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Firings 

Dataflow is a variant of Kahn Process Networks where a 
process is computed as a sequence of atomic firings, 
which are finite computations enabled by a firing rule. 
 
In a firing, an actor consumes a finite number of input 
tokens and produces a finite number of outputs. 
 
A possibly infinite sequence of firings is called a dataflow 
process. 
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PN actors as sequences of firings 

The following actors can be described denotationally as 
functions over sequences of input values, or operationally 
as sequences of finite computations called “firings.” 
Each firing consumes a finite amount of input data and 
produces a finite amount of output data. 
 
 
 
 
When a PN process can be described this way, it is 
called a dataflow process. 
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Firing Rules 

Let F : S n → S m  be a dataflow process, where S = D**. 
 
Let U ⊂ S n be a set of firing rules with the constraints: 
1.    Every u ∈ U  is finite, and 
2.    No two elements of U are joinable. 
This implies that for all s ∈ S n there is at most one u ∈ U  
where  u     s. (exercise)  
 
When  u     s  there is a unique s' such that  s = u.s'  where 
the period denotes concatenation of sequences. 
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Firing Function 

Let  f : S n → S m   be a (possibly partial) firing function with 
the constraint that for all u ∈ U,  f (u) is defined and is 
finite. 
 
Then the dataflow process F : S n → S m  is given by 
 
 
 
where ⊥ n ∈ S n is the n-tuple of empty sequences. 
Note that this is self referential. Seek a fixed point F. 
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Fixed Point Definition of Dataflow Process 
(cf. Lifting Formulation in SR) 

Define  φ : [S n → S m] → [S n → S m]  by: 
 
 
 
 
Fact: φ  is continuous (see Lee & Matsikoudis). This 
means that it has a unique least fixed point, and that we 
can constructively find that fixed point by starting with the 
bottom of the CPO.  The bottom of the CPO is the 
function F0 : S n → S m that returns ⊥ n. 
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Executing a Dataflow Process is the Same as 
Finding the Least Fixed Point 

Suppose s ∈ S n  is a concatenation of firing rules, 
s = u1. u2. u3    …   

Then the procedure for finding the least fixed point of φ 
yields the following sequence of approximations to the 
dataflow process: 

F0 (s) = ⊥ n 
F1 (s) = (φ (F0 ))(s) = f (u1) 

F2 (s) = (φ (F1 ))(s) = f (u1). f (u2) 
… 

This exactly describes the operational semantics of 
repeated firings governed by the firing rules!  
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The LUB of this Sequence of Functions is 
Continuous 

The chain {F0(s), F1(s), … }  will be finite for some s 
(certainly for finite s, but also for any s for which after 
some point, no more firing rules match), and infinite for 
other s. Since each Fi  is a continuous function, and the 
set of continuous functions is a CPO, then the LUB is 
continuous, and hence describes a valid Kahn process 
that guarantees determinacy, and can be put into a 
feedback loop. 
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Example 1 

Suppose D = {0, 1} and S = D **  is the set of finite and 
infinite sequences of elements from D . 
 
Consider a dataflow process with one input and one 
output, F : S  → S  . Its firing rules are U ⊂ S. The following 
are all valid firing rules: 

U = {⊥} 
U = {(0)}  

U = {(0), (1)}  
U = {(0, 0), (0, 1), (1, 0), (1, 1)}  
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Example 2 : Valid Firing Rule? 

Suppose D = {0, 1} and S = D **  is the set of finite and 
infinite sequences of elements from D . 
 
Consider a dataflow process with one input and one 
output, F : S  → S  . Its firing rules are U ⊂ S. Is the 
following set a valid set of firing rule? 

U = {⊥, (0), (1)}  
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Example 2 : Valid Firing Rule? 

Suppose D = {0, 1} and S = D **  is the set of finite and 
infinite sequences of elements from D . 
 
Consider a dataflow process with one input and one 
output, F : S  → S  . Its firing rules are U ⊂ S. Is the 
following set a valid set of firing rule? 

