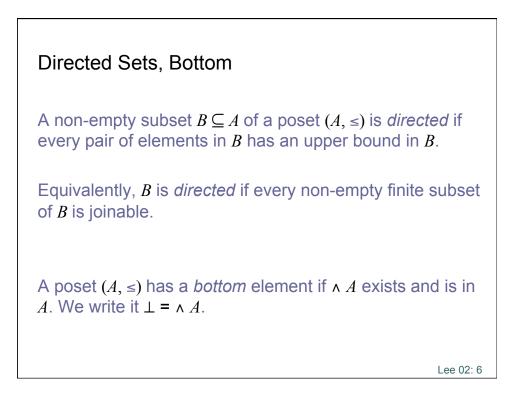


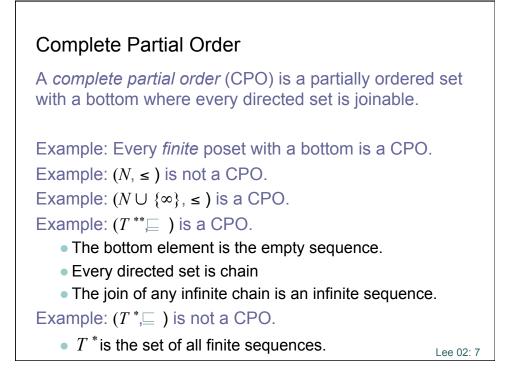
Example: Given a set *A* and its *powerset* (set of all subsets) P(A), then $(P(A), \subseteq)$ is a poset. For any $B \subseteq P(A)$, we have

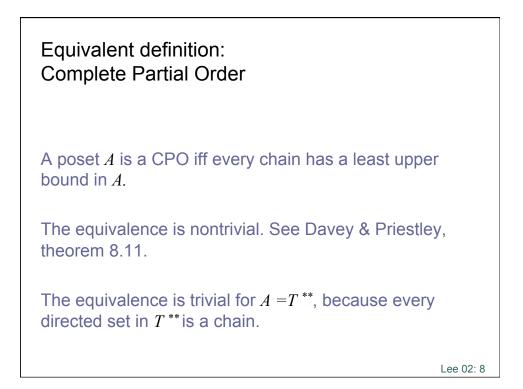
 $v B = \bigcup B$ (the union of the subsets) and

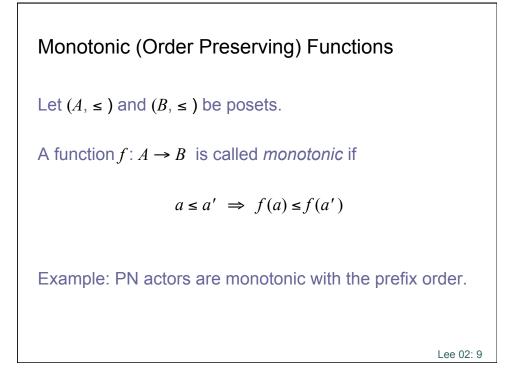
 $\wedge B = \cap B$ (the intersection of the subsets)

