
l 1

Concurrent Models of
Computation

Edward A. Lee
Robert S. Pepper Distinguished Professor, UC Berkeley
EECS 219D
Concurrent Models of Computation
Fall 2011

Copyright © 2009-2011, Edward A. Lee, All rights reserved

Week 6: Synchronous/Reactive Models

Lee 06: 2

Synchronous Languages

¢  Esterel
¢  Lustre
¢  SCADE (visual editor for Lustre-ish/Esterel-ish lang.)
¢  Signal
¢  Statecharts (some variants)
¢  Ptolemy II SR domain

 The model of computation is called synchronous
reactive (SR). It has strong formal properties (many
key questions are decidable).

l 2

Lee 06: 3

Lustre/SCADE

from http://www.esterel-technologies.com/

The SCADE tool has a code
generator that produces C or
ADA code that is compliant with
the DO-178B Level A standard,
which allows it to be used in
critical avionics applications
(see http://www.rtca.org).

synchronous signal value

state machine giving decision logic

Lee 06: 4

SR Domain in Ptolemy II

At each tick of a global “clock,” every
signal has a value or is absent.

The job of the SR director is to find the
value at each tick.

l 3

Lee 06: 5

The Synchronous Abstraction

¢  “Model time” is discrete: Countable ticks of a clock.

¢  WRT model time, computation does not take time.

¢  All actors execute “simultaneously” and
“instantaneously” (WRT to model time).

¢  There is an obviously appealing mapping onto real
time, where the real time between the ticks of the
clock is constant. Good for specifying periodic real-
time tasks.

Lee 06: 6

Properties

¢  Buffer memory is bounded (obviously).

¢  Hence the model of computation is not Turing
complete.
l … or bounded memory would be undecidable …

¢  Causality loops are possible, where at a tick, the value
of one or more signals cannot be determined.

l 4

Lee 06: 7

Practical Application – Token Ring Arbitration

Lee 06: 8

Arbiter Design

l 5

Lee 06: 9

Simple Execution Policy

At each tick, start with all signals “unknown.” Evaluate
non-strict actors and source actors. Then keep evaluating
any actors that can be evaluated until all signals become
known or until no further progress can be made.

Q: How do we know this will work?

A: Least fixed point semantics.

Lee 06: 10

SR Domain in Ptolemy II

At each tick of a global “clock,” every
signal has a value or is absent.

The job of the SR director is to find the

value at each tick.

l 6

Lee 06: 11

Cycles

Note that there are cycles in this graph, so that if you
require that all inputs be known to find the output, then
this cannot execute.

The “non strict” actors are key: They do not need to

know all their inputs to determine the outputs.

Lee 06: 12

Non-Strict Logical Or

The non-strict or (often called the “parallel or”) can
produce a known output even if the input is not
completely known. Here is a table showing the output as
a function of two inputs:

⊥ ε F T

⊥ ⊥ ⊥ ⊥ T

ε ⊥ ε F T

F ⊥ F F T

T T T T T

input 1

in
pu

t 2

l 7

Lee 06: 13

More Synchronous/Reactive Actors

Use of some of these can be quite subtle.

Lee 06: 14

Design in SR:
Example

In this example, the CountDown
composite issues a “ready”
signal to the EnabledComposite,
which then issues a number.
The CountDown composite
counts down from that number to
0, then issues another ready.

l 8

Lee 06: 15

Design in SR:
Example

The EnabledComposite
has a clock that ticks
only when the enable
input is present and true.
It issues the sequence 1,
5, 3, 2, followed by
absent henceforth.

Lee 06: 16

Design in SR:
Example

The CountDown
composite restarts
the count each time
the start input is
present.

l 9

Lee 06: 17

Subtleties: Pre vs. NonStrictDelay

Pre: True one-sample delay. The
behavior is not affected by insertion of an
arbitrary number of ticks with “absent”
inputs between present inputs.

NonStrictDelay: One-tick delay (vs. one-
sample). The output in each tick equals
the input in the previous tick (whether
absent or not).

