Concurrent Models of
Computation

Edward A. Lee

Robert S. Pepper Distinguished Professor, UC Berkeley
EECS 219D

Concurrent Models of Computation

Fall 2011

Copyright © 2009-2011, Edward A. Lee, All rights reserved

Week 6: Synchronous/Reactive Models

Synchronous Languages

o Esterel

o Lustre

o SCADE (visual editor for Lustre-ish/Esterel-ish lang.)
o Signal

o Statecharts (some variants)

o Ptolemy Il SR domain

The model of computation is called synchronous
reactive (SR). It has strong formal properties (many
key questions are decidable).

Lee 06: 2

'Yl

Lustre/SCADE

Add SSM

SCADE ...
Editor
mepe &% synchronous signal value
— 4HD
B

> Frenpana

Frecipanel

The SCADE tool has a code
generator that produces C or
ADA code that is compliant with
the DO-178B Level A standard,
which allows it to be used in
critical avionics applications
(see http://www.rtca.org).

INEEEERE =)

Design your SSM E

L . SSM |
loy i oontd | Editor
Pkbdsan) local signals ,zf;-z/
;‘LQ‘.' speeo_ster .]J .\ MODE &)
e Tpitch,_stick. MANUAL MODE B
sssssssssss) speed, speed). altitude, altitude)
state machine giving decision logic R epoed_dash — Jspoed_disp(speed_ren
from http://www.esterel-technologies.com/ Lee 06: 3
SR Domain in Ptolemy Il
¥ output from AddSubtract |Z\@‘E‘
. File Help
At each tick of a global “clock,” every F =]
1
signal has a value or is absent. :
is
R 21 -
SR Director NonStrictDisplay2 -
K ol
NonStrictDelay
E ¥ NonStrictDisplay

This model demonstrates that a NonStrictDelay actor
breaks a feedback loop in a SR model.

£

‘ﬂ output from NonStrictDelay Q@E}
File Help
absent =

The job of the SR director is to find the |,

value at each tick.

28 hal
< i D

Lee 06: 4

The Synchronous Abstraction

o “Model time” is discrete: Countable ticks of a clock.
o WRT model time, computation does not take time.

o All actors execute “simultaneously” and
“instantaneously” (WRT to model time).

o There is an obviously appealing mapping onto real
time, where the real time between the ticks of the
clock is constant. Good for specifying periodic real-
time tasks.

Lee 06: 5

Properties

o Buffer memory is bounded (obviously).

o Hence the model of computation is not Turing
complete.

... or bounded memory would be undecidable ...

o Causality loops are possible, where at a tick, the value
of one or more signals cannot be determined.

Lee 06: 6

o3

Practical Application — Token Ring Arbitration

SR Director

A cyclic token-ring system composed of three blocks. This system arbitrates
fairly among requests for exclusive access to a shared resource by marching
a token around a ring. At each "tick" of the clock, the arbiter grants access

to the first requestor downstream of the block with the token.

In this model, InstanceOfArbiter1 starts with the token (see the parameter
of the instance).

Arbiter class definition This example is from:
Stephen A. Edwards and Edward A. Lee
"The Semantics and Execution of a Synchronous Block-Diagram Langu
Technical Memorandum UCB/ERL M01/33,
University of California, Berkeley, CA 94720,
October 25, 2001.

5] .TokenRing.NonStrictDisplay
File Help

Clock tick number 1 o
lArbiter 1 denied access

lArbiter 2 granted access

Airbiter 3 denied access

Clock tick number 2

Airbiter 1 denied access

Arbiter 2 denied access

InstanceOfArbiter2 X
N e lAirbiter 3 granted access
> E}D | < Clock tick number 3 ~|
o < [1]
gy
BooleanToString3
BooleanToString NonStrictDisplay

