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Lecture 14: Continuous-Time and Hybrid Systems 
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Basic Continuous-Time Modeling 
A basic continuous-
time model describes 
an ordinary differential 
equation (ODE). 
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Basic Continuous-Time Modeling 
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A basic continuous-
time model describes 
an ordinary differential 
equation (ODE). 
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Basic Continuous-Time Modeling 

The state trajectory is modeled as a vector function of time, 
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ODE Solvers 

Numerical solution approximates the state trajectory of the ODE by 
estimating its value at discrete time points:  

t t0 t1 t2 t3 ts ... 

Reasonable choices for these points depend on the function f. 
 
Using such solvers, signals are discrete-event signals. 
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Simple Example 

This simple example integrates a ramp, generated by the 
CurrentTime actor. In this case, it is easy to find a closed 
form solution, 
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Trapezoidal Method 

Classical method 
estimates the area 
under the curve by 
calculating the area 
of trapezoids. 
 
 
However, with this 
method, an 
integrator is only 
causal, not strictly 
causal or delta 
causal. 
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Trapezoidal Method is Problematic with Feedback 
We have no assurance 
of a unique fixed point, 
nor a method for 
constructing it. 
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Forward Euler Solver 

Given x(tn) and a time increment h, calculate: 
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This method is strictly causal, or, with a lower bound on 
the step size h, delta causal. It can be used in feedback 
systems. The solution is unique and non-Zeno. 
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Forward Euler on Simple Example 

In this case, we have 
used a fixed step size 
h = 0.1. The result is 
close, but diverges 
over time. 
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“Stiff” systems require small step sizes 

 
For spring-mass damper, 
large stiffness constant k 
makes the system “stiff.” 

Variable step-size methods 
will dynamically modify the 
step size h in response to 
estimates of the integration 
error. Even these, however, 
run into trouble when 
stiffness varies over time. 
Extreme case of increasing 
stiffness results in Zeno 
behavior: 
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Runge-Kutta 2-3 Solver (RK2-3) 
Given x(tn) and a time increment h, calculate 
 
 
 
 
then let 
 
 
 
Note that this is strictly (delta) causal, but requires three 
evaluations of f at three different times with three different 
inputs. 
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Operational Requirements 

In a software system, the blue box below can be specified by a 
program that, given x(t) and t calculates f (x(t), t ) . But this requires 
that the program be functional (have no side effects). 
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mm RTRf →×:

For variable-step size RK2-3, have to 
be able to evaluate f at tn , tn + 0.5h , 
and tn + 0.75h without committing to 
the step size h . (Evaluation must 
have no side effects). 
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Adjusting the Time Steps 

For time step given by                   , let 
 
 
 
If ε is less than the “error tolerance” e, then the step is 
deemed “successful” and the next time step is estimated 
at: 
 
 
If ε is greater than the “error tolerance,” then the time 
step h is reduced and the whole thing is tried again. 
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Comparing RK2-3 to Forward Euler 

RK2-3: 

Forward Euler: 

For this example, RK2-3 
is exact at 3.0, while 
Forward Euler 
undershoots by a 
significant amount. 
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Accumulating Errors 

In feedback systems, the errors of FE accumulate more rapidly than 
those of RK2-3. 
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Adjusting the Time Steps due to Discrete Events 

A step size h may cause the model to skip over a point 
where the behavior of the system changes abruptly: 
 
 
 
 
Such events must be detected and treated similarly as 
requiring a smaller step size. 
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Bouncing Ball 

note smaller 
step size 
where needed 
due to bump 

note smaller step 
size where needed 
due to stiffness 
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Bouncing Ball in a Decreasing 
Gravitational Field 
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Examining This Computationally 

At each discrete time tn, given a time increment  
tn+1 = tn+ h, we can estimate x(tn+1) by repeatedly 
evaluating f with different values for the arguments. We 
may then decide that h is too large and reduce it and 
redo the process. 
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How General Is This MoC? 
Does it handle: 

l Systems without feedback? yes 
l External inputs? yes 
l State machines? 
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How General Is This MoC? 
Does it handle: 

l Systems without feedback? 
l External inputs? yes 
l State machines? 