U = {⊥, (0), (1)}  
No. There are joinable pairs. 
Intuition: The same input sequence can lead to multiple 
executions. Nondeterminacy! 
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Example 3 

Consider F : S 2  → S  . Its firing rules are U ⊂ S 2. Which of 
the following are valid sets of firing rules? 

{((0), (0)), ((0), (1)), ((1), (0)), ((1), (1))} 
 

{((0), ⊥), ((1), ⊥), (⊥, (0)), (⊥, (1))} 
 

{((0), ⊥), ((1), (0)), ((1), (1))} 
 

{((0), ⊥), ((1), ⊥)} 
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Example 3 

Consider F : S 2  → S  . Its firing rules are U ⊂ S 2. Which of 
the following are valid sets of firing rules? 

{((0), (0)), ((0), (1)), ((1), (0)), ((1), (1))} 
Yes. Consume one token from each input.  

{((0), ⊥), ((1), ⊥), (⊥, (0)), (⊥, (1))} 
No. Nondeterminate merge.  
{((0), ⊥), ((1), (0)), ((1), (1))} 

Yes. Consume from the second input if the first is 1.  
{((0), ⊥), ((1), ⊥)} 

Yes. Consume only from the first input.  
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Example 4 

Consider F : S 3  → S  . Its firing rules are U ⊂ S 3. Is the 
following a valid set of firing rules? 

 
{((1), (0), ⊥), ((0), ⊥, (1)), (⊥, (1), (0))} 
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Example 4 

Consider F : S 3  → S  . Its firing rules are U ⊂ S 3. Is the 
following a valid set of firing rules? 

 
{((1), (0), ⊥), ((0), ⊥, (1)), (⊥, (1), (0))} 

Yes. Dataflow version of the Gustave function!  
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Taking Stock 

¢  Dataflow processes are Kahn processes composed of 
atomic firings. 

¢  Firing rules that are not joinable lead to simple fixed 
point semantics. 
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Source and Sink Actors 

Sink actor: F : S n → S 0  with firing function f : S n → S 0. 
 
In this case, if S 0 = {σ }  then f (u) = σ  is the single 
element. Define concatenation in S 0  so that  σ .σ  = σ. 
Then everything works (e.g., let σ  = ⊥ ). 
 
Source actor: F : S 0 → S m  with firing function f : S 0 → S m. 
Firing rules U = S 0 (singleton set) have the constraints 
trivially satisfied.  
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Are Source Actors Too Limited? 

With the above definitions, the dataflow process 
produces the sequence f (σ ) . f (σ ) . f (σ ) … where  
U = S 0 = {σ }. 
 
If is non-empty, this is infinite and periodic. This may 
seem limiting for dataflow processes that act as sources, 
but in fact it is not, because a source with a more 
complicated output sequence can be constructed using 
feedback composition. 
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More Generally: 
Is a Single Firing Function Too Restrictive? 

Not really.  Use a self loop: 
 
 
 
Let the data type of the feedback loop be V = {1, 2, … , n } 
 
Then the first argument to the firing function can 
represent n different “states” of the actor, where in each 
state the output is a different function of the input. 
But how can you get this started? 
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A Possible Problem: 
Sample Delay Actor 

Can the sample delay be represented with the following 
firing rules? 

 
{⊥, (0), (1)} 
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A Possible Problem: 
Sample Delay Actor 

Can the sample delay be represented with the following 
firing rules? 

 
{⊥, (0), (1)} 

No. These are not joinable.  
 

One option: require that initial tokens on an arc be a 
primitive concept in dataflow. 
 
(An alternative is to make state machines a primitive 
concept). 
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Firing Rules Defined by a State Machine 

Feedback path data type: V = {1, 2, …, n } where there 
are n states: 
 
 
 
In each state i ∈ V, there is a set of firing rules  

Ui = {(i,…), (i,…), …} 
where every member is finite and no two members are 
joinable. Then the total set of firing rules is   

U = U1 ∪ … ∪ Un 
Every member is finite and no two members are joinable. 

initial state i ∈ V 
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Example: Select Actor 

¢  In the init state, read input from 
the control port. 

