Concurrent models of computation

for embedded software q,, h
Udyq,,
el

Jorn W. Janneck
Researcher
Xilinx Research Labs

Writing actors: the CAL actor language

Xilinx Research Labs
San Jose, CA

overview

¢ CAL actor language
— what it looks like

& semantics
— what it means and how it relates

¢ designing an actor language
— actor properties and how to represent them

¢ using the language
— working with actor descriptions

¢ what Xilinx does with actors

Writing actors: the CaL actor language Xilinx Research Labs
Jorn W. Janneck 2 San Jose, CA

CaL actor language

simple actors

actor ID () In ==> Out
action In: [a] ==> Out: [a] end
end actor ID () In ==> Out
action [a] ==> [a] end
end
actor Add () Inputl, Input2 ==> Output:
action [a], [b] ==> [a + b] end
end
actor AddSeq () Input ==> Output:
action [a, b] ==> [a + b] end
end

Writing actors: the CAL actor language
Jérn W. Janneck

Xilinx Research Labs
San Jose, CA

&

CAL actor language

parameters

action [a] ==> [k * a]

end

actor Scale (k) Input ==> Output:

end

parametric actor definitions
represent a family of actors

Writing actors: the CAL actor language
Jorn W. Janneck

Xilinx Research Labs
San Jose, CA

&

CaL actor language

actions = firing rules + firing functions

actor Add () Inputl, Input2 ==> Output:
action [a], [b] ==> [a + b] end
end
actions like these describe U= {((a),(b)) ta,be Z}
firing rules and firing function: ! :<(a),(b)> > (a+b)
Writing actors: the CaL actor language Xilinx Research Labs
Jérm W. Janneck 3 San Jose, CA

CAL actor language

multiple actions

actor NDMerge ()

end

action Inputl:
action Input2:

Inputl, Input2 ==> Output:

end
end

[x] ==>
[x] ==>

[x]
[x]

multiple actions result in multiple firing rules and functions:

U,
U

{@.1):aez 1 :{@.1)~ @
, = {<J_,(a)> ‘ae Z}, £, 1L (@) (a)

such actors may be non-deterministic

Writing actors: the CAL actor language
Jorn W. Janneck

Xilinx Research Labs
6 San Jose, CA

&

CaL actor language

nondeterminism
actor NDMerge () Inputl, Input2 ==> Output:
U, ={(a),L):aeZ} f;:((a), L) (a)
action Inputl: [x] ==> [x] end
action Input2: [x] ==> [x] end UZ ={<J_,(a)>:an},f2 :<J"(a)>'_>(a)
end
... but it gets even worse...
actor NDSplit () Input ==> Outputl, Output2:
_ U ={@:aecZ}, f,:(a) ((a), L)
action [x] ==> Outputl: [x] end
action [x] ==> Output2: [x] end U,={(a):aeZ}, f,:(a)~ (L (a))
end

different actions may result in overlapping (here: identical) sets of firing rules,
and different firing functions: the combined firing function isn’t (a function)!!!

the resulting process is no longer functional
what could this possibly be useful for???

Writing actors: the CaL actor language Xilinx Research Labs
Jérm W. Janneck 7 San Jose, CA

CAL actor language

guarded actions

actor Split () Input ==> Y, N:

action [a] ==> Y: [a]
guard P(a) end

action [a] ==> N: [a]
guard not P(a) end
end

guards may constrain the tokens accepted by an action:

U, =1{(a): Pla)}, £, : (a) {(a), L)
U, ={(@):=P(a)}, £, :(a) > (L, (@)

Writing actors: the CaL actor language Xilinx Research Labs
Jorn W. Janneck L4 San Jose, CA

CaL actor language

guarded actions

actor Select () S, A, B ==> Output:
action S: [sel], A: [v] ==> [V]
guard sel end
action S: [sel], B: [v] ==> [v]
guard not sel end

end

U,

{(true),(v), L):v e Z}, £, : ((true), (v), L) (v)

U, ={((false), L,(v)):v e Z}, £, : ((false), L, () (v)

cf Lect. 15, slide 8

Writing actors: the CaL actor language
Jérn W. Janneck

Xilinx Research Labs
San Jose, CA

&

CAL actor language

actors with state

actor Sum () Input ==> Output:
sum := 0;
action [a] ==> [sSUN]@w——_
do
sum := sum + a;
end
end

refers to state
at the end
of the action execution

state requires an extension of the actor model:
* the firing rules may depend on the state (will see this later)
* the firing function takes [state, input] to [state, output]

here, the state space is isomorphic to Z---thus:

U={o,(a):0,ae}

f :[0',(a)]|—> [a +0o,(a +0')]

note: we will omit singleton
state for stateless actors

Writing actors: the CAL actor language
Jorn W. Janneck

10

Xilinx Research Labs
San Jose, CA

&

CaL actor language

actors with state: rationale

could state not be realized by direct feedback?

yes, but state is special in a number of practical ways...
+ there is but one instance of it

* it is always directly fed back

* it is not shared with other actors

more fundamentally, state is what allows for actors to be compositional:

a dataflow network cannot in general be represented
by a single stateless actor (the queues contain state)

