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Week 6: Synchronous/Reactive Models 
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Synchronous Languages 

¢  Esterel 
¢  Lustre 
¢  SCADE (visual editor for Lustre-ish/Esterel-ish lang.) 
¢  Signal 
¢  Statecharts (some variants) 
¢  Ptolemy II SR domain 

 The model of computation is called synchronous 
reactive (SR). It has strong formal properties (many 
key questions are decidable). 
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Lustre/SCADE 

from http://www.esterel-technologies.com/ 

The SCADE tool has a code 
generator that produces C or 
ADA code that is compliant with 
the DO-178B Level A standard, 
which allows it to be used in 
critical avionics applications 
(see  http://www.rtca.org). 

synchronous signal value 

state machine giving decision logic 
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SR Domain in Ptolemy II 

At each tick of a global “clock,” every 
signal has a value or is absent. 
 
 
 
 
 
 
The job of the SR director is to find the 
value at each tick. 
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The Synchronous Abstraction 

¢  “Model time” is discrete: Countable ticks of a clock. 

¢  WRT model time, computation does not take time. 

¢  All actors execute “simultaneously” and 
“instantaneously” (WRT to model time). 

¢  There is an obviously appealing mapping onto real 
time, where the real time between the ticks of the 
clock is constant. Good for specifying periodic real-
time tasks. 
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Properties 

¢  Buffer memory is bounded (obviously). 

¢  Hence the model of computation is not Turing 
complete. 
l … or bounded memory would be undecidable … 

¢  Causality loops are possible, where at a tick, the value 
of one or more signals cannot be determined. 



l 4 

Lee 06: 7 

Practical Application – Token Ring Arbitration 
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Arbiter Design 
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Simple Execution Policy 

At each tick, start with all signals “unknown.” Evaluate 
non-strict actors and source actors. Then keep evaluating 
any actors that can be evaluated until all signals become 
known or until no further progress can be made. 
 
 
Q: How do we know this will work? 
 
A: Least fixed point semantics. 
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SR Domain in Ptolemy II 

At each tick of a global “clock,” every 
signal has a value or is absent. 

 
 
 
 
 
 
The job of the SR director is to find the 

value at each tick. 
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Cycles 

Note that there are cycles in this graph, so that if you 
require that all inputs be known to find the output, then 
this cannot execute. 

 
 
The “non strict” actors are key: They do not need to 

know all their inputs to determine the outputs. 
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Non-Strict Logical Or 

The non-strict or (often called the “parallel or”) can 
produce a known output even if the input is not 
completely known. Here is a table showing the output as 
a function of two inputs: 

⊥ ε F T 

⊥ ⊥ ⊥ ⊥ T 

ε ⊥ ε F T 

F ⊥ F F T 

T T T T T 

input 1 

in
pu

t 2
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More Synchronous/Reactive Actors 

Use of some of these can be quite subtle. 
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Design in SR: 
Example 

In this example, the CountDown 
composite issues a “ready” 
signal to the EnabledComposite, 
which then issues a number. 
The CountDown composite 
counts down from that number to 
0, then issues another ready. 
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Design in SR: 
Example 

The EnabledComposite 
has a clock that ticks 
only when the enable 
input is present and true. 
It issues the sequence 1, 
5, 3, 2, followed by 
absent henceforth. 
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Design in SR: 
Example 

The CountDown 
composite restarts 
the count each time 
the start input is 
present. 
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Subtleties: Pre vs. NonStrictDelay 

Pre: True one-sample delay. The 
behavior is not affected by insertion of an 
arbitrary number of ticks with “absent” 
inputs between present inputs. 
 
NonStrictDelay: One-tick delay (vs. one-
sample). The output in each tick equals 
the input in the previous tick (whether 
absent or not). 
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Illustration of this Subtlety 

In this example, the original 
signal is present only if every 
third tick of the clock. The 
output of the NonStrictDelay 
is delayed by one click, 
whereas the output the Pre 
actor is delayed by one 
(present) sample. 
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Consequences: Pre vs. NonStrictDelay 

Pre: This actor is strict. It must know 
whether the input is present before it can 
determine the output. Hence, it cannot be 
used to break feedback loops. 
 
