
l 1

Concurrent Models of
Computation

Edward A. Lee
Robert S. Pepper Distinguished Professor, UC Berkeley
EECS 219D
Concurrent Models of Computation
Fall 2011

Copyright © 2009-2011, Edward A. Lee, All rights reserved

Week 8: Dataflow Process Networks

Lee 08: 2

Firings

Dataflow is a variant of Kahn Process Networks where a
process is computed as a sequence of atomic firings,
which are finite computations enabled by a firing rule.

In a firing, an actor consumes a finite number of input
tokens and produces a finite number of outputs.

A possibly infinite sequence of firings is called a dataflow
process.

l 2

Lee 08: 3

PN actors as sequences of firings

The following actors can be described denotationally as
functions over sequences of input values, or operationally
as sequences of finite computations called “firings.”
Each firing consumes a finite amount of input data and
produces a finite amount of output data.

When a PN process can be described this way, it is
called a dataflow process.

Lee 08: 4

Firing Rules

Let F : S n → S m be a dataflow process, where S = D**.

Let U ⊂ S n be a set of firing rules with the constraints:
1.  Every u ∈ U is finite, and
2.  No two elements of U are joinable.
This implies that for all s ∈ S n there is at most one u ∈ U
where u s. (exercise)

When u s there is a unique s' such that s = u.s' where
the period denotes concatenation of sequences.

l 3

Lee 08: 5

Firing Function

Let f : S n → S m be a (possibly partial) firing function with
the constraint that for all u ∈ U, f (u) is defined and is
finite.

Then the dataflow process F : S n → S m is given by

where ⊥ n ∈ S n is the n-tuple of empty sequences.
Note that this is self referential. Seek a fixed point F.

⎩
⎨
⎧

⊥

=∈
=

otherwise
'. such that a is thereif)'().(

)(
n

susUusFuf
sF

Lee 08: 6

Fixed Point Definition of Dataflow Process
(cf. Lifting Formulation in SR)

Define φ : [S n → S m] → [S n → S m] by:

Fact: φ is continuous (see Lee & Matsikoudis). This
means that it has a unique least fixed point, and that we
can constructively find that fixed point by starting with the
bottom of the CPO. The bottom of the CPO is the
function F0 : S n → S m that returns ⊥ n.

⎩
⎨
⎧

⊥

=∈
=

otherwise
'. such that a is thereif)'().(

)))(((
n

susUusFuf
sFφ

l 4

Lee 08: 7

Executing a Dataflow Process is the Same as
Finding the Least Fixed Point

Suppose s ∈ S n is a concatenation of firing rules,
s = u1. u2. u3 …

Then the procedure for finding the least fixed point of φ
yields the following sequence of approximations to the
dataflow process:

F0 (s) = ⊥ n
F1 (s) = (φ (F0))(s) = f (u1)

F2 (s) = (φ (F1))(s) = f (u1). f (u2)
…

This exactly describes the operational semantics of
repeated firings governed by the firing rules!

Lee 08: 8

The LUB of this Sequence of Functions is
Continuous

The chain {F0(s), F1(s), … } will be finite for some s
(certainly for finite s, but also for any s for which after
some point, no more firing rules match), and infinite for
other s. Since each Fi is a continuous function, and the
set of continuous functions is a CPO, then the LUB is
continuous, and hence describes a valid Kahn process
that guarantees determinacy, and can be put into a
feedback loop.

l 5

Lee 08: 9

Example 1

Suppose D = {0, 1} and S = D ** is the set of finite and
infinite sequences of elements from D .

Consider a dataflow process with one input and one
output, F : S → S . Its firing rules are U ⊂ S. The following
are all valid firing rules:

U = {⊥}
U = {(0)}

U = {(0), (1)}
U = {(0, 0), (0, 1), (1, 0), (1, 1)}

Lee 08: 10

Example 2 : Valid Firing Rule?

Suppose D = {0, 1} and S = D ** is the set of finite and
infinite sequences of elements from D .

Consider a dataflow process with one input and one
output, F : S → S . Its firing rules are U ⊂ S. Is the
following set a valid set of firing rule?