¢  In the waitT state, read input 
from the trueIn port. 

¢  In the waitF state, read input 
from the falseIn port. 

 
Uinit = {(init, ⊥, ⊥, * )}  

UwaitT = {(waitT, *, ⊥, ⊥)}  

UwaitF = {(waitF, ⊥, *, ⊥)}  

shorthand to match any input token 

Lee 08: 24 

Recall 
sequential Functions [Vuillemin] 

Let f : An → Am  be an n input, m output function. 
 
Then f  is sequential if it is continuous and for any 
a ∈ An  there exists an  i ∈ {1, … n}, such that for all b ∈ An 

where a ≤ b, 
a |{i}  = b |{i} ⇒ f (a) = f (b)  

 
Intuitively: At all times during an execution, there is an 
input channel that blocks further output. This is the Kahn-
MacQueen blocking read! 
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Sequential Functions 

Any sequential function can be implemented by a state 
machine that in each state has firing rules that match the 
state identifier in the state input port and match any token 
in exactly one other input port. 
 
Each state could also (in effect) implement a different 
firing function (one firing function with the state identifier 
as an input can model this). 
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Generalize Further to get the Cal Actor Language 

Partition the firing rules and associate a distinct firing 
function with each partition of the firing rules.  Each such 
firing function is called an action. 
 
This is similar to the pattern matching in some functional 
languages such as Haskell. 
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Another Possible Problem: 
Cannot Implement Identity Functions! 

Will the following firing rules work? 
{((0), ⊥), ((1), ⊥), (⊥, (0)), (⊥, (1))} 

 
{((0), (0)), ((0), (1)), ((1), (0)), ((1), (1))} 
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Cannot Implement Identity Functions! 

Will the following firing rules work? 
{((0), ⊥), ((1), ⊥), (⊥, (0)), (⊥, (1))} 

No. Nondeterminate merge. 
{((0), (0)), ((0), (1)), ((1), (0)), ((1), (1))} 

No. Try feeding back one output to one input. E.g.: 
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Generalized Firing Rules 

We previously defined the firing rules U ⊂ S n with: 
1.  Every u ∈ U  is finite, and 
2.  No two elements of U are joinable. 
 
We now replace constraint 2 with: 
3.  For any two elements of u, u' ∈ U that are joinable, we 

require that: 
u ∧ u' = ⊥n  

f (u) . f (u') = f (u') . f (u) 
 I.e., when two firing rules are enabled, they can be 
applied in either order without changing the output. 
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Examining Rule 3 

3.  For any two elements of u, u' ∈ U that are joinable, we 
require that: 

u ∧ u' = ⊥n  
 I.e., no two joinable firing rules have a common prefix. 

 
f (u) . f (u') = f (u') . f (u) 

  
 I.e., when two firing rules are enabled, they can be 
applied in either order without changing the output. 
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Applying Rule 3 to Identity Functions 

With these firing rules 
 

U = {((0), ⊥), ((1), ⊥), (⊥, (0)), (⊥, (1))} 
 

and for all u ∈ U, 
 

f (u) = u 
 

rule 3 is satisfied. Exercise: Show that rule 3 is not 
satisfied by the nondeterminate merge. 
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Fixed Point Semantics Under Rule 3 

Let Q (s) = {u1, u2, … , uq} ⊂ U  be the set of all firing rules 
that are a prefix of s. This could be empty. Then define  
 
 
 
 
Where s = ∨Q (s).s'  
(exercise to show that s' always exists).  
 
The function φ' is continuous, and all previous results 
hold. 
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Conclusions and Open Issues 

¢  Dataflow processes are Kahn processes composed of 
atomic firings. 

¢  Firing rules that are not joinable lead to simple fixed 
point semantics. 

¢  Simple semantics leaves out delays, two-input identity 
functions, and other compositions. 

¢  Generalized firing rules allow joinable pairs under 
certain circumstances. 