Writing actors: the CaL actor language Xilinx Research Labs
Jérm W. Janneck 1" San Jose, CA

CAL actor language

state-dependent guards

actor Select () S, A, B ==> Output:
state = 0; U, = {[O (true),],[O (false), L, L)]}
action S: [sel] ==> _— [O true]l—)[l J_]
e sl then . — | {[0 (false) L, 1))~ [2,1]
state := 1;
else
state := 2;
. end U, = {[1,<J_,(a),J_>]:a EZ}
en
L—1 1 :[1,<J_,(a),J_>]|—>[0,(a)] for ael
action A: [v] ==> [v/
guard state = 1 do
state := 0;
d
en_ U, ={2.(L, L(a))]:a e 2}
;i:izns};te[vl ;Zom/ fi: [2 L1]I—>[0 (a)] for aeZ
state := 0;
end
end cf Lect. 15, slide 8

Writing actors: the CaL actor language Xilinx Research Labs
Jorn W. Janneck 12 San Jose, CA

CaL actor language

prIOI’ItIeS (when order matters)

actor ProcessStream () In, Config ==> Out:
C := initialConfig(); how to enforce firing of one action
over another?
action Config: [newC] ==>
do
c := newC;
end actor ProcessStream () In, Config ==> Out:
action In: [data] c := initialConfig();
==> [compute (data, c)]
end config: action Config: [newC] ==>
do
c := newC;
end
intuition: process: action In: [data]
among the enabled actions, ==> [compute (data, c)] end
one with maximal priority is _—
. priority
fired config > process;
end
end
Writing actors: the CaL actor language Xilinx Research Labs
Jérm W. Janneck 3 San Jose, CA
CAL actor language
pI’IOFItIeS (the harmless case)
actor Route () A ==> X, Y, Z:
action [v] ==> X: [v]
guard P (v) end
action [v] ==> Y: [v]
guard Q(v) and not P(v) end
action [v] ==> Z: [V] actor Route () A ==> X, Y, Z:
guard not Q(v) and not P(v) end
end toX: action [v] ==> X: [V]
guard P(v) end
toY: action [v] ==> Y: [V]
guard Q(v) end
toZ: action [v] ==> Z: [v] end
priority
toX > toY > toZ;
end
end

Writing actors: the CAL actor language
Jorn W. Janneck

Xilinx Research Labs
San Jose, CA

CaL actor language

prIOI’ItIeS (more merging)

actor BiasedMerge ()
Inputl, Input2 ==> Output:

end
end

A: action Inputl: [x] ==> [x]
B: action Input2: [x] ==> [x]
priority A > B end
end
actor PrettyFairMerge ()
Inputl, Input2 ==> Output:
Both: aection [x], [y] ==> [x, y]
Both: action [x], [y] ==> [y, x]
One: action Inputl: [x] ==> [x]
One: action Input2: [x] ==> [x]
priority Both > One end
end

end
end
end
end

Writing actors: the CAL actor language

Jérn W. Janneck

Xilinx Research Labs
San Jose, CA

CAL actor language

formal version of a CAL actor (re-semantics)

I

O-O’<Ui"f;>iel’>_

set of n action indices:

state space:

initial state:

non-reflexive partial order on [:

each action i is defined as:
(non-joinable) firing rules:

firing function:

I={1,...,n}

>

O,€X
;clxl

(v 1)

U, c xSy,
Ji:U;,—> 85, xZ

allowing for some handwaving about exactly how this information
is derived from the actor source text

Writing actors: the CAL actor language

Jorn W. Janneck

16

Xilinx Research Labs
San Jose, CA

semantics

actor descriptions and actors

actor Split () Input ==> Y, N:

action [a] ==> Y: [a]
guard P(a) end

action [a] ==> N: [a]
guard not P(a) end

Writing actors: the CaL actor language Xilinx Research Labs
Jérm W. Janneck 17 San Jose, CA
semantics

A: actor transition systems (untimed version)

an actor transition system (ATS) in
a state space X:
(09 7,>)

initial state O-O € 2
transition relation 7 & X X S%n X Sr;?n XX

priority order > irreflexive partial orderon 7

exercise for the reader:
1. what could be a suitable fixed-point semantics for an ATS?
(i.e. what “process” corresponds to an ATS?)
2. what would be a suitable semantics for a network of ATS?

s’ '

notation: (O',S,S',O")ez' = c— 5o

Writing actors: the CaL actor language Xilinx Research Labs
Jorn W. Janneck 18 San Jose, CA

semantics

[-]: semantic mapping

constructing an ATS from a formal CAL actor in state space X:

CAL actor ATS

<60’<Ui’ﬁ>iel’>l_> <GO’T’>->

1={l,....n} 7=z,

iel
o) E€X r,={(o,s,5".0"):[o,5]eU, A fi([o,s])=[c".s']}
1
—cIx/ t-t <
m . . . I .