)),(),(()),(()( ttxtugttxftx ==

f
∫+=
t

dxxtx
0

)()0()( ττx

x

g
u



l 12 

Lee 14: 23 

The Model Itself as a Function 

Note that the model function has the form: 
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Is the MoC Compositional? 
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For a model of computation to be compositional, it must be possible 
to turn a model into a component in another model. 
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The Model Itself as a Function 

Note that the model function has the form: 
 
Which does not match the form: 
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Given the model, we don’t actually know the function f. 
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Consequently, the MoC is  
Not Compositional! 
In general, the behavior of the inside dynamical system 
cannot be given by a function of form: 
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To see this, just note that the output must depend only on 
the current value of the input and the time to conform with 
this form. 
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So How General Is This MoC? 
Does it handle: 

l External inputs? 
l Systems without feedback? 
l State machines? No… The model needs work… 
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Since this model is itself a state machine, the inability to 
put a state machine in the left box explains the lack of 
compositionality. 
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Start with Simple State Machines 
Hysteresis Example 

This model shows the use 
of a two-state FSM to 
model hysteresis. 
Semantically, the output of 
the ModalModel block is 
discontinuous. If transitions 
take zero time, this is 
modeled as a signal that 
has two values at the same 
time, and in a particular 
order. 
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Hysteresis Example Requires Superdense Time 

It is common to model 
discontinuities in two 
successive values. But 
then the trace depends on 
the step sizes chosen by 
the solver. 
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Recall Superdense Time 

 At each tag, the signal has exactly one value. At each time 
point, the signal has an infinite number of values. The red 
arrows indicate value changes between tags, which 
correspond to discontinuities. 
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Initial and Final Value Signals 

A signal                             has no chattering Zeno 
condition if there is an integer m > 0 such that 
 
 
A non-chattering signal has a corresponding final value 
signal,                        where  
 
 
It also has an initial value signal                       where 
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Piecewise Continuous Signals 

A piecewise continuous signal is a non-chattering signal 
 
 
where 
¢    The initial signal xi is continuous on the left, 
¢    The final signal xf is continuous on the right, and 
¢    The signal x has only one value at all t ∈ T \ D where 

    D ⊂ T is a discrete set.  



l 17 

Lee 14: 33 

Requirements 

The hysteresis example illustrates two requirements: 
 
¢  A signal may have more than one value at a particular 

time, and the values it has have an order. 

¢  The times at which the solver evaluates signals must 
precisely include the times at which interesting events 
happen, like a guard becoming true. 
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Both Requirements Are Dealt With By an 
Abstract Semantics 
Previously 

Ss ∈1 Ss ∈2
][ RNTS →×=

The new function f gives outputs in terms of inputs and the current 
state. The function g updates the state at the specified time. 

state space 

Now we need: 

mm RTRf →××Σ:
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Abstract Semantics 

Ss ∈1 Ss ∈2
][ RNTS →×=

mm RTRf →××Σ:
Σ→××Σ TRg m:

€ 

s1(t,0) = f (σ(t),s1(t,0), t)
σ1(t) = g(σ (t),s1(t,0), t)
s2(t,1) = f (σ1(t),s2(t,1), t)
σ 2(t) = g(σ1(t),s2(t,1), t)
...
until the state no longer changes. We use 
the final state on any evaluation at later 
times. 
This deals with the first requirement. 

At each  t ∈ T  the output is a sequence 
of one or more values where given the 
current state σ (t) ∈ Σ and the input s1(t) 
we evaluate the procedure   

Fixed-point 
problem 

Lee 14: 36 Require backtracking 

Second Requirement: 
Points on the Time Line that Must Be 
Included in a Discrete Trace 

¢  Predictable breakpoints 
l Can be registered in advance with the solver 

¢  Unpredictable breakpoints 
l Known after they have been missed 

¢  Points that make the step size “sufficiently small” 
l Dependent on error estimation in the solver 
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Event Times 
In continuous-time models, Ptolemy II can use event detectors to identify 
the precise time at which an event occurs: 
 
 
 
or it can use Modal Models, where guards on the transitions specify 
when events occur. In the literature, you can find two semantic 
interpretations to guards: enabling  or triggering. 
 
 
 
 
If only enabling semantics are provided, then it becomes nearly 
impossible to give models whose behavior does not depend on the step-
size choices of the solver. 
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Another Example: Newton’s Cradle 

Assumptions 
l  Ideal pendulum 
l Balls have the same mass. 

l Collisions happen 
instantaneously. 

l When a collision happens, two 
and only two balls are involved. 

1 2 31 2 31 2 3
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Slide from Haiyang Zheng 
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A Model of Newton’s Cradle 

1 2 3 

Slide from Haiyang Zheng 
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Dynamics of Balls 

Three second order  
ODE’s are used to  
model the dynamics 
of three pendulums. 

