

Cycles
Note that there are cycles in this graph, so that if you require that all inputs be known to find the output, then this cannot execute.
The "non strict" actors are key: They do not need to know all their inputs to determine the outputs.
NonStrictDelay initiallyOwnsToken
Lee 06: 11

Consequences: Pre vs. NonStrictDelay

Summary

- In SR, fixed point semantics is simpler than in PN because the CPO has only finite chains.
- The fancier techniques of Currying and Lifting can be applied equal well to PN, but we introduce them here because the simpler CPO makes them easier to understand.
- The fixed point semantics of SR talks only about the behavior at a tick of the clock. The behavior across ticks of the clock will require a *clock calculus*.

Lee 06: 41