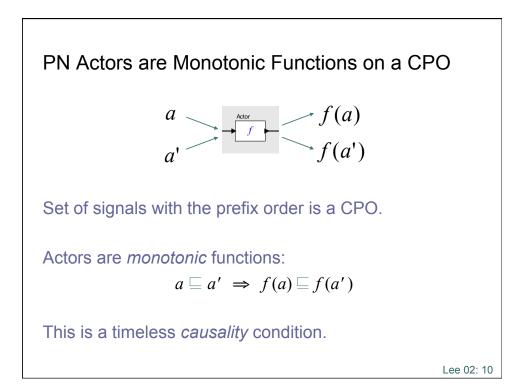
Lee 02: 5

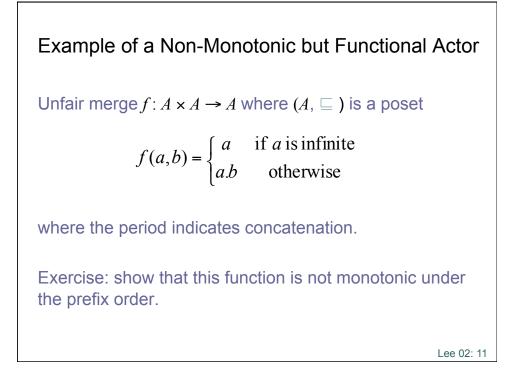


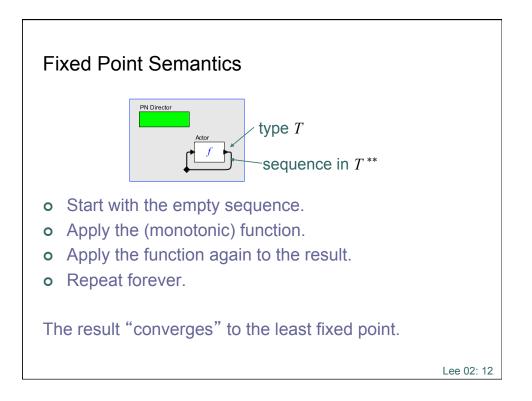


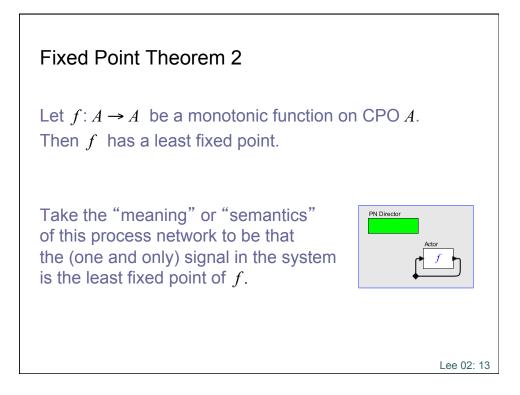




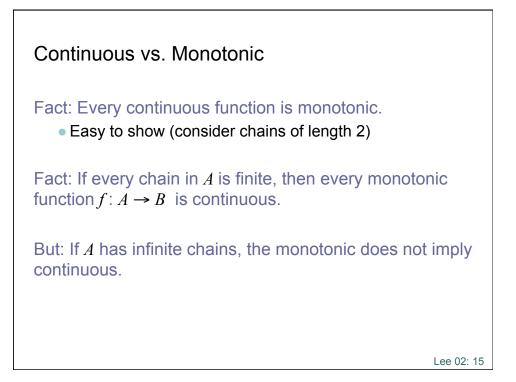




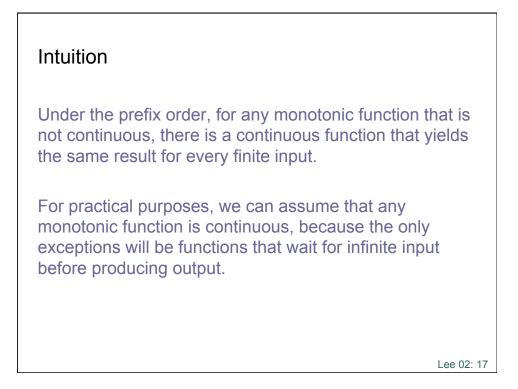


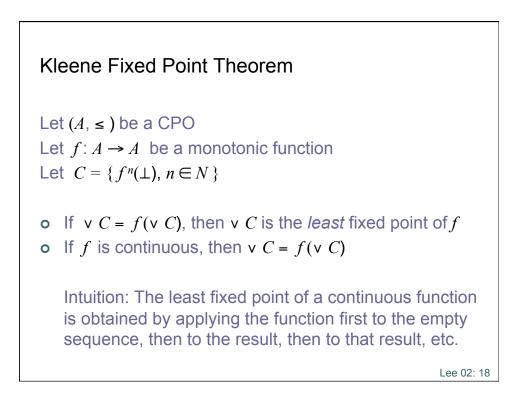


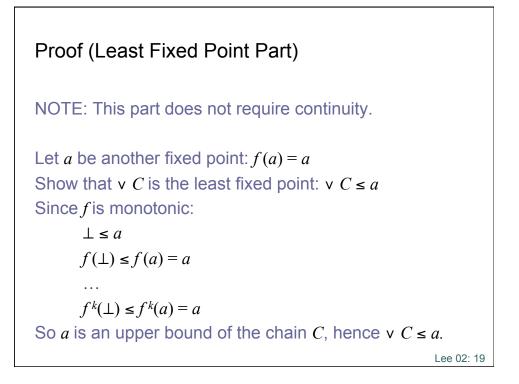
Continuous (Limit Preserving) Functions Let (A, \leq) and (B, \leq) be CPOs. A function $f: A \rightarrow B$ is called *continuous* if for all chains $C \subseteq A$, $f(\lor C) = \lor \hat{f}(C)$ Notation: Given a function $f: A \rightarrow B$, define a new function $\hat{f}: P(A) \rightarrow P(B)$, where for any $C \subseteq A$, $\hat{f}(C) = \{b \in B | \exists c \in C \text{ s.t. } f(c) = b\}$

