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Lecture 14: Continuous-Time and Hybrid Systems
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Basic Continuous-Time Modeling

The state trajectory is modeled as a vector function of time,

x:T—R" T =[t,,0) CR

F(x(0),0) =X x(t) = x(2,) + f)'c(r)dr

x(8) = f(x(2),0)
fiR"XT —R"
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ODE Solvers

Numerical solution approximates the state trajectory of the ODE by
estimating its value at discrete time points:

{to b, ) CT

Reasonable choices for these points depend on the function f.

Using such solvers, signals are discrete-event signals.
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Simple Example

This simple example integrates a ramp, generated by the
CurrentTime actor. In this case, it is easy to find a closed
form solution,

()=t = x(t)=t"/2
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Trapezoidal Method

Classical method
estimates the area
under the curve by
calculating the area
of trapezoids.

However, with this
method, an
integrator is only
causal, not strictly
causal or delta
causal.

h

X(8,0) = x(2,) + h(x(,) + X(2,,,))/ 2
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Trapezoidal Method is Problematic with Feedback
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This model shows a nonlinear feedback
system that exhibits chaotic behavior.

It is modeled in continuous time. The
CT director uses a sophisticated
ordinary differential equation solver
to execute the model. This particular

model is known as a Lorenz attractor.

¥ .Lorenz.XY Plotter

We have no assurance
of a unique fixed point,
nor a method for
constructing it.
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Forward Euler Solver

Given x(¢,) and a time increment A, calculate:

t,=t +h

X(,) = x(t,) + 1 f(x(2,).1,)

This method is strictly causal, or, with a lower bound on
the step size A, delta causal. It can be used in feedback

systems. The solution is unique and non-Zeno.
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Forward Euler on Simple Example
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“Stiff” systems require small step sizes

Force due to spring extension:
Fy(t) = k(p —x(t))
Force due to viscous damping:
Fy(t) = —ci(t)
Newton’s second law:
Fy(t) + Fy(t) = Mi(t)

or
Mi(t) + ci(t) + kx(t) = kp.

For spring-mass damper,
large stiffness constant k

makes the system “stiff.”

Variable step-size methods
will dynamically modify the
step size h in response to
estimates of the integration
error. Even these, however,
run into trouble when
stiffness varies over time.
Extreme case of increasing
stiffness results in Zeno
behavior:

Lee 14: 11

Runge-Kutta 2-3 Solver (RK2-3)
Given x(¢,) and a time increment A, calculate

K, = f(x(t,).t,) )

estimate of

K, = f(x(t,)+0.5hK .1, +0.50) x(t, +0.5h)
K, = f(x(t,)+0.75hK 1, +0.75h)— estimate of

then let

t.,=t +h
x(t

n+l

x(t, +0.75h)

)=x(t)+2/9hK, +(3/9)hK, +(4/9)hK,

Note that this is strictly (delta) causal, but requires three
evaluations of fat three different times with three different

inputs.

Lee 14: 12
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Operational Requirements

In a software system, the blue box below can be specified by a
program that, given x(¢) and ¢ calculates f(x(¢), ¢ ) . But this requires
that the program be functional (have no side effects).

t X
L‘ (x(2),8) —5— x(1) = x(t,) + ffC(‘L’)dTJ

) For variable-step size RK2-3, have to

x(t) = f(x(£),)  be able to evaluate fat t,,t,+0.5h,
and ¢, + 0.75h without committing to

f:R"xT — R" the step size 4 . (Evaluation must

have no side effects).
Lee 14: 13

Adjusting the Time Steps

For time step given by ¢,,, =¢, + 4, let

K3 = f(x(tn+l)5tn+1)
e =h((-5/72)K, +(1/12)K, + (1/9)K, +(-1/8)K,)

If £is less than the “error tolerance” e, then the step is
deemed “successful” and the next time step is estimated
at:

h=0.83ele

If £is greater than the “error tolerance,” then the time
step & is reduced and the whole thing is tried again.

Lee 14: 14
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Comparing RK2-3 to Forward Euler
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For this example, RK2-3
is exact at 3.0, while

Forward Euler
undershoots by a
significant amount.
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Accumulating Errors

In feedback systems, the errors of FE accumulate more rapidly than

those of RK2-3.

F(x(0),0) =X x(t) = x(2,) + f)'c(r)dr

x(1) = f(x(2),0)
fiR"XT —R"

Lee 14: 16
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Adjusting the Time Steps due to Discrete Events

A step size h may cause the model to skip over a point
where the behavior of the system changes abruptly:

LevelCrossingDetector
E

Such events must be detected and treated similarly as
requiring a smaller step size.

