
l 1

Concurrent Models of
Computation

Edward A. Lee
Robert S. Pepper Distinguished Professor, UC Berkeley
EECS 219D
Concurrent Models of Computation
Fall 2011

Copyright © 2009-2011, Edward A. Lee, All rights reserved

Week 12: Discrete-Event Systems

Lee 12: 2

Discrete Event Models

DE Director implements
timed semantics using an
event queue

Event source

Time line

Reactive actors

Signal

l 2

Lee 12: 3

Discrete Events (DE): A Timed Concurrent Model
of Computation

DE Director implements
timed semantics using an
event queue

Actor (in this case,
source of events)

Reactive actors produce
output events in response
to input events

Actors communicate via
“signals” that are marked
point processes (discrete,
valued, events in time).

Plot of the value (marking) of a
signal as function of time.

Lee 12: 4

Our Applications of DE

Modeling and simulation of
l Communication networks (mostly wireless)
l Hardware architectures
l Systems of systems

Design and software synthesis for
l Sensor networks
l Distributed real-time software
l Hardware/software systems

l 3

Lee 12: 5

Design of Discrete-Event Models

Example: Model of a transportation system:

Lee 12: 6

Event Sources and Sinks
The Clock actor produces events at regular
intervals. It can repeat any finite pattern of event
values and times.

The PoissonClock actor produces events at random
intervals. The time between events is given by an
exponential random variable. The resulting output
random process is called a Poisson process. It has
the property that at any time, the expected time until
the next event is constant (this is called the
memoryless property because it makes no difference
what events have occurred before that time).

The TimedPlotter actor plots double-valued
events as a function of time.

l 4

Lee 12: 7

Actors that Use Time

Lee 12: 8

Execution of the Transportation System Model

These displays show that the average time that passengers wait for
a bus is smaller if the busses arrive at regular intervals than if they
arrive random intervals, even when the average arrival rate is the
same. This is called the inspection paradox.

l 5

Lee 12: 9

Uses for Discrete-Event Modeling

¢  Modeling timed systems
l  transportation, commerce, business, finance, social,

communication networks, operating systems, wireless
networks, …

¢  Designing digital circuits
l VHDL, Verilog

¢  Designing real-time software
l Music systems (Max, …)

Lee 12: 10

Using DE to Model Real-Time Software

Consider a real-time program on an embedded computer
that is connected to two sensors A and B, each providing a
stream of data at a normalized rate of one sample per time
unit (exactly). The data from the two sensors is deposited
by an interrupt service routine into a register.

Assume a program that looks like this:

 while(true) {
 wait for new data from A;
 wait a fixed amount of time T;
 observe registered data from B;
 average data from A and B;
 }

l 6

Lee 12: 11

The Design Question

Assume that there are random delays in the software
(due to multitasking, interrupt handling, cache
management, etc.) for both the above program and the
interrupt service routines.

What is the best choice for the value for T?

One way to frame the question: How old is the data from
B that will be averaged with the data from A?

Lee 12: 12

A Model that Measures for Various Values of T

l 7

Lee 12: 13

Modeling Random Delay in Sensor Data

The Rician actor, when
triggered, produces an
output event with a
non-negative random
value and with time
stamp equal to that of
the trigger event.

Given an input event at time t
with any value, the CurrentTime
actor outputs the double t with
time stamp t.

Given an event with time stamp t on the
upper input, the VariableDelay actor
produces an output with the same value but
time stamp t + t', where t' is the value of the
most recently seen event on the lower input.

Lee 12: 14

Actor-Oriented Sampler Class

The TimedDelay actor transfers every input
event to the output with a fixed increment in the
time stamp. Here, the value is sampleDelay, a
parameter of the composite actor.

Given a trigger event with
time stamp t the Sampler
actor produces an output
event with value equal to
the value of the most
recently seen input event.

l 8

Lee 12: 15

Result of Executing this Model

Smaller fixed delay T can
result in larger time gap
between data samples
that are averaged!

Lee 12: 16

Design in DE: Some Useful Actors
When a token is received
on the input port, it is
stored in the queue.
When the trigger port
receives a token, the
oldest element in the
queue is output. If there is
no element in the queue
when a token is received
on the trigger port, then
no output is produced.

Like the Queue, except
that a serviceTime
parameter provides a
lower bound on the time
between outputs.

Merge is deterministic in DE.

Like a
register in
digital
circuits.

When triggered by an
input, output the previous
input. Is this useful in
feedback loops?

l 9

Lee 12: 17

Signals in DE

A signal in DE is a partial function a : T → A , where A is
a set of possible event values (a data type and an
element indicating “absent”), and T is a totally ordered
set of tags that represent time stamps and ordering of
events at the same time stamp.

In a DE model, all signals share the same domain T, but
they may have different ranges A.

Lee 12: 18

Executing Discrete Event Systems

¢  Maintain an event queue, which is an ordered set of
events.

¢  Process the least event in the event queue by sending
it to its destination port and firing the actor containing
that port.