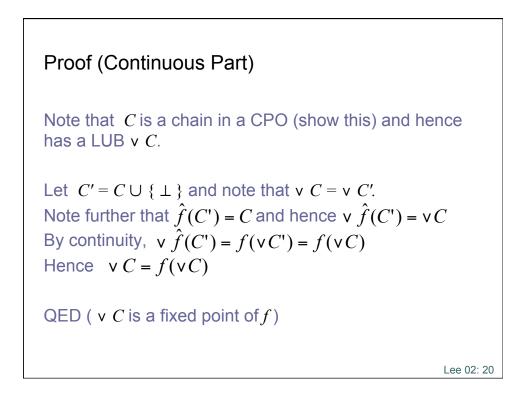


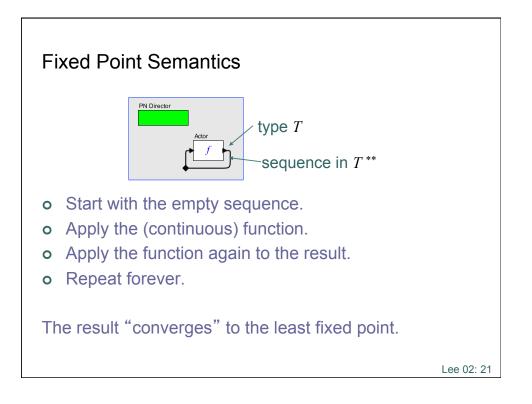
Counterexample Showing that Monotonic Does Not Imply Continuous $Let A = (N \cup \{\infty\}, \le) (a CPO).$ Let f: $A \to A$ be given by $f(a) = \begin{cases} 1 & \text{if } a \text{ is finite} \\ 2 & \text{otherwise} \end{cases}$ This function is obviously monotonic. But it is not continuous. To see that, let $C = \{1, 2, 3, ...\}$, and note that $v C = \infty$. Hence, f(v C) = 2v f(C) = 1which are not equal.

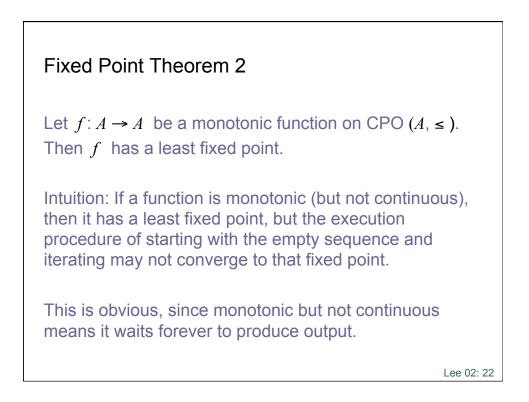


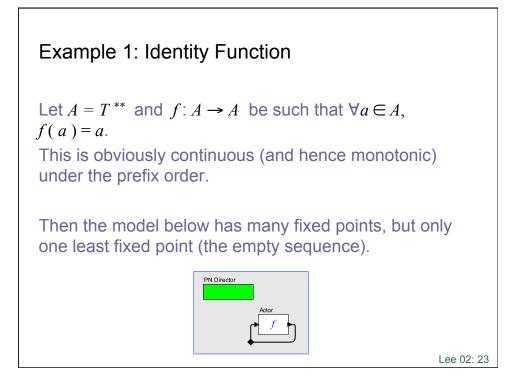


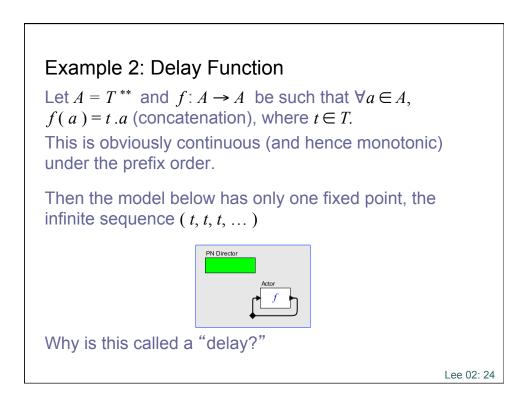


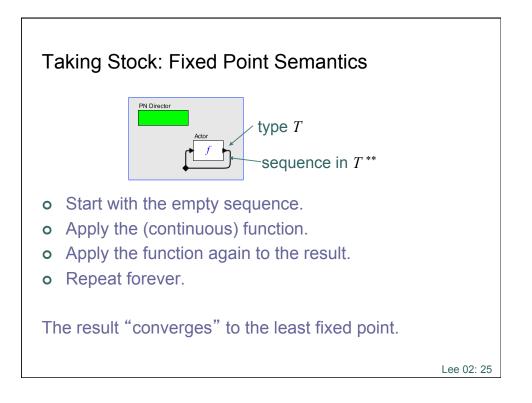


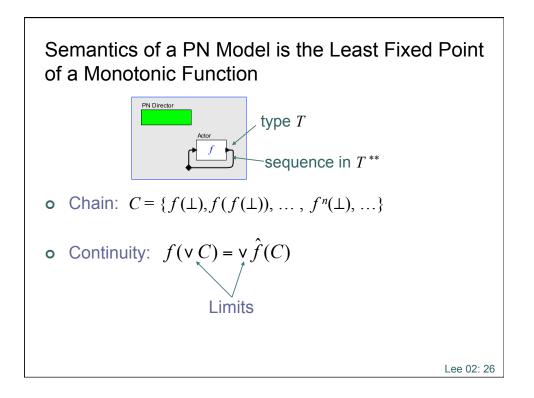












Summary

- o Posets
- o CPOs
- Fixed-point theorems
- Gives meaning to simple programs
- o With composition, gives meaning to all programs

• Next time:

- expressiveness of PN (Turing computability)
- develop an execution policy
- sequential functions, stable functions, and continuous functions

Lee 02: 27