Lee 14: 17
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Bouncing Ball o

height meters
@

guard:
abs(position) < stoppedThreshold
&& ity) < stoppedT!

L L L 1 L L]
0 10 15 20 25 30
time {sec)
guard: true

set:
free.initialPosition = initialPosition; \
free.initialVelocity = 0.0

step size
where needed
due to bump

ge.initialPosition = position

Constant: A\
Gravitational  velocity
acceleration velocity

note smaller step
size where needed

ZeroCrossingDetector due to stiffness

Position
bump

position

Cee 141
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. . . oo ENHE
Bouncing Ball in a Decreasing of : —_
Gravitational Field

st
@
TimedPlotter T
Ball Model | g 6F
=l
247
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of
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time (sec)
stop
quard:
abs(position) < stoppedThreshold ;
8 absivelocity) < stoppedThre: init R JM'E velocity
J' o
Position ZeroCrossingDetector
free guard: true bump
=t
free.initialPosition = initialPosition;
free.initialVelocity = 0.0 position
guard:
bump_isPresent
set:
free.initialVelocity = -elasticity * velocity:
free.initialPosition = position
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Examining This Computationally

FQ(0),0) —E x(0) = x(t,) + [3()d

At each discrete time ¢,, given a time increment
t,.,=t+ h, we can estimate x(z,, ;) by repeatedly
evaluating f'with different values for the arguments. We
may then decide that % is too large and reduce it and
redo the process.

Lee 14: 20
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How General Is This MoC?

Does it handle:
Systems without feedback? yes

D D X x(t) = x(0) +j5c(r)d7:J
f 0

x(t) = f(x(1),1)

Lee 14: 21
How General Is This MoC?
Does it handle:
External inputs? yes
X
g X x(t) =x(0)+ [¥(x)dr
;o '
x(#) = f(x(2),1) = g(u(t),x(2),?)
Lee 14: 22
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The Model ltself as a Function

g X x(t) = x(0) +j'5c(r)dr X

P

Note that the model function has the form:

F:(T—=R"—(T—R")

Lee 14: 23

Is the MoC Compositional?

g X X(¢) = x(0) +]5c(r)dr X

'

_—

_—

t
D0 =00+ [
V=X )

For a model of computation to be compositional, it must be possible
to turn a model into a component in another model. Lee 14: 24
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The Model ltself as a Function

Note that the model function has the form:
F:(T—=R")—(T—=R")
Which does not match the form:
f:R"xT —R"

E X X(t) = x(0) +]5c(7:)d7: X

r

Given the model, we don’ t actually know the function f.

Lee 14: 25

Consequently, the MoC is
Not Compositional!

In general, the behavior of the inside dynamical system
cannot be given by a function of form:

f:R"XT —R"

t X
L T 0 =)+ [ x(r)er

To see this, just note that the output must depend only on
the current value of the input and the time to conform with
this form. Lee 14: 26
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So How General Is This MoC?

Does it handle:

State machines? No... The model needs work...
X

ﬁ X x(t) = x(0) +]5c(r)dr

Since this model is itself a state machine, the inability to
put a state machine in the left box explains the lack of
compositionality.

Lee 14: 27
Start with Simple State Machines
Hysteresis Example
& This model shows the use

of a two-state FSM to

s — | model hysteresis.
L’l@ J Semantically, the output of
the ModalModel block is

ahe oopuatue = 1.0 discontinuous. If transitions
@ take zero time, this is
> modeled as a signal that
e =1.0

has two values at the same

true

input >=8,7
state.outputValu:

im time, and in a particular
e outputValue: -1.0 Order
o
Lee 14: 28
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Hysteresis Example Requires Superdense Time
k@&

Correct Output

T T T
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@ J __ Correct Output with DotsI@El@E
1.0 1
05( 1
input <= -0.7 0.0 '\\\\
state.outputValue = -1.0 st
Was YO

-1.0[L

L L L h h h h
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BINHE
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state.outputValue 1.0

05
CTEmbedded Dirgor It is common to model oof
discontinuities in two 055
o cupunvalue:=10 successive values. But B S S Bl oo ittt et
then the trace depends on 045 050 055 060 065 070 075 080 085
Const output .
the step sizes chosen by
the solver. .
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Recall Superdense Time

|
0.0,0 1.0,0 2.0,

At each tag, the signal has exactly one value. At each time
point, the signal has an infinite number of values. The red
arrows indicate value changes between tags, which

correspond to discontinuities. 30
Lee 14: 30
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Initial and Final Value Signals

Asignal z: T'x N — V has no chattering Zeno
condition if there is an integer m > 0 such that

Vn >m, x(t,n) =a(t,m)

A non-chattering signal has a corresponding final value
signal, z¢: 1T — V where
VteTl, x(t)=uax(t,m)

It also has an initial value signal x;: T' — V where
Vtel, x;(t)=2x(t0)

Lee 14: 31

Piecewise Continuous Signals

A piecewise continuous signal is a non-chattering signal

v T'xN =V

where
o The initial signal x;is continuous on the lefft,
o The final signal xfis continuous on the right, and

o The signal x has only one value at all t € T\ D where
D C Tis a discrete set.