Lee 06: 18

Illustration of this Subtlety

In this example, the original
signal is present only if every
third tick of the clock. The
output of the NonStrictDelay
is delayed by one click,
whereas the output the Pre
actor is delayed by one
(present) sample.

l 10

Lee 06: 19

Consequences: Pre vs. NonStrictDelay

Pre: This actor is strict. It must know
whether the input is present before it can
determine the output. Hence, it cannot be
used to break feedback loops.

NonStrictDelay: This actor is nonstrict. It
need not know whether the input is
present nor what its value is before it can
determine the output. Hence, it can be
used to break feedback loops.

Lee 06: 20

Use of
NonStrictDelay
in Feedback

The Default actor and
the feedback loop
ensure the
NonStrictDelay input is
never absent. Thus, it
behaves like Pre in this
model.

l 11

Lee 06: 21

The Flat CPO

Consider a set of possible values T = {t1, t2, … }. Let
A = T ∪ { ⊥, ε }

where ⊥ represents “unknown” and ε represents
“absent.”

Let (A, ≤) be a partial order where:
¢  ⊥ ≤ ε
¢  for all t in T, ⊥ ≤ t
¢  all other pairs are incomparable

Lee 06: 22

Hasse Diagram for the Flat CPO

Note that this is obviously a CPO
(all chains have a LUB)

All chains have length 2.

⊥

ε t1 t2 …

l 12

Lee 06: 23

Monotonic Functions on This CPO

In this CPO, any function f: A → A is monotonic if

f (⊥) = a ≠ ⊥ ⇒ f (b) = a for all b ∈ A

I.e., if the function yields a “known” output when the
input is unknown, then it will not change its mind about
the output once the input becomes known.

Since all chains are finite, every monotonic function is
continuous.

Lee 06: 24

Non-Strict Logical Or is Monotonic

The non-strict or is a monotonic function f : A × A → A
where A = { ⊥, ε, T, F } as can be verified from the truth
table:

⊥ ε F T

⊥ ⊥ ⊥ ⊥ T

ε ⊥ ε F T

F ⊥ F F T

T T T T T

input 1

in
pu

t 2

l 13

Lee 06: 25

Recall: Kleene Fixed Point Theorem

Let (A, ≤) be a CPO
Let f : A → A be a monotonic function
Let C = { f n(⊥), n ∈ N }

¢  If ∨ C = f (∨ C), then ∨ C is the least fixed point of f
¢  If f is continuous, then ∨ C = f (∨ C)

Intuition: The least fixed point of a continuous function is
obtained by applying the function first to the empty
sequence, then to the result, then to that result, etc.

Lee 06: 26

Applying Kleene Fixed Point Theorem

At each tick of the clock
¢  Start with signal value ⊥
¢  Evaluate f (⊥)
¢  Evaluate f (f (⊥))
¢  Stop when a fixed point is reached
Unlike PN, a fixed point is always reached in a finite
number of steps (one, in this case).

type T

value in A = T ∪ { ⊥, ε }

l 14

Lee 06: 27

Causality Loops

What is the behavior in the following cases?
¢  f is the identity function.
¢  f is the logical NOT function.
¢  f is the nonstrict delay function with initial value 0.
¢  f is the nonstrict delay function with no initial value.

Lee 06: 28

Causality Loops

What is the behavior in the following cases?
¢  f is the identity function: ⊥
¢  f is the logical NOT function: ⊥
¢  f is the nonstrict delay function with initial value 0: 0
¢  f is the nonstrict delay function with no initial value: ε

l 15

Lee 06: 29

Generalizing to Multiple Signals

¢  The Cartesian product of flat CPOs under pointwise
ordering is also a CPO.

¢  All chains are still finite.
¢  Can now apply to any composition, as done with PN.

(⊥, ⊥)

…

product CPO assuming T = {0, 1}.

(ε, ⊥) (⊥, ε) (1, ⊥) (0, ⊥) (⊥, 0)

(ε, ε) (ε, 0)

(⊥, 1)

(ε, 1) (0, ε) (1, ε) …

Lee 06: 30

Compositional Reasoning

So far, with both PN and SR, we deal with composite
systems by reducing them to a monotonic function of all
the signals.

An alternative approach is to convert an arbitrary
composition to a continuous function.

l 16

Lee 06: 31

Example to Use for Compositional Reasoning

Consider an actor:

Assume a ∈ A, b ∈ B, c ∈ C, all CPOs.
Assume that the actor function f : A × B → C is continuous
Consider the following composition:

We would like to consider this a function from a to c.