NonStrictDelay: This actor is nonstrict. It 
need not know whether the input is 
present nor what its value is before it can 
determine the output. Hence, it can be 
used to break feedback loops. 
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Use of 
NonStrictDelay 
in Feedback 

The Default actor and 
the feedback loop 
ensure the 
NonStrictDelay input is 
never absent. Thus, it 
behaves like Pre in this 
model. 
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The Flat CPO 

Consider a set of possible values T = {t1, t2, … }. Let 
A = T ∪ { ⊥, ε } 

where ⊥ represents “unknown” and ε represents 
“absent.” 

 
Let ( A, ≤ ) be a partial order where: 
¢     ⊥ ≤ ε  
¢     for all t in T,  ⊥ ≤ t  
¢     all other pairs are incomparable 
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Hasse Diagram for the Flat CPO 

Note that this is obviously a CPO  
(all chains have a LUB) 

 
All chains have length 2. 

⊥ 

ε t1  t2  …  
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Monotonic Functions on This CPO 

In this CPO, any function f: A → A  is monotonic if 
 

f (⊥) = a ≠ ⊥   ⇒   f (b) = a  for all  b ∈ A 
 

I.e., if the function yields a “known” output when the 
input is unknown, then it will not change its mind about 
the output once the input becomes known. 
 
Since all chains are finite, every monotonic function is 
continuous. 
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Non-Strict Logical Or is Monotonic 

The non-strict or is a monotonic function f : A × A → A 
where  A = { ⊥, ε, T, F } as can be verified from the truth 
table:  

⊥ ε F T 

⊥ ⊥ ⊥ ⊥ T 

ε ⊥ ε F T 

F ⊥ F F T 

T T T T T 

input 1 

in
pu

t 2
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Recall: Kleene Fixed Point Theorem 

Let (A, ≤ ) be a CPO 
Let  f : A → A  be a monotonic function 
Let  C = { f n(⊥), n ∈ N } 
 
¢  If  ∨ C =  f (∨ C), then ∨ C is the least fixed point of f  
¢  If  f  is continuous, then ∨ C =  f (∨ C) 

Intuition: The least fixed point of a continuous function is 
obtained by applying the function first to the empty 
sequence, then to the result, then to that result, etc. 
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Applying Kleene Fixed Point Theorem 

At each tick of the clock 
¢  Start with signal value ⊥  
¢  Evaluate  f (⊥) 
¢  Evaluate  f (  f (⊥)) 
¢  Stop when a fixed point is reached 
Unlike PN, a fixed point is always reached in a finite 
number of steps (one, in this case). 
 

type T 

value in A = T ∪ { ⊥, ε } 
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Causality Loops 

What is the behavior in the following cases? 
¢  f  is the identity function. 
¢  f  is the logical NOT function. 
¢  f  is the nonstrict delay function with initial value 0. 
¢  f  is the nonstrict delay function with no initial value. 
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Causality Loops 

What is the behavior in the following cases? 
¢  f  is the identity function:  ⊥ 
¢  f  is the logical NOT function:  ⊥ 
¢  f  is the nonstrict delay function with initial value 0: 0 
¢  f  is the nonstrict delay function with no initial value:  ε 
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Generalizing to Multiple Signals 

¢  The Cartesian product of flat CPOs under pointwise 
ordering is also a CPO. 

¢  All chains are still finite. 
¢  Can now apply to any composition, as done with PN. 

(⊥, ⊥) 

…  

product CPO assuming T = {0, 1}.   

(ε, ⊥) (⊥, ε) (1, ⊥) (0, ⊥) (⊥, 0) 

(ε, ε) (ε, 0) 

(⊥, 1) 

(ε, 1) (0, ε) (1, ε) …  
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Compositional Reasoning 

So far, with both PN and SR, we deal with composite 
systems by reducing them to a monotonic function of all 
the signals.   
 
An alternative approach is to convert an arbitrary 
composition to a continuous function. 
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Example to Use for Compositional Reasoning 

Consider an actor: 
 
 
Assume a ∈ A, b ∈ B, c ∈ C, all CPOs.  
Assume that the actor function f : A × B → C is continuous  
Consider the following composition: 
 
 
 
We would like to consider this a function from a to c.   
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First Option: Currying 
(Named after Haskell Curry) 

Given a function f : A × B → C , we can alternatively think 
of this in stages as  f1 : A → [B → C] , where [B → C] is 
the set of all functions from B to C.  
 