Lee 14: 32
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Requirements

The hysteresis example illustrates two requirements:

o A signal may have more than one value at a particular

time, and the values it has have an order.

o The times at which the solver evaluates signals must
precisely include the times at which interesting events

happen, like a guard becoming true.

Lee 14: 33
Both Requirements Are Dealt With By an
Abstract Semantics
Previously Now we need:
Actor StatefulActor
f — g —
s ES s, ES s ES s, ES
S =[T —R] S=[TxN —R]
f:R"xT —R" S iEZxR"xT —R"
VIET, 5,()=f(s,().))  &EZXR'xT ==

state space

V(t,n)ETxN, s,(t,n)="?

The new function f'gives outputs in terms of inputs and the current

state. The function g updates the state at the specified time.

Lee 14: 34
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g:ZXR"xT =X $,(t1) = f(0,(0),5,(8,1),1)

Abstract Semantics

StatefulActor At each r& T the output is a sequence
——» f g ——— of one or more values where given the
S es S, €S current state o () € X and the input s,(¢)
we evaluate the procedure
= —
S =LIxN = R] 5(10) = F(0(0).5,(1.0).1)
JZXR"XT = R" ()= g(0(1).5,(1.0).0) Fixed-point

problem

OZ(t) = g(al(t)’sz(t’l),t)

until the state no longer changes. We use
the final state on any evaluation at later
times.
This deals with the first requirement.

Lee 14: 35

Second Requirement:
Points on the Time Line that Must Be
Included in a Discrete Trace

o Predictable breakpoints
Can be registered in advance with the solver

ContinuousClock

o Unpredictable breakpoints

Known after they have been missed
LevelCrossingDetector
{ht

o Points that make the step size “sufficiently small”
Dependent on error estimation in the solver

Require backtracking

e18



Event Times

In continuous-time models, Ptolemy Il can use event detectors to identify
the precise time at which an event occurs:

AddSubtract ZeroCrossingDetector
e+ "l touched

or it can use Modal Models, where guards on the transitions specify
when events occur. In the literature, you can find two semantic
interpretations to guards: enabling or triggering.

If only enabling semantics are provided, then it becomes nearly
impossible to give models whose behavior does not depend on the step-

size choices of the solver.
Lee 14: 37

Another Example: Newton’ s Cradle

Wewior's Cradle Assumptions

Ideal pendulum
Balls have the same mass.

Collisions happen
instantaneously.

When a collision happens, two

ml6 = —mg sin(6) 38

Slide from Haiyang Zheng Lee 14: 38

and only two balls are involved.

19



A Model of Newton’ s Cradle

@ initialTheta_1: -PI/8
@ initialTheta_1_dot: 0.0

@ initialTheta_2: 0.0
@ initialTheta_2_dot: 0.0

@ initialTheta_3:0.0
e initialTheta

theta_1_dot CT Director

ModalModel . positions
X

d_O 4
) 4

true

date theta_1_dot_initial

= initial Theta_1_do|
state.theta_2_dot. E

= initial Theta_2_do|
= initialTheta_3_do!

date theta_1
date theta_
date theta_

date.theta_1_dot_initial = theta_2_dot;
date theta_2_dot_initial = theta_1_dot

((x_2 + diameter) >= x_3)
&& (theta_2_dot > theta_3_dot)

ate.theta_2_dot_initial = theta_3_dot;
state theta_3_dot_initial = theta_2_dot

((x_1 + diameter) >= x_2) 1 2
&8& (theta_1_dot > theta_2_dot)

i9
]
t

(98]

Slide from Haiyang Zheng Lee 14: 39
Dynamics of Balls
This class defines the dynamics of a pendulum.
° Const PolarToCariesian Y POSI1ON ¥
® length: length
it
ex offset 0.0 xpostfon
ey _offset: 0.0
*
dot
theta, do Expression
initialTheta: 0.0 theta dot x_1
|:>> eta_do theta ballt . " .
¢>\ml|al'|'helaidnl'0,ﬂ initial Theta < v
initia\Tnetaﬁdmj theta_1_dot
Piheta dot e
hd

Three second order
ODE’ s are used to

model the dynamics
of three pendulums.