Expression

“Clock tick number " + input

Lee 06: 7

Arbiter Design

ssOut
tokenQut
grant

Arbiter class definition

e initiallyOwnsToken: false

request NonStrictLogicFunction

grant

o ana P
T T

Request the token
NonStrictLogicFunction3

NonStrictLogicFunction2

Grant access

passOut

Pass in permission

to use the token
passin

tokenin

1 - ——

NonStrictLogicFunction4

NonStrictDelay

.,l"l and rL
Pass out permission
to use the token

tokenOut

;-{ initiallyOwns Token }

Pass in ownership of the token Pass out ownership of the token

If this owns the token and a request is made, then grant access.
If this owns the token and no request is made, then pass out permission
to use the token. If this does not own the token, but the permission

to use the token is passed in, then if a request is made, grant access.
Otherwise, pass the permission to use the token out.

Lee 06: 8

Simple Execution Policy

At each tick, start with all signals “unknown.” Evaluate
non-strict actors and source actors. Then keep evaluating
any actors that can be evaluated until all signals become
known or until no further progress can be made.

Q: How do we know this will work?

A: Least fixed point semantics.

Lee 06: 9

SR Domain in Ptolemy Il

File Help

At each tick of a global “clock,” every
signal has a value or is absent. :

= o
»

SR Director NonStrictDisplay2

NonStrictDelay
NonStrictDisplay

8

This model demonstrates that a NonStrictDelay actor File Help
breaks a feedback loop in a SR model. absent =

The job of the SR director is to find the |,
value at each tick. o

28 hal
< i D

Lee 06: 10

o5

Cycles

Note that there are cycles in this graph, so that if you
require that all inputs be known to find the output, then
this cannot execute.

The “non strict” actors are key: They do not need to
know all their inputs to determine the outputs.

NonStrictLogicFunction4 NonStrictDelay

Lee 06: 11

NonStrictLogicFunction4

Non-Strict Logical Or

The non-strict or (often called the “parallel or”) can
produce a known output even if the input is not
completely known. Here is a table showing the output as
a function of two inputs:

input 1

1 £ F T

L L L L T
AN

Sle 1 € F T
[oX
=

L F T

T T T T T

Lee 06: 12

o6

More Synchronous/Reactive Actors

Key SR Actors
Pre When
initialVal

b?;?a o D—T —

Pre: When the input is
present, the output is
the previous present
input value.

NonStrictDelay

LY
When: When the bottom
input is present and
true, the output equals
the input. Otherwise,
the output is absent.

Default

£ o

NonStrictDelay: The
output is equal to

the input in the previous
clock tick.

(

Current

current
value

A 4
v

Current: The output equals
the most recent present
input value.

EnabledComposite

1o

Y
Default: The output equals EnabledComposite: Composite

the left input, if it is
present, and the bottom
input otherwise.

actor whose internal clock
ticks only when the bottom
input is present and true.

Use of some of these can be quite subtle.

Lee 06: 13

Design in SR:
Example

SR Director

EnabledComposite

This model illustrates the use of SR primitive actors

to make a CountDown actor. This (composite) actor outputs
a true on the ready port when it is ready to count. In

the same tick of the clock, the Sequence actor provides it
with a starting number. It then counts down to zero on

each subsequent tick of the clock, emitting true on ready
when it again reaches zero.

CountDown

DisplayCount

The three displays show (left to right):

- Requested numbers to count down from.
- The count down for these numbers.
- The enable signal for the EnabledComposite actor.

In this example, the CountDown
composite issues a “ready”
signal to the EnabledComposite,
which then issues a number.
The CountDown composite
counts down from that number to
0, then issues another ready.

Lee 06: 14

o/

SRiDiecki This model illustrates the use of SR primitive actors

DeS i g n i n S R - - to make a CountDown actor. This (composite) actor outputs

a true on the ready port when it is ready to count. In
the same tick of the clock, the Sequence actor provides it
Exa m p I e with a starting number. It then counts down to zero on
each subsequent tick of the clock, emitting true on ready
when it again reaches zero.