Lee 06: 32

First Option: Currying
(Named after Haskell Curry)

Given a function f : A × B → C , we can alternatively think
of this in stages as f1 : A → [B → C] , where [B → C] is
the set of all functions from B to C.

For the following example, for each given value of a we
get a new function f1 (a) for which we can find the least
fixed point. That least fixed point is the value of c.

l 17

Lee 06: 33

Example: Non-Strict OR

Suppose f is a non-strict logical OR function. Then:

¢  If a = true, then the resulting function f1 (a) always

returns true, for all values of the input b.

In this case, the least fixed point yields c = true.

¢  If a = false, then the resulting function f1 (a) is the
identity function.

In this case, the least fixed point yields c = ⊥.

Lee 06: 34

Second Option: Lifting
(Named after Heavy Lifting)

Given a function f : A × B → C , we are looking for a
function g : A → C such that

c = g(a)
In the model we have b = c and c = f (a, b) so

g(a) = f (a, g(a))

This looks like a fixed point problem, but the “unknown”
on both sides is g, a function not a value. If we can find
the function g that satisfies this equation, then we can
use it always to calculate c given a.

l 18

Lee 06: 35

Posets of Functions

Suppose (A, ≤) and (C, ≤) are CPOs.
Consider functions f, g ∈ [A → C].
Define the pointwise order on these functions to be

f ≤ g ⇔ ∀ a ∈ A, f (a) ≤ g(a)
Let X ⊂ [A → C] be the set of all continuous total
functions from A to C.

Theorem: (X , ≤) is a CPO under the pointwise order.

Proof: See textbook.

Lee 06: 36

Least Function in the CPO of Functions

Let X ⊂ [A → C] be the set of all continuous total
functions from A to C. Since X is a CPO, it must have a
bottom. The bottom is a function ⊥X: A → C where for all
a ∈ A,

⊥X (a) = ⊥C ∈ C

l 19

Lee 06: 37

Consequence of this
Theorem

Given a continuous function f : A × B → C , the function
g : A → C such that

c = g(a)
is the least fixed point of a continuous function

F : X → X
where X ⊂ [A → C] is the set of all continuous total
functions from A to C.

We need to now determine the continuous function F .

Lee 06: 38

Consequence of this
Theorem (Continued)

We need to find a function that g satisfies:
g(a) = f (a, g(a))

Let X ⊂ [A → C] be the set of all continuous total
functions from A to C and let F be a continuous function
F : X → X .

Then g ∈ X is the least function such that F (g) = g where
for all a ∈ A ,

(F (g))(a) = f (a, g(a))
The theorem, with the Kleene fixed point theorem, tells us
that F has a least fixed point, and tells us how to find it.

l 20

Lee 06: 39

Example: Non-Strict OR

Suppose f is a non-strict logical OR function. Then:

The least fixed point of this is the function g given by:

To find this, start with F (⊥), then find F (F (⊥)), etc.,
until you get a fixed point (which happens immediately).

€

(F(g))(a) =

true if a = true
⊥ if a = ⊥ and g(a) = false
g(a) otherwise

$
%

&
%

€

g(a) =
true if a = true
⊥ otherwise

$
%

Lee 06: 40

Showing that F is Continuous

Need to show that given a chain of continuous total
functions C = { g1, g2 … } that:

For all a ∈ A :

)(ˆ)(CFCF ∨=∨

)))((,()))(((aCafaCF ∨=∨

),...})(),({,(21 agagaf ∨=

),...})(),({,(ˆ 21 agagaf∨=
)))((ˆ(aCF∨=

because each gi is
continuous

because f is continuous

QED

l 21

Lee 06: 41

Summary

¢  In SR, fixed point semantics is simpler than in PN
because the CPO has only finite chains.

¢  The fancier techniques of Currying and Lifting can be
applied equal well to PN, but we introduce them here
because the simpler CPO makes them easier to
understand.

¢  The fixed point semantics of SR talks only about the
behavior at a tick of the clock. The behavior across
ticks of the clock will require a clock calculus.

