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Week 9: Scheduling Dataflow Models 
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Execution Policy for a Dataflow Actor 

Suppose s ∈ S n  is a concatenation of firing rules, 
s = u1. u2. u3    …   

Then the output of the actor is the concatenation of the 
results of a sequence of applications of the firing function: 

F0 (s) = ⊥ n 
F1 (s) = (φ (F0 ))(s) = f (u1) 

F2 (s) = (φ (F1 ))(s) = f (u1). f (u2) 
… 

The problem we address now is scheduling: how to 
choose which actor to fire when there are choices. 
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Apply the Same Policy as for PN 

¢  Define a correct execution to be any execution for 
which after any finite time every signal is a prefix of 
the LUB signal given by the semantics. 

¢  Define a useful execution to be a correct execution 
that satisfies the following criteria: 
1.  For every non-terminating PN model, after any finite 

time, a useful execution will extend at least one signal 
in finite (additional) time. 

2.  If a correct execution satisfying criterion (1) exists that 
executes with bounded buffers, then a useful 
execution will execute with bounded buffers. 
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Policies that Fail 

¢  Fair scheduling 
¢  Demand driven 
¢  Data driven 
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Adapting Parks’ Strategy to Dataflow 

¢  Require that the scheduler “know” how many tokens 
a firing will produce on each output port before that 
firing is invoked. 

¢  Start with an arbitrary bound on the capacity of all 
buffers. 

¢  Execute enabled actors that will not overflow the 
buffers on their outputs. 

¢  If deadlock occurs and at least one actor is blocked on 
a enabled, increase the capacity of at least one buffer 
to allow an actor to fire. 

¢  Continue executing, repeatedly checking for deadlock. 
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But Often the Firing Sequence can be Statically 
Determined! A History of Attempts: 
¢  Computation graphs [Karp & Miller - 1966] 
¢  Process networks [Kahn - 1974] 
¢  Static dataflow [Dennis - 1974] 
¢  Dynamic dataflow [Arvind, 1981] 
¢  K-bounded loops [Culler, 1986] 
¢  Synchronous dataflow [Lee & Messerschmitt, 1986] 
¢  Structured dataflow [Kodosky, 1986] 
¢  PGM: Processing Graph Method [Kaplan, 1987] 
¢  Synchronous languages [Lustre, Signal, 1980’s] 
¢  Well-behaved dataflow [Gao, 1992] 
¢  Boolean dataflow [Buck and Lee, 1993] 
¢  Multidimensional SDF [Lee, 1993] 
¢  Cyclo-static dataflow [Lauwereins, 1994] 
¢  Integer dataflow [Buck, 1994] 
¢  Bounded dynamic dataflow [Lee and Parks, 1995] 
¢  Heterochronous dataflow [Girault, Lee, & Lee, 1997] 
¢  Parameterized dataflow [Bhattacharya and Bhattacharyya 2001] 
¢  Structured dataflow (again) [Thies et al. 2002] 
¢  … 

now 
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Synchronous Dataflow – SDF 
(not to be confused with SR models!) 

If the number of tokens consumed and produced by the 
firing of an actor is constant, then static analysis can tell 
us whether we can schedule the firings to get a useful 
execution, and if so, then a finite representation of a 
schedule for such an execution can be created. 
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Balance Equations 

Let qA, qB be the number of firings of actors A and B.  
Let pC, cC be the number of token produced and 
consumed on a connection C. 
Then the system is in balance if for all connections C 

qA pC = qB cC 
where A produces tokens on C and B consumes them. 
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Relating to Infinite Firings 

Of course, if qA = qB = ∞ , then the balance equations are 
trivially satisfied. 
 
By keeping a system in balance as an infinite execution 
proceeds, we can keep the buffers bounded. 
 