U = {⊥, (0), (1)}

l 6

Lee 08: 11

Example 2 : Valid Firing Rule?

Suppose D = {0, 1} and S = D ** is the set of finite and
infinite sequences of elements from D .

Consider a dataflow process with one input and one
output, F : S → S . Its firing rules are U ⊂ S. Is the
following set a valid set of firing rule?

U = {⊥, (0), (1)}
No. There are joinable pairs.
Intuition: The same input sequence can lead to multiple
executions. Nondeterminacy!

Lee 08: 12

Example 3

Consider F : S 2 → S . Its firing rules are U ⊂ S 2. Which of
the following are valid sets of firing rules?

{((0), (0)), ((0), (1)), ((1), (0)), ((1), (1))}

{((0), ⊥), ((1), ⊥), (⊥, (0)), (⊥, (1))}

{((0), ⊥), ((1), (0)), ((1), (1))}

{((0), ⊥), ((1), ⊥)}

l 7

Lee 08: 13

Example 3

Consider F : S 2 → S . Its firing rules are U ⊂ S 2. Which of
the following are valid sets of firing rules?

{((0), (0)), ((0), (1)), ((1), (0)), ((1), (1))}
Yes. Consume one token from each input.

{((0), ⊥), ((1), ⊥), (⊥, (0)), (⊥, (1))}
No. Nondeterminate merge.
{((0), ⊥), ((1), (0)), ((1), (1))}

Yes. Consume from the second input if the first is 1.
{((0), ⊥), ((1), ⊥)}

Yes. Consume only from the first input.

Lee 08: 14

Example 4

Consider F : S 3 → S . Its firing rules are U ⊂ S 3. Is the
following a valid set of firing rules?

{((1), (0), ⊥), ((0), ⊥, (1)), (⊥, (1), (0))}

l 8

Lee 08: 15

Example 4

Consider F : S 3 → S . Its firing rules are U ⊂ S 3. Is the
following a valid set of firing rules?

{((1), (0), ⊥), ((0), ⊥, (1)), (⊥, (1), (0))}

Yes. Dataflow version of the Gustave function!

Lee 08: 16

Taking Stock

¢  Dataflow processes are Kahn processes composed of
atomic firings.

¢  Firing rules that are not joinable lead to simple fixed
point semantics.

l 9

Lee 08: 17

Source and Sink Actors

Sink actor: F : S n → S 0 with firing function f : S n → S 0.

In this case, if S 0 = {σ } then f (u) = σ is the single
element. Define concatenation in S 0 so that σ .σ = σ.
Then everything works (e.g., let σ = ⊥).

Source actor: F : S 0 → S m with firing function f : S 0 → S m.
Firing rules U = S 0 (singleton set) have the constraints
trivially satisfied.

Lee 08: 18

Are Source Actors Too Limited?

With the above definitions, the dataflow process
produces the sequence f (σ) . f (σ) . f (σ) … where
U = S 0 = {σ }.

If is non-empty, this is infinite and periodic. This may
seem limiting for dataflow processes that act as sources,
but in fact it is not, because a source with a more
complicated output sequence can be constructed using
feedback composition.

l 10

Lee 08: 19

More Generally:
Is a Single Firing Function Too Restrictive?

Not really. Use a self loop:

Let the data type of the feedback loop be V = {1, 2, … , n }

Then the first argument to the firing function can
represent n different “states” of the actor, where in each
state the output is a different function of the input.
But how can you get this started?

Lee 08: 20

A Possible Problem:
Sample Delay Actor

Can the sample delay be represented with the following
firing rules?

{⊥, (0), (1)}

l 11

Lee 08: 21

A Possible Problem:
Sample Delay Actor

Can the sample delay be represented with the following
firing rules?

{⊥, (0), (1)}

No. These are not joinable.

One option: require that initial tokens on an arc be a
primitive concept in dataflow.

(An alternative is to make state machines a primitive
concept).

Lee 08: 22

Firing Rules Defined by a State Machine

Feedback path data type: V = {1, 2, …, n } where there
are n states:

In each state i ∈ V, there is a set of firing rules

Ui = {(i,…), (i,…), …}
where every member is finite and no two members are
joinable. Then the total set of firing rules is

U = U1 ∪ … ∪ Un
Every member is finite and no two members are joinable.

initial state i ∈ V

l 12

Lee 08: 23

Example: Select Actor

¢  In the init state, read input from
the control port.