Slide from Haiyang Zheng

v

x 2
ball2 x a

initial Theta, < hd
Initial Theta_dot S}D theta_2_dot
- :l—’l thele_dot g '

x 3
ball3

y .
initial Theta - - .
" E}D theta_3_dot
initial Theta_dot, ot
- a P iheta_dot . .

40
Lee 14: 40
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One Behavior

Ball #1 is moved away from its
equilibrium position with angle

PI/8.

Perfectly elastic collisions.

positions

BNHE

sFT T T T T T T T
x2m
s Tx3m

X-axis is time and Y-axis is displacement.

Slide from Haiyang Zheng

X-axis is time and Y-axis is velocity.
ELTEE

theta_1_dot

-0.2
-0.4 1

o 1 2 3' 4 a5 B 7 8 9 10

/ theta 2_dot EWw @

04
. }/
0.0 \
0.4 ?

0 1 2 3\ 4 i 6 7 8 9 10

l theta 3_dot ke

04
02
00

o 1 2 3 4 5 & 7 8 9 10 1

Lee 14: 41

Interactions Between CT and DE

Dynamics
theta_2_dot =1
0.4f ] ——— N
02[ }
0.0[
-n.z/ - ‘ \
o 1 2 3 4 5 B 7 8 No
theta_2_dot =1
0.4
03[
0z
o1r
0.0

1.6021738990995000 1.6021738891000000 1.6021738891005001

Slide from Haiyang Zheng

Two transitions at the
same time, called
simultaneous discrete
events.

These events cause a
discontinuity consisting of
three values.

Agreement on the
assumption of
instantaneous collisions

42
Lee 14: 42
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Another Behavior:
Perfectly Inelastic Collisions

positions
x_ 18
o 4 1x2m
S x_3 |
% 2
©
S of 1
=2
2L ]
0 5 10 15 20 25 30
time
velocities
T T T T T T T -
04l J theta_1_dot
theta_2_dot ®
@ 0.3 71 theta_3_dot ®
3 02f 1
Ie]
Soar ]
0.0 §
-0.1 i
0 5 10 15 20 25 30 43
Slide from Haiyang Zheng ime Lee 14: 43

A Zeno Phenomenon

Table 1.1. An infinite sequence of collisions leads to a steady state.

#ofc-og[-z'sions U1 L")Q 'l(‘jg i‘IaWiur,Js Gl"‘iill'
v
1 v/2 v/2 0
2 v/2 v/4 v/4
3 3v/8 3u/8 v/4
4 3v/8 5v/16 5v/16
5 11v/32 11v/32 5u/16
o v/3 v/3 v/3
velocities
- : ; ; ' ' [ [ | theta_1_dot o
04 theta_2 dot e
o theta_3_dot e
g 03[ )
8
002 1
01[ 1
0.0 i
1426 1428 1430 1432 1434 1436 1438 1440
time

44

Slide from Haiyang Zher
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Recall Requirements

We have two requirements:

o A signal may have more than one value at a particular
time, and the values it has have an order.

o The times at which the solver evaluates signals must
precisely include the times at which interesting events
happen, like a guard becoming true, or any point of
discontinuity in a signal (a time where it has more than
one value).

Lee 14: 45

Ideal Solver Semantics
[Liu and Lee, HSCC 2003]

Given an interval I =[¢,,¢,,,]and an initial value x(¢,)

I+

and a function f: R" xT — R" that is Lipschitz in x on
the interval (meaning that there exists an L = 0 such that

VIEL, | f(x(0).6)= f(x' (©).0)] = L|x() - x' (0|

then the following equation has a unique solution x
satisfying the initial condition where

ViEL, i(t) = f(x(0),0)

The ideal solver yields the exact value of x(¢,,,).

Lee 14: 46
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Piecewise Lipschitz Systems

In our CT semantics, signals have multiple values at the
times of discontinuities. Between discontinuities, a
necessary condition that we can impose is that the
function f'be Lipschitz, where we choose the points at the
discontinuities to ensure this:

! ]=[ti’ti+1]
//\/ ' s:RxN —R"

x:R—R"

3

li livy lisg t

Lee 14: 47

Abstracted Structure of the Model of
Continuous Dynamics

Between discontinuities, the state trajectory is modeled as a vector
function of time,

x:T—=R’ T =[t,,) C R

f(x(2),1) X x(t) = x(t,) +j'5c(r)dr

The key to the ideal solver semantics
is that continuity and local Lipschitz
x(t) = f(x(2),t) conditions on fare sufficient to ensure
uniqueness of the solution over a

f ‘R"xT — R" sufficiently small interval of time.