Whether we can have a bounded infinite execution turns 
out to be decidable for SDF models. 
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Example 

Consider this example, where actors and arcs are 
numbered: 
 
 
 
 
 
 
The balance equations imply that actor 3 must fire twice 
as often as the other two actors. 
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Compactly Representing the Balance Equations 
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Example 

A solution to balance equations: 
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This tells us that actor 3 must fire twice as often as actors 1 and 2. 
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Example 

But there are many solutions to the balance equations: 
 
 
 
 
We will see that for “well-behaved” models, there is a 
unique least positive solution. 
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Disconnected Models 

For a disconnected model with two 
connected components, solutions to the  
balance equations have the form: 
 
Solutions are linear combinations of the solutions for 
each connected component: 
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Disconnected Models are Just Separate 
Connected Models 

Define a connected model to be one where there is a 
path from any actor to any other actor, and where every 
connection along the path has production and 
consumption numbers greater than zero. 
 
It is sufficient to consider only connected models, since 
disconnected models are disjoint unions of connected 
models. A schedule for a disconnected model is an 
arbitrary interleaving of schedules for the connected 
components. 
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Least Positive Solution to the Balance Equations 

Note that if pC, cC , the number of tokens produced and 
consumed on a connection C, are non-negative integers, 
then the balance equation, 

qA pC = qB cC 
implies: 
¢   qA is rational if an only if qB is rational. 
¢   qA is positive if an only if qB is positive. 

Consequence: Within any connected component, if there 
is any solution to the balance equations, then there is a 
unique least positive solution. 
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Rank of a Matrix 

The rank of a matrix Γ is the number of linearly 
independent rows or columns. The equation 
 
 
is forming a linear combination of the columns of G. Such 
a linear combination can only yield the zero vector if the 
columns are linearly dependent (this is what is means to 
be linearly dependent). 
 
If Γ has a rows and b columns, the rank cannot exceed 
min( a, b). If the columns or rows of Γ are re-ordered, the 
resulting matrix has the same rank as Γ. 
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Rank of the Production/Consumption Matrix 

Let a be the number of actors in a connected graph. Then 
the rank of the production/consumption matrix Γ must be 
a or a - 1. 
 
Γ has a columns and at least a - 1 rows. If it has only a - 
1 columns, then it cannot have rank a. 
 
If the model is a spanning tree (meaning that there are 
barely enough connections to make it connected) then  Γ 
has a rows and a - 1 columns. Its rank is a - 1. (Prove by 
induction).  
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Consistent Models 

Let a be the number of actors in a connected model. The 
model is consistent if Γ has rank a - 1. 
 
If the rank is a, then the balance equations have only a 
trivial solution (zero firings).  
 
When Γ has rank a - 1, then the balance equations 
always have a non-trivial solution. 
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Example of an Inconsistent Model: 
No Non-Trivial Solution to the Balance Equations 

This production/consumption matrix has rank 3, so there 
are no nontrivial solutions to the balance equations. 
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Dynamics of Execution 

Consider a model with 3 actors. Let the schedule be a 
sequence v : N0 → B3 where B = {0, 1} is the binary set. 
That is, 
 
 
 
 
to indicate firing of actor 1, 2, or 3.  
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Buffer Sizes and Periodic Admissible Sequential 
Schedules (PASS) 

Assume there are m connections and let b : N0 → N m 
indicate the buffer sizes prior to the each firing. That is, 
b(0) gives the initial number of tokens in each buffer, b(1) 
gives the number after the first firing, etc. Then 
 
A periodic admissible sequential schedule (PASS) of 
length K is a sequence 

v(0) … v( K – 1) 
such that              for each n ∈ {0, … K – 1 }, and 
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Periodic Admissible Sequential Schedules 

Let 
and note that we require that            .  
 
A PASS will bring the model back to its initial state, and 
hence it can be repeated indefinitely with bounded 
memory requires. 
 