UfEZXSﬁn di,jel: 1>—_|/\tez'i/\t’erj/\

U, > 8% xZ L
fi:U, fin —Jkel:k>int' er,
Writing actors: the CaL actor language Xilinx Research Labs
Jérm W. Janneck 1 San Jose, CA

semantics

expressiveness

"""" example 1:

r={(s.(a)(b)):a.beZ}

(nonfinite/lunbounded nondeterminism)

example 2:
o—2/b) o with
s=(a,...,a,),

k
such that a, € Z,n :min{k eN:k= Za,}
i=1

(prefix length depends on token values)

Writing actors: the CaL actor language Xilinx Research Labs
Jorn W. Janneck 20 San Jose, CA

semantics

relation to firing rules/firing function

given a set of firing rules and a firing function

(U.f)

the corresponding ATS is

(o)
with 7 ={(e,s, f(s)e):s €U}

note: this construction is'.
injective
up to isomorphism

Writing actors: the CaL actor language Xilinx Research Labs
Jérm W. Janneck 21 San Jose, CA
semantics

relation to firing rules/firing function

o—2/6) sq with

§= (al"“a an)5

k
such that a, € Z,n =min{k eN:k =Za,}

i=l

r={(e.(a)(b)e):a,b e Z}

Writing actors: the CaL actor language Xilinx Research Labs
Jorn W. Janneck 22 San Jose, CA

language design

what CAL actor results in FR+FF?

actor C () X ==> Y:
action [a] ==> [f(a)]
guard P(a) end

action [a] ==> [g(a)]
guard Q(a) end

end

what does it depend on?

actor D () X ==> Y:
action [a] ==> [f(a)]
guard P(a) end

action [a] ==> [g(a)]
guard Q(a) and not P(a) end

end

actor B () X ==> Y:
action [a] ==> [1] end
action [a] ==> [2] end
end
actor A () X ==> Y:
action [a] ==> [f(a)] end
end

?

(equivalence,
isomorphism)

actor E () X ==> Y:
A: action [a] ==> [f(a)]
guard P(a) end

B: action [a] ==> [g(a)]
guard Q(a) end

priority A > B; end
end

Writing actors: the CAL actor language
Jérn W. Janneck

23

Xilinx Research Labs
San Jose, CA

language design

static properties

p' clpolL]”

exercise:

name some p along with a representative pCA-

Writing actors: the CAL actor language
Jorn W. Janneck

24

Xilinx Research Labs
San Jose, CA

language design

I’ed un d an Cy (non-orthogonality)

actor AlmostFairMerge ()

Inputl, Input2 ==> Output:

s := 0;
action Inputl: [x] ==> [x]
guard s = 0
do

s = 1;
end
action Input2: [x] ==> [x]
guard s = 1
do

s := 0;
end

end

property p of this actor?

what'’s the pCAL that represents it?

actor AlmostFairMerge ()

Inputl, Input2 ==> Output:
A: action Inputl: [x] ==> [x] end
B: action InputB: [x] ==> [x] end

schedule fsm sl:
sl (A) --> s2;
s2 (B) --> sl;
end

end

rule of thumb:
if p is important, and pt is nasty,
it may be time for a new construct.

Writing actors: the CAL actor language
Jérn W. Janneck

Xilinx Research Labs
& San Jose, CA

working with actor descriptions

example: actor projection emove outputs)

actor AddSub () A,
action [a], [b]

B ==> Sum, Diff:
==> [a + b],

end

[a - b]

say the Diff output is

end unconnected...

remove port and all its
output expressions

actor AddSub’ ()
action
end

A, B ==> Sum:

[a]l, [b] ==> [a + b] end

Writing actors: the CAL actor language
Jorn W. Janneck

Xilinx Research Labs
26 San Jose, CA

working with actor descriptions

example: actor projection (emove inputs)

actor ProcessStream () In, Config ==> Out:
c := initialConfig();
config: action Config: [newC] ==> assume the Config input
do is not connected...
c := newC;
end
process: action In: [data]
==> [compute (data, c)] end
priority
config > process;
end
end
actor ProcessStream’ () In ==> OQut:
remove the port, and c := initialConfig();
any action that read§ process: action In: [data]
from it ==> [compute (data, c)] end
end

Writing actors: the CAL actor language
Jérn W. Janneck

27

Xilinx Research Labs

San Jose, CA

&

working with actor descriptions

discovering concurrency

A\
v

Thread 2

V2

—

i Queue 2

actor B () a, b ==> x, y:
s := <something>;
actio
actio
do
s
. end p—
Writing actors: end abs
Jérn W. Janneck| CA ik

CaL @ Xilinx

actors to (programmable) hardware

¢ driver application

— video encoding and decoding (MPEGH4 et al.)
¢ challenges

— fast hardware

— small hardware

— hardware & software

4 actor machines

— actor-specific configurable processor architectures
» pipelined action firing
» resource sharing
¢ shameless plug
— Xilinx does take interns...

Writing actors: the CaL actor language Xilinx Research Labs
- Jérm W. Janneck 29 San Jose, CA

The end.

Thanks!

info:
http://embedded.eecs.berkeley.edu/caltrop/

contact:
jorn.janneck@xilinx.com

Writing actors: the CaL actor language Xilinx Research Labs
Jorn W. Janneck 30 San Jose, CA