Lee 14: 48
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RK2-3 Solver Approximates Ideal Solver
Given x(¢,) and a time increment A, calculate

Ky = f(x(t,),t,) //x(fm)t of

K, = f(x(t,) +0.5hK,,t, +0.5h) %(t, +0.5h)

X _ . K . estjmate of
) = f(x(2,)+0.75hK, 1, +0.75hy— x(t, +0.75h)
then let
tn+1 = tﬂ + h

x(t,,,)=x(t)+2/9rK,+(3/9)hK, +(4/9)hK,
Note that this is strictly (delta) causal, but requires three

evaluations of fat three different times with three different
inputs.

Lee 14: 49
Generalizing: Multiple Events at the
Same Time using Transient States
e ! sgrtngrnes I

This model shows that the level crossing
detectors detect béth the continuities
and discontinuitiés properly.

.0 02 04 06 08 10 12 14 16 18 20

=]l

The three lgVel crossing detectors detect
levels 0.5/1.25, and -0.45 respectively.

detected level crossings

The rpodal model produces a pi
conftinuous signal with glitchs (produced
by the output actions of the transient states.)

6o o 6 _8i '

true true
output = 0.0 output = 2.0 output = 1.0 0

02 04 06 08 10 12 14 16 18 20

=y

If an outgoing guard is true upon
entering a state, then the time spent

The "init" state produces a consistent continuous signal. The states: state1, in that state is identically zero. This is
state2, and state3, are transient states. Their transitions produce glitches called a “transient state."
with their output actions.

This finite state machine generates a piecewise-continuous signal with glitches.

Lee 14: 50
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Contrast with Simulink/Stateflow

In Simulink semantics, a signal can only have one value at a given
time. Consequently, Simulink introduces solver-dependent behavior.

BEES) | The simulator engine of Simulink introduces
a non-zero delay‘to consecutive transitions.

Transient States Lee 14: 51

The Abstract Semantics Supports the
Second Requirement as Well

StatefulActor

SR S—

—>

s, €S s, ES
S=[TxN — R]
f:Z2xR"xT —R"
g:ZXR"xT =X

At each t& T the calculation of the
output given the input is separated from
the calculation of the new state. Thus, the
state does not need to updated until after
the step size has been decided upon.

In fact, the variable step size solver relies
on this, since any of several integration
calculations may result in refinement of
the step size because the error is too
large.

This deals with the second requirement.

Lee 14: 52
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Third Requirement:
Compositional Semantics

We require that the system below yield an execution that
is identical to a flattened version of the same system.
That is, despite having two solvers, it must behave as if it
had one.

X x(t) = x(t,) +]x(r)dr

Achieving this appears to require that the two solvers
coordinate quite closely. This is challenging when the
hierarchy is deeper.

Lee 14: 53
Hi hical E ti
TimedPlotter B
CT Director
TimedPlotter
559
AddSubtract3 Integrator2 Integrator rer CREE
o + r
AddSubtract TimedPlotier2
" = 0.05
Const2 AddSubtrac@mbedded CT Model Integrator3
i ) \m
oo A correct result
010
5 10 15 20 25 30 35 40 4
CTEmbedded Director gifference =l

Results are calculated
with the Runge-Kutta
Integrator

por2 . port 23 solver.

0
s} | An incorrect result
.

00 05 10 15 20 25 30 35 40 45 &0
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The “right” semantics supports deeper
hierarchies

CT Director Positions _Positions . EEE‘R
i it
e position1: 0.0 Velocities d
@ elocityl: 0.0 Masses s
.posit{onz:a.o |® — ol
U :'mm Accelerations 0 & 8 0 42 14 a6 18
Eva— ime
!

. : . ; Velocl:ities E l? i
Consider two masses on springs which, o e
when they collide, will stick together with| oot
a decaying stickiness until the force of | 1t
the springs pulls them apart again. ' e e o2 oot 1w

Accelerations EEEHQ
al =

1az=
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Modal Models

CT Director

@ position1: 0.0
e velocityl: 0.0

@ position2: 3.0
e elocity2: 0.0

Positions

Masses

force
b
P siciness

true
@ Separate.p1 = position1; Separate.p2 = position2; Separate.v1 = velocity!; Separate.v2 = velocity2

dickness < abs(force)
Separate.p1 = p1; Separate p2 = p2; Separate.v1 = v1; Separate v2 = v2