A necessary condition for the  existence of a PASS is that 
the balance equations have a non-zero solution. Hence, 
a PASS can only exist for a consistent model. 
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SDF Theorem 1 

We have proved: 
 
For a connected SDF model with a actors, a necessary 
condition for the existence of a PASS is that the model be 
consistent. 
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SDF Theorem 2 

We have also proved: 
 
For a consistent connected SDF model with production/
consumption matrix Γ, we can find an integer vector q 
where every element is greater than zero such that 
 
 
Furthermore, there is a unique least such vector q. 
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SDF Sequential Scheduling Algorithms 

Given a consistent connected SDF model with 
production/consumption matrix Γ, find the least positive 
integer vector q such that            .  
 
Let K = 1T q, where 1T is a row vector filled with ones. 
Then for each of n ∈ {0, … K – 1}, choose a firing vector   
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SDF Sequential Scheduling Algorithms 
(Continued) 

.. such that                                            (each element is  
non-negative), where b(0) is the initial state of the buffers, 
and 
 
 
 
The resulting schedule ( v(0), v(1), …, v(K - 1)) forms one 
cycle of an infinite periodic schedule. 
 
Such an algorithm is called an SDF Sequential 
Scheduling Algorithm (SSSA). 

∑
−

=

=
1

0

)(
K

n
qnv

0)()()1(


≥Γ+=+ nvnbnb

Lee 09: 28 

SDF Theorem 3 

If an SDF model has a correct infinite sequential 
execution that executes in bounded memory, then any 
SSSA will find a schedule that provides such an 
execution. 
 
Proof outline: Must show that if an SDF has a correct, 
infinite, bounded execution, then it has a PASS of length 
K. See Lee & Messerschmit [1987]. Then must show that 
the schedule yielded by an SSSA is correct, infinite, and 
bounded (trivial).  
 
Note that every SSSA terminates. 
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Creating a Scheduler 

Given a connected SDF model with actors A1, … , Aa : 
 
Step 1: Solve for a rational q. To do this, first let q1 = 1. 
Then for each actor Ai connected to A1, let qi = q1 m/n, 
where m is the number of tokens A1 produces or 
consumes on the connection to Ai, and n is the number of 
tokens Ai produces or consumes on the connection to A1. 
Repeat this for each actor Aj connected to Ai for which we 
have not already assigned a value to  qj. When all actors 
have been assigned a value qj, then we have a found a 
rational vector q such that           .   0


=Γq
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Creating a Scheduler (continued) 

Step 2: Solve for the least integer q. Use Euclid’s 
algorithm to find the least common multiple of the 
denominators for the elements of the rational vector q. 
Then multiply through by that least common multiple to 
obtain the least positive integer vector q such that 
 
 
 
Let K = 1T q. 
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Creating a Scheduler (continued) 

Step 3: For each n ∈ {0, … , K – 1 }: 
1.  Given buffer sizes b(n) , determine which actors have 

firing rules that are satisfied (every source actor will 
have such a firing rule). 

2.  Select one of these actors that has not already been 
fired the number of times given by q. Let v(n) be a 
vector with all zeros except in the position of the 
chosen actor, where its value is 1.  

3.  Update the buffer sizes: 
 )()()1( nvnbnb Γ+=+
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A Key Question: If More Than One Actor is 
Fireable in Step 2, How do I Select One? 

Optimization criteria that might be applied: 
¢  Minimize buffer sizes. 
¢  Minimize the number of actor activations. 
¢  Minimize the size of the representation  

of the schedule (code size). 

 See S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee, 
Software Synthesis from Dataflow Graphs, Kluwer 
Academic Press, 1996. 
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Minimum Buffer Schedule 
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Source: Shuvra Bhattacharyya 
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Code Generation (Circa 1992) 
Block specification for DSP code generation in Ptolemy Classic: 

macros defined by the 
code generator 

alternative code 
blocks chosen based 
on parameter values 
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Scheduling Tradeoffs 
(Bhattacharyya, Parks, Pino) 

Scheduling strategy Code Data 

Minimum buffer schedule, no looping 13735  32 

Minimum buffer schedule, with looping 9400  32 

Worst minimum code size schedule  170 1021 

Best minimum code size schedule 170 264 

Source: Shuvra Bhattacharyya 
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Parallel Scheduling 

It is easy to create an SSSA that as it produces a PASS, 
it constructs an acyclic precedence graph (APG) that 
represents the dependencies that an actor firing has on 
prior actor firings. 
 