Slide from Haiyang Zheng 
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One Behavior 

1 

2 

X-axis is time and Y-axis is displacement. 

X-axis is time and Y-axis is velocity. 

 Ball #1 is moved away from its 
equilibrium position with angle 
PI/8. 

 
  Perfectly elastic collisions. 

Slide from Haiyang Zheng 
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Interactions Between CT and DE 
Dynamics  

Two transitions at the 
same time, called 
simultaneous discrete 
events. 
 
These events cause a 
discontinuity consisting of 
three values. 
 
Agreement on the 
assumption of 
instantaneous collisions 

Slide from Haiyang Zheng 
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Another Behavior:  
Perfectly Inelastic Collisions 

Slide from Haiyang Zheng 
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A Zeno Phenomenon 

1 2 3

Slide from Haiyang Zheng 
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Recall Requirements 

We have two requirements: 
 
¢  A signal may have more than one value at a particular 

time, and the values it has have an order. 

¢  The times at which the solver evaluates signals must 
precisely include the times at which interesting events 
happen, like a guard becoming true, or any point of 
discontinuity in a signal (a time where it has more than 
one value). 
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Ideal Solver Semantics 
[Liu and Lee, HSCC 2003] 

Given an interval                   and an initial value 
and a function                             that is Lipschitz in x on 
the interval (meaning that there exists an L ≥ 0 such that  
 
 
then the following equation has a unique solution x 
satisfying the initial condition where  
 
 
The ideal solver yields the exact value of           . 
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Piecewise Lipschitz Systems 

In our CT semantics, signals have multiple values at the 
times of discontinuities. Between discontinuities, a 
necessary condition that we can impose is that the 
function f be Lipschitz, where we choose the points at the 
discontinuities to ensure this: 

t ti ti+1 ti+2 
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Abstracted Structure of the Model of 
Continuous Dynamics 
Between discontinuities, the state trajectory is modeled as a vector 
function of time, 
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The key to the ideal solver semantics 
is that continuity and local Lipschitz 
conditions on f are sufficient to ensure 
uniqueness of the solution over a 
sufficiently small interval of time. 
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RK2-3 Solver Approximates Ideal Solver 
Given x(tn) and a time increment h, calculate 
 
 
 
 
then let 
 
 
 
Note that this is strictly (delta) causal, but requires three 
evaluations of f at three different times with three different 
inputs. 
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Generalizing: Multiple Events at the  
Same Time using Transient States 

If an outgoing guard is true upon 
entering a state, then the time spent 
in that state is identically zero. This is 
called a “transient state.” 
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Contrast with Simulink/Stateflow 

Transient States 

The simulator engine of Simulink introduces 
a non-zero delay to consecutive transitions.  

In Simulink semantics, a signal can only have one value at a given 
time. Consequently, Simulink introduces solver-dependent behavior. 
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The Abstract Semantics Supports the  
Second Requirement as Well 

Ss ∈1 Ss ∈2
][ RNTS →×=

mm RTRf →××Σ:
Σ→××Σ TRg m:

This deals with the second requirement. 

At each  t ∈ T  the calculation of the 
output given the input is separated from 
the calculation of the new state. Thus, the 
state does not need to updated until after 
the step size has been decided upon.  
 
In fact, the variable step size solver relies 
on this, since any of several integration 
calculations may result in refinement of 
the step size because the error is too 
large.  
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Third Requirement:  
Compositional Semantics 
We require that the system below yield an execution that 
is identical to a flattened version of the same system. 
That is, despite having two solvers, it must behave as if it 
had one. 
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Achieving this appears to require that the two solvers 
coordinate quite closely. This is challenging when the 
hierarchy is deeper. 
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Hierarchical Executions 

A correct result 

An incorrect result 
Results are calculated 
with the Runge-Kutta 

23 solver. 
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The “right” semantics supports deeper 
hierarchies 

Consider two masses on springs which, 
when they collide, will stick together with 
a decaying stickiness until the force of 
the springs pulls them apart again. 
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Modal Models 

The Masses actor 
refines to a state 
machine with two 
states, Separate and 
Together. The 
transitions have 
guards and reset 
maps. 
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Mode Refinements 

Each state has a 
refinement that 
gives the 
behavior of the 
modal model 
while in that 
state. 