¢  Questions:
l How to get fast execution when there are many events

in the event queue…
l What to do when there are multiple simultaneous

events in the event queue…

l 10

Lee 12: 19

Zeno Signals

Eventually, execution
stops advancing time.
Why?

Note that if the Ramp is set to produce
integer outputs, then eventually the
output will overflow and become
negative, which will cause an exception.

Lee 12: 20

Taking Stock

¢  The discrete-event model of computation is useful for
modeling and design of time-based systems.

¢  In DE models, signals are time-stamped events, and
events are processed in chronological order.

¢  Simultaneous events and Zeno conditions create
subtleties that the semantics will have to deal with.

l 11

Lee 12: 21

First Attempt at a Model for Signals

Lee 12: 22

This model is not rich enough because it does not allow a signal to
have multiple events at the same time.

First Attempt at a Model for Signals

l 12

Lee 12: 23

Example Motivating the Need for Simultaneous
Events Within a Signal

Newton’s Cradle:
Steel balls on strings
Collisions are events
Momentum of the middle ball has three values at
the time of collision.
This example has continuous dynamics as well
(I will return to this)

Other examples:
¢  Batch arrivals at a queue.
¢  Software sequences abstracted as instantaneous.
¢  Transient states.

Lee 12: 24

A Better Model for Signals:
Super-Dense Time

This allows signals to have a sequence of values at any real time t.

l 13

Lee 12: 25

Super Dense Time

Lee 12: 26

Events and Firings

Operationally, events are processed by presenting all
input events at a tag to an actor and then firing it.

However, this is not always possible!

l 14

Lee 12: 27

Discrete Signals

A signal s is discrete if there is an order embedding from
its tag set π (s) (the tags for which it is defined and not
abent) to the integers (under their usual order).

A system S (a set of signals) is discrete if there is an
order embedding from its tag set π (s) to the integers
(under their usual order).

Lee 12: 28

Terminology: Order Embedding

Given two posets A and B, an order embedding is a
function f : A → B such that for all a, a' ∈ A ,

a ≤ a' ⇔ f (a) ≤ f (a')

Exercise: Show that if A and B are two posets, and
f : A → B is an order embedding, then f is one-to-one.

l 15

Lee 12: 29

Examples

1. Suppose we have a signal s whose tag set is
{(τ , 0) | τ ∈ R }

 (this is a continuous-time signal). This signal is not
discrete.

2. Suppose we have a signal s whose tag set is

{(τ , 0) | τ ∈ Rationals }
 This signal is also not discrete.

Lee 12: 30

A Zeno system is
not discrete.

The tag set here includes { 0, 1, 2, …}
and { 1, 1.25, 1.36, 1.42, …} .
Exercise: Prove that this system is not discrete.

l 16

Lee 12: 31

Is the following system discrete?

Lee 12: 32

Discreteness is Not a Compositional Property

Given two discrete signals s, s' it is not necessarily true
that S = { s, s' } is a discrete system.

Putting these two signals
in the same model
creates a Zeno condition.

l 17

Lee 12: 33

Question 1:

Can we find necessary and/or sufficient conditions to
avoid Zeno systems?

Lee 12: 34

Question 2:

In the following model, if f2 has no delay, should f3 see
two simultaneous input events with the same tag? Should
it react to them at once, or separately?

In Verilog, it is nondeterministic. In VHDL, it sees a
sequence of two distinct events separated by “delta
time” and reacts twice, once to each input. In the
Ptolemy II DE domain, it sees the events together and
reacts once.

l 18

Lee 12: 35

Example

In the following segment of a model, clearly we wish that
the VariableDelay see the output of Rician when it
processes an input from CurrentTime.

Lee 12: 36

Question 3:

What if the two sources in the following model deliver an
event with the same tag? Can the output signal have
distinct events with the same tag?

Recall that we require that a signal be a partial function
s : T → V , where V is a set of possible event values (a
data type), and T is a totally ordered set of tags.

l 19

Lee 12: 37

One Possible Semantics for DE Merge

Lee 12: 38

Implementation of DE Merge

private List pendingEvents;
fire() {
 foreach input s {
 if (s is present) {
 pendingEvents.append(event from s);
 }
 }
 if (pendingEvents has events) {
 send to output (pendingEvents.first);
 pendingEvents.removeFirst();
 }
 if (pendingEvents has events) {
 post event at the next index on the event queue;
 }
}

l 20

Lee 12: 39

Question 4:

What does this mean?

The Merge presumably does not introduce delay, so what
is the meaning of this model?

Lee 12: 40

Conclusions

¢  Discrete-event models compose components that
communicate timed events. They are widely used for
simulation (of hardware, networks, and complex systems).

¢  Superdense time uses tags that have a real-valued time-
stamp and a natural number index, thus supporting
sequences of causally-related simultaneous events.

¢  A discrete system is one where the there is an order
embedding from the set of tags in the system to the
integers.