©1==p2)&& (V1 -v2)> 0.0
Together.postion = p1; Te

]

ity = (v1 + v2)2; T =10.0 ’\

(p1 == p2) && (v1

-v2)>0.0

Together.position = p1; Together.velocity = (v1 + v2)/2; Together.stickiness = 10.0

The Masses actor
refines to a state
machine with two
states, Separate and
Together. The
transitions have
guards and reset
maps.
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Mode Refinements

Positions

CT Director

@ position1: 0.0
@ elocityl: 0.0

Masses B

@ position2: 3.0
e velocity2: 0.0

CTEmbedded Director

al vi

V1 integrator

hes=er | Egch state has a
refinement that
Sepamtepts L‘; gives the
behavior of the
modal model
while in that

Expression

Togelper.postion = p|

- 1_0'2. e state.

Const
ckness
Lee 14: 57

Modeling Dynamics within the
Separate Mode
Dynamics while separate:

> <>
pi(t) = ki(ny — pi(t))/my
pa(t) = ka(no — pa(t))/ma.
Equivalently:

/a k—l(nl —p1(7))dr + ‘l‘1(fﬂ)> da + pi(to)

Jto my

mit = [ ( / 52 (10y = po(r))r + '1'2(f0)> dat + palto)

mso
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Mode Refinements (2)

Positions

CT Director

@ position1: 0.0

@ \elocityl: 0.0 Masses

@ position2: 3.0
e velocity2: 0.0

tue

Separate.p1 = position1; Separate.p2 = position2; Separate.v1 = velocity!; Separate.v2 7 vell
slickness < abs{force)

Separate.p1 = p1; Separate.p2 = p2; Separate.v1 = v1; Separate.v2 = v2
/.__\ \

(p1==p2) 8& (v1 -12)> 0.0
Together.position = p1; Together.velocity = (v1 + v2)2; Together.sickness = 10.0

In the Together mode, the dynamics is

d stickiness: 10.0

CTEmbedded Director o
- @ position: 14776455483422
& o velocity: 0250747397414

that of a single mass and two springs.
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Modeling Dynamics within the
Together Mode
Dynamics while together:
<«—>
p(t)
() = kiny + kono — (k1 + /;'Q)p(z‘).
mi + meo
Lee 14: 60
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Consider Corner Cases

o When triggering transitions based on predicates on
discontinuous signals, how should the discontinuity
affect the transition?

o What should samples of discontinuous signals be?
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Recall Hysteresis Example

=G

Correct Output

o

10f 7 i
CT Director 05 /
-05[
ContinuousSinewave TimedPlotte 1|

==

L

02 03 04 05 06 07 08 089 1,\0\

I % o1

input <=-0.7
state.outputValue

true

state.outputValue =

=-1.0

1.0

05L

0.0
-0.5

-1.0)

=11

Correct Output with Dots

045 050 055 060 065 070 075 0.80

.0

CTEmbedded Director
e outputValue: -1.0

Const output

This model
generates a
discontinuous
signal.

T T T T
1.0 )
05 )
oo 7
-05[ |
-1.0L0

L L L L h h h h

BN E

Incorrect Output

045 050 055 060 065 070 075 0.80 085
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Observing the Discontinuous Signal

CT Director

ContinuousSinewave TimedPlotter

{5514

ModalModel2 will enter
the error state if its inputs
ever have the same sign.
Note from the plot that it
never enters that state
(the output would go to
10, but it stays at 0).

tru
o)
—
y>0.0

CTEmbedded Director state.outputValue = 10.0

e outputValue: 0.0

Const output

-0.0
-0.2
-0.4
-0.6
-0.8
-1.0

TimedPlotter

1.0
0.8
0.6
0.4
02

00 01 02 03 04 05 06 07 08 08 10

BIWHE
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Simultaneous Events: The
Order of Execution Question

CT Director

ContinuousSinewave

@A

Semantics of a signal:
s:TxN —R

In Ptolemy II CT, every
continuous-time signal has a
value at (¢, 0) forany t & T'. This
yields deterministic execution of
the above model.

The output of the Scale actor
has the same tag as its input,
so ModelModel2 sees only two
values with opposite signs.
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Alternative Interpretations

* Nondeterministic.: Some hybrid systems languages
(e.g. Charon) declare this to be nondeterministic,
saying that perfectly zero time delays never occur
anyway in physical systems. Hence, ModalModel2
may or may not see the output of ModalModel before
Scale gets a chance to negate it.

* Delta Delays: Some models (e.g. VHDL) declare that
every block has a non-zero delay in the index space.
Thus, ModalModel2 will see an event with time
duration zero where the inputs have the same sign.
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Disadvantages of These Interpretations

* Nondeterministic:
 Constructing deterministic models is extremely difficult
* What should a simulator do?