Lee 14: 58 

Modeling Dynamics within the 
Separate Mode 
Dynamics while separate: 

Equivalently: 
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Mode Refinements (2) 

In the Together mode, the dynamics is 
that of a single mass and two springs. 
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Modeling Dynamics within the 
Together Mode 
Dynamics while together: 
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Consider Corner Cases 

¢  When triggering transitions based on predicates on 
discontinuous signals, how should the discontinuity 
affect the transition? 

¢  What should samples of discontinuous signals be? 

Lee 14: 62 

Recall Hysteresis Example 

This model 
generates a 
discontinuous 
signal. 
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Observing the Discontinuous Signal 
ModalModel2 will enter 
the error state if its inputs 
ever have the same sign. 
Note from the plot that it 
never enters that state 
(the output would go to 
10, but it stays at 0).  
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Simultaneous Events: The 
Order of Execution Question 

The output of the Scale actor 
has the same tag as its input, 
so ModelModel2 sees only two 
values with opposite signs. 
 

RNTs →×:
Semantics of a signal: 

In Ptolemy II CT, every 
continuous-time signal has a 
value at (t, 0) for any t ∈ T . This 
yields deterministic execution of 
the above model. 
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Alternative Interpretations 

•  Nondeterministic: Some hybrid systems languages 
(e.g. Charon) declare this to be nondeterministic, 
saying that perfectly zero time delays never occur 
anyway in physical systems. Hence, ModalModel2 
may or may not see the output of ModalModel before 
Scale gets a chance to negate it. 

•  Delta Delays: Some models (e.g. VHDL) declare that 
every block has a non-zero delay in the index space. 
Thus, ModalModel2 will see an event with time 
duration zero where the inputs have the same sign. 
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Disadvantages of These Interpretations 

•  Nondeterministic: 
•  Constructing deterministic models is extremely difficult 
•  What should a simulator do? 

•  Delta Delays: 
•  Changes in one part of the model can unexpectedly 

change behavior elsewhere in the model. 
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Nondeterministic Ordering 
In favor 

l  Physical systems have no true simultaneity 
l  Simultaneity in a model is artifact 
l  Nondeterminism reflects this physical reality 

Against 
l  It surprises the designer 

•  counters intuition about causality 
l  It is hard to get determinism 

•  determinism is often desired (to get repeatability) 
l  Getting the desired nondeterminism is easy 

•  build on deterministic ordering with nondeterministic FSMs 
l  Writing simulators that are trustworthy is difficult 

•  It is incorrect to just pick one possible behavior! 
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Consider Nondeterministic Semantics 

Under nondeterministic semantics, we 
could modify the model to explicitly 
schedule the firings. 

Suppose we want deterministic 
behavior in the above (rather 
simple) model. How could we 
achieve it? 
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Non-Deterministic Interaction is the Wrong 
Answer 

turn one trigger into N, 
where N is the number of actors 

encode the 
desired sequence 
as an automaton 
that produces a 
schedule 

embellish the 
guards with 
conditions on the 
schedule 

An attempt to achieve deterministic 
execution by making the scheduling 
explicit shows that this is far too difficult 
to do. 

broadcast the 
schedule 

Lee 14: 70 

OTOH: Nondeterminism is Easily Added in a 
Deterministic Modeling Framework 

At a time when 
the event source 
yields a positive 
number, both 
transitions are 
enabled. 

Although this can be done in 
principle, Ptolemy II CT does not 
support this sort of 
nondeterminism by default. What 
execution trace should it give? 
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Sampling Discontinuous Signals 

Samples must be 
deterministically taken at t- or t+. 
Our choice is t-, inspired by 
hardware setup times. 

Note that in Ptolemy II CT, unlike Simulink, 
discrete signals have no value except at discrete 
points. 

Continuous signal with sample times chosen by the solver: 

Discrete result of sampling: 
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The Continuous (vs. CT) Director 
Building continuous-time semantics on SR 

A signal has a value or is 
absent at each tick of a 
“clock.” By default, all ticks 
of the “clock” occur at 
model time 0.0, but they can 
optionally be spaced in time 
by setting the period 
parameter of the SR 
Director. 

A signal is a set of events 
with time stamps (in model 
time) and the DE Director is 
responsible for presenting 
these events in time-stamp 
order to the destination 
actor. 