Given such an APG, the parallel scheduling problem is a 
standard one where there are many variants of the 
optimization criteria and scheduling heuristics. 
 
See many papers on the subject on the Ptolemy website. 
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Taking Stock 

¢  SDF models have actors that produce and consume a fixed 
(constant) number of tokens on each arc. 

¢  A periodic admissible sequential schedule (PASS) is a finite 
sequence of firings that brings buffers back to their initial state 
and keeps buffer sizes non-negative. 

¢  A necessary condition for the existence of a PASS is that the 
balance equations have a non-trivial solution. 

¢  A class of algorithms has been identified that will always find a 
PASS if one exists. 
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Synchronous Dataflow – SDF 

If the number of tokens consumed and produced by the 
firing of an actor is constant, then static analysis can tell 
us whether we can schedule the firings to get a useful 
execution, and if so, then a finite representation of a 
schedule for such an execution can be created. 
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Balance Equations 

Let qA, qB be the number of firings of actors A and B.  
Let pC, cC be the number of token produced and 
consumed on a connection C. 
Then the system is in balance if for all connections C 

qA pC = qB cC 
where A produces tokens on C and B consumes them. 
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Extensions of SDF that Improve Expressiveness 

Structured Dataflow [Kodosky 86, Thies et al. 02] 
Boolean dataflow [Buck and Lee, 93] 
Cyclostatic Dataflow [Lauwereins 94] 
Multidimensional SDF [Lee & Murthy 96] 
Heterochronous Dataflow [Girault, Lee, and Lee, 97] 
Parameterized Dataflow [Bhattacharya et al. 00] 
Teleport Messages [Thies et al. 05] 
 
Many of these remain decidable 
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Multidimensional SDF 
(Lee, 1993) 

Production and consumption 
of N-dimensional arrays of 
data: 

 
 
 
 
Balance equations and 

scheduling policies 
generalize. 

Much more data parallelism is 
exposed. 

(40, 48) 

(8, 8) 

Similar (but dynamic) 
multidimensional streams have been 
implemented in Lucid. 
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More interesting Example 

Two dimensional 
FFT constructed 
out of one-
dimensional 
actors. 
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MDSDF Structure Exposes 
Fine-Grain Data Parallelism 

(1,1,N)

(1,1,1)

Repeat

(0,1,0)

Downsample

(1,M,N)

(M,N,1)
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Repeat

T

(1,M,1)

(1,1,1)
(L,1,N)
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From this, a precedence
graph can be automatically
constructed that reveals
all the parallelism in the
algorithm.

L

M

N

M

N

L

Original Matrix

Repeats

Element-wise product

Original Matrix

Repeats

However, such programs 
are extremely hard to 
write (and to read). 
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Extensions of MDSDF 

Extended to non-rectangular lattices and connections to 
number theory: 
 
P. K. Murthy, "Scheduling Techniques for Synchronous 
and Multidimensional Synchronous Dataflow," Technical 
Memorandum UCB/ERL M96/79, Ph.D. Thesis, EECS 
Department, University of California, Berkeley, CA 94720, 
December 1996.  
 
Praveen K. Murthy and Edward A. Lee, "Multidimensional 
Synchronous Dataflow ," IEEE Transactions on Signal 
Processing, volume 50, no. 8, pp. 2064 -2079, July 2002. 
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Extensions of SDF that Improve Expressiveness 

Structured Dataflow [Kodosky 86, Thies et al. 02] 
Boolean dataflow [Buck and Lee, 93] 
Cyclostatic Dataflow [Lauwereins 94] 
Multidimensional SDF [Lee & Murthy 96] 
Heterochronous Dataflow [Girault, Lee, and Lee, 97] 
Parameterized Dataflow [Bhattacharya et al. 00] 
Teleport Messages [Thies et al. 05] 
 