EnabledComposite CountDown DisplayCount

50 P4 5o
DisplayEnable

The three displays show (left to right):

ERDGAGEE: enable Within this composite, a tick of the - Requested numbers to count down from.
clock only occurs when a true value - The count down for these numbers.
is provided on the enable input port - The enable signal for the EnabledComposite actor.
in the enclosing model. Thus, this
Sequence output subsystem has a clock that is a subclock .
of that of the enclosing model. The EnabledComDOSIte
DisplayCountRequests haS a CIOCk that t|CkS

only when the enable

Note that this display fires only when the enabled |nput |S present and tl’ue
port receives a true token. This is because only then .

is there a tick of the clock. It issues the sequence 1,

5, 3, 2, followed by
absent henceforth.

Lee 06: 15

SRIBIECRE This model illustrates the use of SR primitive actors

DeS I g n I n S R . - to make a CountDown actor. This (composite) actor outputs

a true on the ready port when it is ready to count. In
the same tick of the clock, the Sequence actor provides it
Exa m p | e with a starting number. It then counts down to zero on
each subsequent tick of the clock, emitting true on ready
when it again reaches zero.

EnabledComposite _CountDown DisplayCount

Bio

DisplayEnable

S

Output true three displays show (left to right):

when the count
Restart the count Comparator js <=0,

ready pquested numbers to count down from.

whenever the start e count down for these numbers.

inputis not absent. e enable signal for the EnabledComposite actor.
Default .

start NonStrictDelay AddSubtract

ok m—@ The CountDown

Decrement CompOS|te reStartS

the count.
when the count each time
o= the start input is
Prevent outputs if the
count drops below zero present

(which can happen if no
new start input is provided)]

Comparator2

Lee 06: 16

o8

Subtleties: Pre vs. NonStrictDelay

Pre Pre: True one-sample delay. The

initialValue|

o behavior is not affected by insertion of an

Pre: When the input is arbitrary number of ticks with “absent”

present, the output is
the previous present

inputs between present inputs.

input value.
NonStcielay NonStrictDelay: One-tick delay (vs. one-
For sample). The output in each tick equals

NonStrictDelay: The

output is equal to absent or nOt).

the input in the previous
clock tick.

the input in the previous tick (whether

Lee 06: 17

lllustration of this Subtlety

SR Director
llustration of the difference between
NonStrictDelay and Pre.

Sequence Sequence2

SequencePlotter

NonStrictDelay
=

In this example, the original
signal is present only if every
third tick of the clock. The
output of the NonStrictDelay
is delayed by one click,
whereas the output the Pre
actor is delayed by one
(present) sample.

SN W R D N D © O

SequencePlotter

=G

pre =
| delay »
original =

25

Lee 06: 18

o9

Consequences: Pre vs. NonStrictDelay

Pre
initialValue|

» ???

Pre: When the input is
present, the output is
the previous present
input value.

NonStrictDelay

Eo¥

NonStrictDelay: The
output is equal to

the input in the previous
clock tick.

Pre: This actor is strict. It must know
whether the input is present before it can
determine the output. Hence, it cannot be
used to break feedback loops.

NonStrictDelay: This actor is nonstrict. It
need not know whether the input is
present nor what its value is before it can
determine the output. Hence, it can be
used to break feedback loops.

Lee 06: 19

Use of

NonStrictDelay

in Feedback

SR Director

EnabledComposite CountDown

Bio

This model illustrates the use of SR primitive actors

to make a CountDown actor. This (composite) actor outputs
a true on the ready port when it is ready to count. In

the same tick of the clock, the Sequence actor provides it
with a starting number. It then counts down to zero on

each subsequent tick of the clock, emitting true on ready
when it again reaches zero.

DisplayCount

DisplayEnable

Restart the count
whenever the start
inputis not absent.

Output true
when the count
Comparator js <= (),

ready

faull
alallig NonStrictDelay AddSubtract
Mo +
Decrement
gcount.

