p along with a representative pCAL

13

25
Xilinx Research Labs

San Jose, CA
Writing actors: the CAL actor language
Jörn W. Janneck

language design

redundancy (non-orthogonality)

actor AlmostFairMerge ()
Input1, Input2 ==> Output:

s := 0;

action Input1: [x] ==> [x]
guard s = 0
do

s := 1;
end
action Input2: [x] ==> [x]
guard s = 1
do

s := 0;
end

end

property p of this actor?

what’s the pCAL that represents it?

actor AlmostFairMerge ()
Input1, Input2 ==> Output:

A: action Input1: [x] ==> [x] end
B: action InputB: [x] ==> [x] end
schedule fsm s1:

s1 (A) --> s2;
s2 (B) --> s1;

end
end

rule of thumb:
if p is important, and pL is nasty,
it may be time for a new construct.

26
Xilinx Research Labs

San Jose, CA
Writing actors: the CAL actor language
Jörn W. Janneck

working with actor descriptions

example: actor projection (remove outputs)

actor AddSub () A, B ==> Sum, Diff:
action [a], [b] ==> [a + b], [a - b] end

end

actor AddSub’ () A, B ==> Sum:
action [a], [b] ==> [a + b] end

end

say the Diff output is
unconnected...

remove port and all its
output expressions

14

27
Xilinx Research Labs

San Jose, CA
Writing actors: the CAL actor language
Jörn W. Janneck

working with actor descriptions

example: actor projection (remove inputs)

actor ProcessStream () In, Config ==> Out:

c := initialConfig();

config: action Config: [newC] ==>
do

c := newC;
end

process: action In: [data]
==> [compute(data, c)] end

priority
config > process;

end
end

assume the Config input
is not connected...

actor ProcessStream’ () In ==> Out:

c := initialConfig();

process: action In: [data]
==> [compute(data, c)] end

end

remove the port, and
any action that reads

from it

28
Xilinx Research Labs

San Jose, CA
Writing actors: the CAL actor language
Jörn W. Janneck

working with actor descriptions

discovering concurrency

B

CA

D E

a

b

a

a

a

a

b

b

b

x

x

x x

x

y

y

z

v1

v2

y

b

B

CA

D E

a

b

a

a

a

a

b

b

b

x

x

x x

x

y

y

z

v1

v2

y

b

Thread 1

Thread 2

Thread 3
Queue 1

Queue 2

Queue 3

actor B () a, b ==> x, y:

s := <something>;

action a: [v] ==> x: [f(v, s)] end
action b: [v] ==> y: [g(v)]
do

s := h(v, s);
end

end

15

29
Xilinx Research Labs

San Jose, CA
Writing actors: the CAL actor language
Jörn W. Janneck

CAL @ Xilinx

actors to (programmable) hardware

driver application
– video encoding and decoding (MPEG4 et al.)

challenges
– fast hardware
– small hardware
– hardware & software

actor machines
– actor-specific configurable processor architectures

» pipelined action firing
» resource sharing

shameless plug
– Xilinx does take interns...

30
Xilinx Research Labs

San Jose, CA
Writing actors: the CAL actor language
Jörn W. Janneck

The end.

Thanks!

info:
http://embedded.eecs.berkeley.edu/caltrop/

contact:
jorn.janneck@xilinx.com