Many of these remain decidable 
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Cyclostatic Dataflow (CSDF) 
(Lauwereins et al., TU Leuven, 1994) 

Actors cycle through a regular production/consumption pattern. 
Balance equations become: 

fire B { 
   … 
   consume M 
   … 
} 

fire A { 
   … 
   produce  
   … 
} 

channel 

),(;
1

0
mod

1

0
mod QPlcmRmqnq

R

i
QiB

R

i
PiA == ∑∑

−

=

−

=

iN
10 ,, −Pnn … 10 ,, −Qmm …

cyclic production pattern 
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Extensions of SDF that Improve Expressiveness 

Structured Dataflow [Kodosky 86, Thies et al. 02] 
Boolean dataflow [Buck and Lee, 93] 
Cyclostatic Dataflow [Lauwereins 94] 
Multidimensional SDF [Lee & Murthy 96] 
Heterochronous Dataflow [Girault, Lee, and Lee, 97] 
Parameterized Dataflow [Bhattacharya et al. 00] 
Teleport Messages [Thies et al. 05] 
 
Many of these remain decidable 
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Heterochronous Dataflow (HDF) 
(Girault, Lee, & Lee, 1997) 

An actor consists of a state machine and 
refinements to the states that define behavior. 
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Heterochronous Dataflow (HDF) 
(Girault, Lee, and Lee, 1997) 

¢  An interconnection of actors. 
¢  An actor is either SDF or HDF. 
¢  If HDF, then the actor has: 

l  a state machine 
l  a refinement for each state 
l  where the refinement is an SDF or HDF actor 

¢  Operational semantics: 
l  with the state of each state machine fixed, graph is SDF 
l  in the initial state, execute one complete SDF iteration 
l  evaluate guards and allow state transitions 
l  in the new state, execute one complete SDF iteration 

¢  HDF is decidable if state machines are finite 
l  but complexity can be high 

 

Related to “parameterized 
dataflow” of Bhattacharya 
and Bhattacharyya (2001). 
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If-Then-Else Using Heterochronous Dataflow 

Imperative 
equivalent: 
 
b = true; 
while (true) { 
   x = f1(); 
   if (b) { 
     y = f3(x); 
   } else { 
     y = f4(x); 
   } 
   f6(y); 
   b = f7(); 
} 

Semantics of HDF: 
- Execute SDF model for one complete iteration in current  state 
- Take state transitions to get a new SDF model. 
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If-Then-Else Using Heterochronous Dataflow 

Imperative 
equivalent: 
 
b = true; 
while (true) { 
   x = f1(); 
   if (b) { 
     y = f3(x); 
   } else { 
     y = f4(x); 
   } 
   f6(y); 
   b = f7(); 
} 

Note that if these two refinements have the same production/consumption 
parameters, then this is simply hierarchical SDF, where one static schedule 
suffices. 
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Hierarchical SDF Using Transition Refinements 

Imperative 
equivalent: 
 
while (true) { 
   x = f1(); 
   b = f7(); 
   if (b) { 
     y = f3(x); 
   } else { 
     y = f4(x); 
   } 
   f6(y); 
} 

This only works under rather narrow constraints: 
•  Exactly one outgoing transition from any state is enabled. 
•  The transition refinements on all transitions have the same production/

consumption patterns. 
•  The state has no refinement. 
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Application of Dynamic Dataflow: Resampling of 
Streaming Media 

This pattern requires the use of a semantically richer 
dataflow model than SDF because the BooleanSwitch is 
not an SDF actor. 
This has a performance cost and reduces the static 
analyzability of the model. 
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Resampling Design Pattern using  
Modal Models 

 Hierarchically mixing 
synchronous dataflow with finite state 
machines offers a much more powerful 
model of computation than either alone. 
And everything remains decidable (if you 
are careful)! 

This generalizes 
structured dataflow with 
sequential decision logic, 
but without the cost of 
undecidability. 
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Taking Stock 

¢  Generalizations to SDF improve expressiveness while 
preserving decidability. 