Comparator2

Prevent outputs if the

count drops beloy/ zero
(which can hgpg®n if no
ST put is provided)]

pquested numbers to count down from.

three displays show (left to right):

e count down for these numbers.
e enable signal for the EnabledComposite actor.

The Default actor and
the feedback loop
ensure the
NonStrictDelay input is
never absent. Thus, it
behaves like Pre in this
model.

Lee 06: 20

e10

The Flat CPO

Consider a set of possible values T'= {t,, ,, ... }. Let
A=TU {1, ¢}
where L represents “unknown” and ¢ represents
“absent.”

Let (A4, <) be a partial order where:
o Jl=<e

o forall¢tinT, L=<t

o all other pairs are incomparable

Lee 06: 21
Hasse Diagram for the Flat CPO
8\t1t2%
1
Note that this is obviously a CPO
(all chains have a LUB)
All chains have length 2.
Lee 06: 22

o1

Monotonic Functions on This CPO

In this CPO, any function f; 4 — A4 is monotonic if
f(L)=a=1l = f(b)=a forall beA

l.e., if the function yields a “known” output when the
input is unknown, then it will not change its mind about
the output once the input becomes known.

Since all chains are finite, every monotonic function is
continuous.

Lee 06: 23

NonStrictLogicFunction4

Non-Strict Logical Or is Monotonic

The non-strict or is a monotonic function f: 4 x 4 — 4
where A={1,¢, T, F } as can be verified from the truth
table:

input 1

L € F T

L L L L T
o~

Sle L € F T
Q.
=

L F T

T T T T T

Lee 06: 24

®12

Recall: Kleene Fixed Point Theorem

Let (4, =)be a CPO
Let f: 4 — 4 be a monotonic function
Let C={f"(L),nEN}

o If vC= f(v), then v Cis the least fixed point of f
o If fis continuous, thenv C= f(v C)

Intuition: The least fixed point of a continuous function is
obtained by applying the function first to the empty
sequence, then to the result, then to that result, etc.

Lee 06: 25

Applying Kleene Fixed Point Theorem

SR Director

Actor type T
!
“\value inA=TU {1,¢e}

At each tick of the clock

o Start with signal value L

o Evaluate f(1)

o Evaluate f(f(1))

o Stop when a fixed point is reached

Unlike PN, a fixed point is always reached in a finite
number of steps (one, in this case).

Lee 06: 26

e13

Causality Loops

SR Director

Actor

What is the behavior in the following cases?

o f is the identity function.

o f isthelogical NOT function.

o f is the nonstrict delay function with initial value 0.
o f is the nonstrict delay function with no initial value.

Lee 06: 27

Causality Loops

SR Director

Actor

What is the behavior in the following cases?

o f is the identity function: L

o fis the logical NOT function: L

o f is the nonstrict delay function with initial value 0: 0
o f is the nonstrict delay function with no initial value: €

Lee 06: 28

el4

Generalizing to Multiple Signals

(e, €) (g, 0) (g, 1) (0,¢€) (1,¢) ..

SR Director

(e, 1) (L,g) (0, 1) (1, L) (L, 0) (L 1)

(L, 1)
product CPO assuming T = {0, 1}.

o The Cartesian product of flat CPOs under pointwise
ordering is also a CPO.

o All chains are still finite.
o Can now apply to any composition, as done with PN.

Lee 06: 29

Compositional Reasoning

So far, with both PN and SR, we deal with composite
systems by reducing them to a monotonic function of all
the signals.

An alternative approach is to convert an arbitrary
composition to a continuous function.

Lee 06: 30

e15

Example to Use for Compositional Reasoning

Actor
Consider an actor: | 3 7 F

Assumea€ A4, bEB, c€ C, all CPOs.
Assume that the actor function f: 4 x B — Cis continuous
Consider the following composition:

Actor

£

We would like to consider this a function from a to c.
Lee 06: 31

First Option: Currying
(Named after Haskell Curry)

Given a function f: 4 x B — C, we can alternatively think
of this in stages as f,: 4 — [B — C], where [B— (] is
the set of all functions from B to C.