* Delta Delays:
» Changes in one part of the model can unexpectedly
change behavior elsewhere in the model.
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Nondeterministic Ordering

In favor

Physical systems have no true simultaneity
Simultaneity in a model is artifact
Nondeterminism reflects this physical reality
Against
It surprises the designer
counters intuition about causality
It is hard to get determinism
determinism is often desired (to get repeatability)
Getting the desired nondeterminism is easy
build on deterministic ordering with nondeterministic FSMs

Writing simulators that are trustworthy is difficult
It is incorrect to just pick one possible behavior!
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Consider Nondeterministic Semantics
CT Director Under nondeterministic semantics, we
could modify the model to explicitly
EventSource o schedule the firings.
= - S
tor1 y
Suppose we want deterministic
behavior in the above (rather
simple) model. How could we
achieve it?
Lee 14: 68
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Non-Deterministic Interaction is the Wrong

An attempt to achieve deterministic

to do.

Answer
schedule == 1.0
Oul = sqrt(in)
DE Director
EventSource
v °

Repeat scheduler

execution by making the scheduling
explicit shows that this is far too difficult

x> 0.0 &8 schedule == 2.0

oo

x> 0.0 && schedule == 2.0

embellish the

broadcast the
schedule

guards with
conditions on the
schedule

turn one trigger into N,
where Nis the number of actors

fire=2

trigger_isPresent

encode the

@"\ desired sequence
'~ as an automaton
UECTATALT, that produces a

fire=1

schedule
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OTOH: Nondeterminism is Easily Added in a
Deterministic Modeling Framework

CT Director

EventSource

F¥Exception X

° Multiple enabled transitions: relation and relation3.
in nondeterminism Actor2._ControllerA

Display Stack Trace |

Although this can be done in
principle, Ptolemy Il CT does not

At a time when

y>00
>00
( Z’\‘\N the event source

_. Yields a positive

R o number, both

support this sort of
nondeterminism by default. What
execution trace should it give?

transitions are
enabled.
Lee 14: 70
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Sampling Discontinuous Signals

Continuous signal with sample times chosen by the solver:

TimedPlotter /
>

PeriodicSampler

continuous clock

TimedPlotter2
oo

Samples must be
deterministically taken at t- or t+.
Our choice is t-, inspired by

tof T i
057
007

-05[
-1.0L

-
S A

5 6 7 8 9 10

Discrete result of sampling:

\1.0:' i i }

I

= —
)

hardware setup times.

Note that in Ptolemy Il CT, unlike Simulink,
discrete signals have no value except at discrete

points.
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The Continuous (vs. CT) Director
Building continuous-time semantics on SR

SR Director DE Director

source
actor

source sink
actor signal actor

sink
signal actor

A signal has a value or is

A signal is a set of events

absent at each tick of a
“clock.” By default, all ticks
of the “clock” occur at
model time 0.0, but they can
optionally be spaced in time
by setting the period
parameter of the SR
Director.

with time stamps (in model
time) and the DE Director is
responsible for presenting
these events in time-stamp
order to the destination
actor.

Continuous Director

source sink
actor signal actor

A signal is defined
everywhere (in model time)
and the Continuous Director
chooses where it is
evaluated. The value of the
signal may be “absent,”
allowing for signals that are
discrete or have gaps.
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Metric Time in SR

By default, “time” does not advance when executing an
SR model in Ptolemy Il (“current time” remains at 0.0, a

real number).

Optionally, the SR Director can increment time by a fixed
amount on each clock tick.

Lee 14: 73

Time in SR Models in Ptolemy Il

s:I'— Vg

SR Director

source sink
actor signal actor

A signal has a value or is
absent at each tick of a
“clock.” By default, all ticks
of the “clock” occur at
model time 0.0, but they can
optionally be spaced in time
by setting the period
parameter of the SR
Director.

Assume the period parameter of the SR Director is given

by p. The default value is p = 0.

e Atagis atime-index pair, 7 = (t,n) € T =R, x N.

e |f p =0, then by default, only the index advances, so
actors are fired at model times (0, 0), (0, 1),(0,2),- - -.

Time never advances.

e If p > 0.0, then actors are fired at model times

(0,0), (p.0), (2p,0), - --.

Semantically, signals are “absent” at tags in between.
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Execution of an SR Model (Conceptually)

Start with all signals empty (i.e. defined on
the empty initial segment).

Initialize all actors.