¢  Usable languages for many of these extensions have 
yet to be created. 
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Extensions of SDF that Improve Expressiveness 

Structured Dataflow [Kodosky 86, Thies et al. 02] 
(the other) Synchronous Dataflow [Halbwachs et al. 91] 
Boolean dataflow [Buck and Lee, 93] 
Cyclostatic Dataflow [Lauwereins 94] 
Multidimensional SDF [Lee & Murthy 96] 
Heterochronous Dataflow [Girault, Lee, and Lee, 97] 
Parameterized Dataflow [Bhattacharya et al. 00] 
Teleport Messages [Thies et al. 05] 
 
Many of these remain decidable 
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Synchronous Dataflow – SDF 

If the number of tokens consumed and produced by the 
firing of an actor is constant, then static analysis can tell 
us whether we can schedule the firings to get a useful 
execution, and if so, then a finite representation of a 
schedule for such an execution can be created. 
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Expressiveness Limitations in SDF 

SDF cannot express data-dependent flow of tokens: 
¢   If-then-else 
¢   Do-while 
¢   Recursion 

Hierarchical SDF can do some of this… 
 
A more general solution is dynamically scheduled 
dataflow. We now explore DDF, and in particular, how to 
use static analysis to achieve similar results to those of 
SDF. 
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Manifest Iteration in SDF 

Manifest iteration (where the 
number of iterations is a fixed 
constant) is expressible in 
SDF. But data-dependent 
iteration is not. 

Imperative 
equivalent: 
 
while (true) { 
   x = f1(); 
   y = 0; 
   for I in (1..10) { 
     y = f3(x, y); 
   } 
   f5(y); 
} 
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Do-While Using DDF 

This model uses conditional 
routing of tokens to iterate a 
function a data-dependent 
number of times. 

initial token Imperative 
equivalent: 
 
while (true) { 
   x = f1(); 
   b = false; 
   while(!b) { 
      (x, b) = f3(x); 
   } 
   f5(x); 
} Exercise: Can this be done with HDF? Hierarchical SDF? 

Switch Select 
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If-Then-Else in DDF 

Imperative 
equivalent: 
 
while (true) { 
   x = f1(); 
   b = f7(); 
   if (b) { 
     y = f3(x); 
   } else { 
     y = f4(x); 
   } 
   f6(y); 
} 

Switch Select 

Boolean-valued control signal 

This model uses conditional 
routing of tokens to route each 
token in a stream through one 
of two actors. 
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Aside: Compare With 
If-Then-Else Using Heterochronous Dataflow 

Imperative 
equivalent: 
 
b = true; 
while (true) { 
   x = f1(); 
   if (b) { 
     y = f3(x); 
   } else { 
     y = f4(x); 
   } 
   f6(y); 
   b = f7(); 
} 

Note that this is not quite the same as the previous version… 
Semantics of HDF: 
- Execute SDF model for one complete iteration in current  state 
- Take state transitions to get a new SDF model. 
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Aside: Compare With 
If-Then-Else Using Heterochronous Dataflow 

Imperative 
equivalent: 
 
b = true; 
while (true) { 
   x = f1(); 
   if (b) { 
     y = f3(x); 
   } else { 
     y = f4(x); 
   } 
   f6(y); 
   b = f7(); 
} 

Note that if these two refinements have the same production/consumption 
parameters, then this is simply hierarchical SDF, where one static schedule 
suffices. 
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Hierarchical SDF Using Transition Refinements 

Imperative 
equivalent: 
 
while (true) { 
   x = f1(); 
   b = f7(); 
   if (b) { 
     y = f3(x); 
   } else { 
     y = f4(x); 
   } 
   f6(y); 
} 

This only works under rather narrow constraints: 
•  Exactly one outgoing transition from any state is enabled. 
•  The transition refinements on all transitions have the same production/

consumption patterns. 
•  The state has no refinement. 
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Balance Equations 