¢  In the waitT state, read input
from the trueIn port.

¢  In the waitF state, read input
from the falseIn port.

Uinit = {(init, ⊥, ⊥, *)}

UwaitT = {(waitT, *, ⊥, ⊥)}

UwaitF = {(waitF, ⊥, *, ⊥)}

shorthand to match any input token

Lee 08: 24

Recall
sequential Functions [Vuillemin]

Let f : An → Am be an n input, m output function.

Then f is sequential if it is continuous and for any
a ∈ An there exists an i ∈ {1, … n}, such that for all b ∈ An

where a ≤ b,
a |{i} = b |{i} ⇒ f (a) = f (b)

Intuitively: At all times during an execution, there is an
input channel that blocks further output. This is the Kahn-
MacQueen blocking read!

l 13

Lee 08: 25

Sequential Functions

Any sequential function can be implemented by a state
machine that in each state has firing rules that match the
state identifier in the state input port and match any token
in exactly one other input port.

Each state could also (in effect) implement a different
firing function (one firing function with the state identifier
as an input can model this).

Lee 08: 26

Generalize Further to get the Cal Actor Language

Partition the firing rules and associate a distinct firing
function with each partition of the firing rules. Each such
firing function is called an action.

This is similar to the pattern matching in some functional
languages such as Haskell.

l 14

Lee 08: 27

Another Possible Problem:
Cannot Implement Identity Functions!

Will the following firing rules work?
{((0), ⊥), ((1), ⊥), (⊥, (0)), (⊥, (1))}

{((0), (0)), ((0), (1)), ((1), (0)), ((1), (1))}

Lee 08: 28

Cannot Implement Identity Functions!

Will the following firing rules work?
{((0), ⊥), ((1), ⊥), (⊥, (0)), (⊥, (1))}

No. Nondeterminate merge.
{((0), (0)), ((0), (1)), ((1), (0)), ((1), (1))}

No. Try feeding back one output to one input. E.g.:

l 15

Lee 08: 29

Generalized Firing Rules

We previously defined the firing rules U ⊂ S n with:
1. Every u ∈ U is finite, and
2. No two elements of U are joinable.

We now replace constraint 2 with:
3. For any two elements of u, u' ∈ U that are joinable, we

require that:
u ∧ u' = ⊥n

f (u) . f (u') = f (u') . f (u)
 I.e., when two firing rules are enabled, they can be
applied in either order without changing the output.

Lee 08: 30

Examining Rule 3

3. For any two elements of u, u' ∈ U that are joinable, we
require that:

u ∧ u' = ⊥n
 I.e., no two joinable firing rules have a common prefix.

f (u) . f (u') = f (u') . f (u)

 I.e., when two firing rules are enabled, they can be
applied in either order without changing the output.

l 16

Lee 08: 31

Applying Rule 3 to Identity Functions

With these firing rules

U = {((0), ⊥), ((1), ⊥), (⊥, (0)), (⊥, (1))}

and for all u ∈ U,

f (u) = u

rule 3 is satisfied. Exercise: Show that rule 3 is not
satisfied by the nondeterminate merge.

Lee 08: 32

Fixed Point Semantics Under Rule 3

Let Q (s) = {u1, u2, … , uq} ⊂ U be the set of all firing rules
that are a prefix of s. This could be empty. Then define

Where s = ∨Q (s).s'
(exercise to show that s' always exists).

The function φ' is continuous, and all previous results
hold.

⎩
⎨
⎧

⊥

∅≠
=

otherwise
)(if)'().().....().(

)))(('(21

n

q sQsFufufuf
sFφ

l 17

Lee 08: 33

Conclusions and Open Issues

¢  Dataflow processes are Kahn processes composed of
atomic firings.

¢  Firing rules that are not joinable lead to simple fixed
point semantics.

¢  Simple semantics leaves out delays, two-input identity
functions, and other compositions.

¢  Generalized firing rules allow joinable pairs under
certain circumstances.