For the following example, for each given value of a we 
get a new function f1 ( a )  for which we can find the least 
fixed point. That least fixed point is the value of c. 
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Example: Non-Strict OR 

Suppose f is a non-strict logical OR function. Then: 
 
¢  If a = true, then the resulting function f1 ( a ) always 

returns true, for all values of the input b. 
 
In this case, the least fixed point yields  c = true. 

¢  If a = false, then the resulting function f1 ( a )  is the 
identity function. 
 
In this case, the least fixed point yields  c = ⊥. 
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Second Option: Lifting 
(Named after Heavy Lifting) 

Given a function f : A × B → C , we are looking for a 
function  g : A → C such that 

c = g( a ) 
In the model we have b = c and  c = f ( a, b ) so 

g( a ) = f ( a, g( a )) 
 
This looks like a fixed point problem, but the “unknown” 
on both sides is g, a function not a value. If we can find 
the function g that satisfies this equation, then we can 
use it always to calculate c given a. 
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Posets of Functions 

Suppose ( A, ≤ ) and ( C, ≤ ) are CPOs. 
Consider functions  f, g ∈ [ A → C ]. 
Define the pointwise order on these functions to be 

f ≤ g ⇔  ∀ a ∈ A,   f ( a ) ≤  g( a ) 
Let X ⊂ [ A → C ] be the set of all continuous total 
functions from A to C. 
 
Theorem: (X , ≤ ) is a CPO under the pointwise order. 
 
Proof: See textbook. 
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Least Function in the CPO of Functions 

Let X ⊂ [ A → C ] be the set of all continuous total 
functions from A to C. Since X is a CPO, it must have a 
bottom.  The bottom is a function ⊥X: A → C where for all  
a ∈ A,  
 

⊥X ( a ) = ⊥C ∈ C   
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Consequence of this 
Theorem 

Given a continuous function f : A × B → C , the function 
g : A → C such that 

c = g( a ) 
is the least fixed point of a continuous function 

F : X → X  
where X ⊂ [ A → C ] is the set of all continuous total 
functions from A to C.  
 
We need to now determine the continuous function F . 
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Consequence of this 
Theorem (Continued) 

We need to find a function that g satisfies:  
g( a ) = f ( a, g( a )) 

Let X ⊂ [ A → C ] be the set of all continuous total 
functions from A to C and let F be a continuous function 
F : X → X . 
 
Then g ∈ X is the least function such that F ( g ) = g where 
for all  a ∈ A , 

(F ( g ))( a ) = f ( a, g( a )) 
The theorem, with the Kleene fixed point theorem, tells us 
that F has a least fixed point, and tells us how to find it. 
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Example: Non-Strict OR 

Suppose f is a non-strict logical OR function. Then: 
 
 
 
The least fixed point of this is the function g  given by: 
 
 
 
To find this, start with F ( ⊥ ), then find  F ( F ( ⊥ )), etc., 
until you get a fixed point (which happens immediately). 
 

€ 

(F(g))(a) =

true if   a = true
⊥ if  a = ⊥ and g(a) = false
g(a) otherwise

# 

$ 
% 

& 
% 

€ 

g(a) =
true if   a = true
⊥ otherwise

# 
$ 
% 
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Showing that F is Continuous 

Need to show that given a chain of continuous total 
functions C = { g1, g2 … } that: 
 
 
For all a ∈ A :  
  

)(ˆ)( CFCF ∨=∨

)))((,()))((( aCafaCF ∨=∨

),...})(),({,( 21 agagaf ∨=

),...})(),({,(ˆ 21 agagaf∨=
)))((ˆ( aCF∨=

because each gi is 
continuous 

because f is continuous 

QED 
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Summary 

¢  In SR, fixed point semantics is simpler than in PN 
because the CPO has only finite chains. 

¢  The fancier techniques of Currying and Lifting can be 
applied equal well to PN, but we introduce them here 
because the simpler CPO makes them easier to 
understand. 

¢  The fixed point semantics of SR talks only about the 
behavior at a tick of the clock.  The behavior across 
ticks of the clock will require a clock calculus. 