Let qA, qB be the number of firings of actors A and B.  
Let pC, cC be the number of token produced and 
consumed on a connection C. 
Then the system is in balance if for all connections C 

qA pC = qB cC 
where A produces tokens on C and B consumes them. 
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If-Then-Else in DDF 

Imperative 
equivalent: 
 
while (true) { 
   x = f1(); 
   b = f7(); 
   if (b) { 
     y = f3(x); 
   } else { 
     y = f4(x); 
   } 
   f6(y); 
} 

The if-then-else model is not SDF. 
But we can clearly give a bounded 
quasi-static schedule for it: 
(1, 7, 2, b?3, !b?4, 5, 6) 

What consumption rate? 

What production rate? 

guard 
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Symbolic Rates 

Imperative 
equivalent: 
 
while (true) { 
   x = f1(); 
   b = f7(); 
   if (b) { 
     y = f3(x); 
   } else { 
     y = f4(x); 
   } 
   f6(y); 
} 

Production and consumption rates 
are given symbolically in terms of 
the values of the Boolean control 
signals consumed at the control 
port. 

Symbolic consumption rate. 

Symbolic production rate. 
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Interpretations of Symbolic Rates 

¢  General interpretation: p is a symbolic placeholder for 
an unknown. 

¢  Probabilistic interpretation: p is the probability that a 
Boolean control input is true. 

¢  Proportion interpretation: p is the proportion of true 
values at the control input in one complete cycle. 

 NOTE: We do not need numeric values for p. We 
always manipulate it symbolically. 
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Symbolic Balance Equations 

The two connections above imply the following balance 
equations: 

q2 p = q3 

q2 (1 – p) = q4 
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Symbolic Rates 

Imperative 
equivalent: 
 
while (true) { 
   x = f1(); 
   b = f7(); 
   if (b) { 
     y = f3(x); 
   } else { 
     y = f4(x); 
   } 
   f6(y); 
} 

Production and consumption rates 
are given symbolically in terms of 
the values of the Boolean control 
signals consumed at the control 
port. 

Label the arcs 



l 36 

Lee 09: 71 

Balance equations: 
 
 
Note that the 
solution          now 
depends on the 
symbolic variables 

Production/Consumption Matrix for If-Then-Else 
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Symbolic 
variables: 
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The balance equations have a solution  
if an only if           has rank 6. This occurs 
if and only if p7 = p8 , which happens to 
be true by construction because signals 
7 and 8 come from the same source. The 
solution is given at the right. 
 

Production/Consumption Matrix for If-Then-Else 
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Strong and Weak Consistency 

A strongly consistent dataflow model is one where the 
balance equations have a solution that is provably valid 
without concern for the values of the symbolic variables. 

l The if-then-else dataflow model is strongly consistent. 
 
A weakly consistent dataflow model is one where the 
balance equations cannot be proved to have a solution 
without constraints on the symbolic variables that cannot 
be proved. 

l Note that whether a model is strongly or weakly 
consistent depends on how much you know about the 
model. 
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Weakly Consistent Model 

This production/consumption 
matrix has full rank unless p = 1. 
 
Unless we know f4 , this cannot 
be verified at compile time. 
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Another Example of a Weakly Consistent Model 

This one requires that actor 7 produce half true and half 
false (that p = 0.5) to be consistent.  This fact is derived 
automatically from solving the balance equations. 
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Use Boolean Relations 

12 1 pp −=
1b 2b

1b

2b
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),(1 213 bbprp −=

1b

2b
3b

Symbolic variables 
across logical 
operators can be 
related as shown. 
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Routing of Boolean Tokens 

2b
3b

4b

)|( 123 bbprp =
Symbolic variables 
across switch and 
select can be 
related as shown. 1b

)|( 124 bbprp =

2b
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Taking Stock 

¢  BDF generalizes the idea of balance equations to 
include symbolic variables. 

¢  Whether balance equations have a solution may 
depend on the relationships between symbolic 
variables. 

 