A signal is defined 
everywhere (in model time) 
and the Continuous Director 
chooses where it is 
evaluated. The value of the 
signal may be “absent,” 
allowing for signals that are 
discrete or have gaps. 



l 37 

Lee 14: 73 

Metric Time in SR 

By default, “time” does not advance when executing an 
SR model in Ptolemy II (“current time” remains at 0.0, a 
real number). 
 
Optionally, the SR Director can increment time by a fixed 
amount on each clock tick. 
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Time in SR Models in Ptolemy II 

A signal has a value or is 
absent at each tick of a 
“clock.” By default, all ticks 
of the “clock” occur at 
model time 0.0, but they can 
optionally be spaced in time 
by setting the period 
parameter of the SR 
Director. 



l 38 

Lee 14: 75 

Execution of an SR Model (Conceptually) 

Start with all signals empty (i.e. defined on 
the empty initial segment). 
Initialize all actors. 

Invoke the following on all actors until 
either all signals are defined on the initial 
segment {(0,0)} or no progress can be 
made: 

 if (prefire()) { fire(); } 

If not all signals are defined on {(0,0)}, 
declare a causality loop. 
Invoke postfire() for all actors.  

Choose the next tag t ((0,1) or (p, 0)) 

Repeat to define signals on the initial 
segment [(0, 0), t]. 
Etc. 

The correctness of this is guaranteed 
by the fixed point semantics. Efficiency, 
of course, depends on being smart 
about the order in which actors are 
invoked. 
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Metric Time in SR 

By default, “time” does not advance when executing an 
SR model in Ptolemy II (“current time” remains at 0.0, a 
real number). 
Optionally, the SR Director can increment time by a fixed 
amount on each clock tick. 
 
More interestingly, SR can be embedded within timed 
MoCs that model the environment and govern the 
passage of time. 
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Discrete Events (DE): A Timed Concurrent Model 
of Computation 

DE Director implements timed 
semantics using an event queue 

SR subsystem 
implements structured 
nondeterminacy. 

Actors communicate via “signals” that 
are marked point processes (discrete, 
valued, time-stamped events). 

Lee 14: 78 

Advancing Time 

A signal is a partial function 
 
 
defined on an initial segment of 
 
 
But how to increment the initial segment on which the 
signal is defined?  It won’t work to just proceed to the 
next one, as we did with SR. 
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Execution of a DE Model (Conceptually) 

Start with all signals empty.  
Initialize all actors (some will post tags on the 
event ueue). 
Take the smallest tag (t, n) from the event 
queue. 
Invoke the following on all actors that have 
input events until either all signals are defined 
on the initial segment S = [(0,0), (t,n)] or no 
progress can be made: 

 if (prefire()) { fire(); } 
If not all signals are defined on S, declare a 
causality loop. 
Invoke postfire() for all actors (some will post 
tags on the event queue). 
Repeat with the next smallest tag on the 
event queue. 

This is exactly the execution policy of 
SR, except that rather than just 
choosing the next tag in the tag set, we 
use a sorted event queue to choose an 
interval over which to increment the 
initial segment. 
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Subtle Difference Between SR and DE 

In SR, every actor is fired at every tick of its clock, as determined by 
a clock calculus and/or structured subclocks. 
 
In DE, an actor is fired at a tag only if it has input events at that tag 
or it has previously posted an event on the event queue with that 
tag. 
 

 In DE semantics, event counts may matter.  If every actor 
were to be fired at every tick, then adding an actor in one part of a 
model could change the behavior in another part of the model in 
unexpected ways. 
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Recall Subtle Difference Between  
SR and DE. CT is more like SR. 

In SR, every actor is fired at every tick of its clock, as determined by 
a clock calculus and/or structured subclocks. 
 
In DE, an actor is fired at a tag only if it has input events at that tag 
or it has previously posted an event on the event queue with that 
tag. 
 
In CT, every actor is fired at every tick of the clock, as determined 
by an ODE solver. 
 
In CT semantics, a signal has a value at every tag. But the solver to 
chooses to explicitly represent those values only at certain tags. 
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Integrator with DE Input Signals 

s1 

s2 s3 

s’ 
The following table shows the  
integration results with more complicated 
DE input signals. 

Slide from Haiyang Zheng 
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Conclusion 

•  Superdense time is useful for continuous-time models. 
•  SR provides a foundation for DE and CT. 
•  Time between “ticks” is chosen in consultation with the 

solver and breakpoints defined by actors. 
•  ODE solver can be modeled as an ideal solver 

semantically. 
•  Get an operational and denotational semantics that 

match up to the ability of the solver to match the ideal 
solver. 