For the following example, for each given value of a we
get a new function f; (a) for which we can find the least
fixed point. That least fixed point is the value of c.

Actor
{1

Lee 06: 32

e16

Actor

Example: Non-Strict OR ; .

Suppose fis a non-strict logical OR function. Then:

o If a = true, then the resulting function f; (a) always
returns true, for all values of the input b.

In this case, the least fixed point yields ¢ = true.

o If a=false, then the resulting function f, (a) is the
identity function.

In this case, the least fixed point yields ¢= 1.
Lee 06: 33

Second Option: Lifting 4
(Named after Heavy Lifting) ==

Given a function f: 4 x B— C, we are looking for a
function g: A4 — C such that

c=g(a)
In the model we have b=cand c¢=f(a, b) so

gla)=f(a g(a))

This looks like a fixed point problem, but the “unknown”
on both sides is g, a function not a value. If we can find
the function g that satisfies this equation, then we can
use it always to calculate ¢ given a.

Lee 06: 34

e17

Posets of Functions

Suppose (4,=<)and (C, <) are CPOs.

Consider functions f,g€[4—=C].

Define the pointwise order on these functions to be
fsge Ya€d, f(a)s gla)

Let XC[A4 — C] be the set of all continuous total

functions from 4 to C.

Theorem: (X, =) is a CPO under the pointwise order.

Proof: See textbook.

Lee 06: 35

Least Function in the CPO of Functions

Let XC[A4 — C]be the set of all continuous total
functions from 4 to C. Since X'is a CPO, it must have a
bottom. The bottom is a function L,: 4 — C where for all
a€E A,

Ly(a)=1.EC

Lee 06: 36

e18

Consequence of this

I
Theorem =

Given a continuous function f: 4 x B — C, the function
g: A — Csuch that

c=g(a)
is the least fixed point of a continuous function
F:X—=X
where XC [A — C]is the set of all continuous total
functions from 4 to C.

We need to now determine the continuous function F'.

Lee 06: 37

Consequence of this 4
Theorem (Continued) =]

We need to find a function that g satisfies:

gla)=f(a,g(a))
Let XC[A4 — C] be the set of all continuous total
functions from 4 to C and let F be a continuous function
F:X—X.

Then g € X'is the least function such that F (g) =g where
forall a€ 4,

(F(g)a)=f(a,g(a))
The theorem, with the Kleene fixed point theorem, tells us
that F has a least fixed point, and tells us how to find it.

Lee 06: 38

e19

Actor

Example: Non-Strict OR ; .

Suppose fis a non-strict logical OR function. Then:
true if a=true
(F(g)(a)=1L if a=_1 and g(a) = false
g(a) otherwise
The least fixed point of this is the function g given by:

true if a=true
sla)= .
1 otherwise
To find this, start with F (L), then find F(F (1)), etc.,
until you get a fixed point (which happens immediately).

Lee 06: 39

Showing that F'is Continuous

Need to show that given a chain of continuous total
functions C={ g, g, ... } that:

F(vC)=VvF(C)

Forallag A:
(F(vO))a) = f(a,(vC)(a))
= f(avig (@).gy (@) it
- VJ} (a,{g,(a), g,(a),..}) Pocause/iscontinious
= (VF(C))(a) -

Lee 06: 40

020

Summary

o In SR, fixed point semantics is simpler than in PN
because the CPO has only finite chains.

o The fancier techniques of Currying and Lifting can be
applied equal well to PN, but we introduce them here
because the simpler CPO makes them easier to
understand.

o The fixed point semantics of SR talks only about the
behavior at a tick of the clock. The behavior across
ticks of the clock will require a clock calculus.

Lee 06: 41

o2