Invoke the following on all actors until
either all signals are defined on the initial
segment {(0,0)} or no progress can be
made:

if (prefire()) { fire(); }

If not all signals are defined on {(0,0)},
declare a causality loop.

Invoke postfire() for all actors.
Choose the next tag £ ((0,1) or (p, 0))

Repeat to define signals on the initial
segment [(0, 0), {].

Etc.

Output true
when the count
Restart the count Comparator s <=0, ready
whenever the start =
input s not absent.
Default

start AddSubtract

Decrement
the count.

When

count

Prevent outputs if the
count drops below zero
(which can happen if no
new start input is provided).

Comparator2

The correctness of this is guaranteed
by the fixed point semantics. Efficiency,
of course, depends on being smart
about the order in which actors are
invoked.
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Metric Time in SR

By default, “time” does not advance when executing an
SR model in Ptolemy Il (“current time” remains at 0.0, a

real number).

Optionally, the SR Director can increment time by a fixed

amount on each clock tick.

More interestingly, SR can be embedded within timed
MoCs that model the environment and govern the

passage of time.
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Discrete Events (DE): A Timed Concurrent Model

of Computation

SR subsystem

DE Director implements timed
semantics using an event queue

nondeterminacy.

implements structured

This model illustrates the use of SR within DE. ‘ |
DE Director The SR director on the inside has a period of 1.0 SR Director '
so it will fire repeatedly with period 1.0. -
Given an input integer, the SR submodel will Default
count down from that integer until eitheT it start NonSticeley AddSubtract
reaches zero or it receives anothef input integer. MY v

Note that the Default actor inside the SR model
now does a nondeterminjstic merge, as in Signal,
but with the nondetermriinism resolved by the
environment modef; which is the DE top-level model.

Restart the count
whenever the start
input is not absent.

the
When

Decrement

count.

PollssonCIm:k Sequence E'r:;:;nwn E b= .
(s S ekl
reotll = eten
BooleanToAnything g -
Count Down E,EEE
Author E;tau,ﬂ« Lee j 4
| | @3 ]
Actors communicate via “signals” that | |2 1
are marked point processes (discrete, ™ ] . W 1. ‘] ]
valued, time-stamped events). 1 o Tl ]
0 2 4 6 8 10 12 14
time
Advancing Time
A signal is a partial function
s:I'— Vg
defined on an initial segment of
T=R, xN
But how to increment the initial segment on which the
signal is defined? It won’t work to just proceed to the
next one, as we did with SR.
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Execution of a DE Model (Conceptually)

Start with all signals empty.

Initialize all actors (some will post tags on the
event ueue).

Take the smallest tag (t, n) from the event
queue.

Invoke the following on all actors that have
input events until either all signals are defined
on the initial segment S = [(0,0), (t,n)] or no
progress can be made:

if (prefire()) { fire(); }

If not all signals are defined on S, declare a
causality loop.

Invoke postfire() for all actors (some will post
tags on the event queue).

Repeat with the next smallest tag on the
event queue.

DE Director
e forget: 0.9
Sensor
o EXpression
ok previous * forget + x* (1.0 - forget)

Register
TimedPlotter

1]

This is exactly the execution policy of
SR, except that rather than just
choosing the next tag in the tag set, we
use a sorted event queue to choose an
interval over which to increment the
initial segment.
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Subtle Difference Between SR and DE

In SR, every actor is fired at every tick of its clock, as determined by
a clock calculus and/or structured subclocks.

In DE, an actor is fired at a tag only if it has input events at that tag
or it has previously posted an event on the event queue with that

tag.

In DE semantics, event counts may matter. If every actor
were to be fired at every tick, then adding an actor in one part of a
model could change the behavior in another part of the model in

unexpected ways.
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Recall Subtle Difference Between
SR and DE. CT is more like SR.

In SR, every actor is fired at every tick of its clock, as determined by
a clock calculus and/or structured subclocks.

In DE, an actor is fired at a tag only if it has input events at that tag
or it has previously posted an event on the event queue with that
tag.

In CT, every actor is fired at every tick of the clock, as determined
by an ODE solver.

In CT semantics, a signal has a value at every tag. But the solver to
chooses to explicitly represent those values only at certain tags.
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Integrator with DE Input Signals
Integrator TimedPlotter The following table shows the
Gaeil S5 S = integration results with more complicated
j ' d DE input signals.
impulse reset
>.S2 % r wlo 1 2 3 4 56 71
s(l,n)|1 1 1 1 1 11 -
k@grationresultswithDEinputsignA s2(lin) e 2 = -1 = e =
ar / 1 sz(lon) | ¢ 2 € 3 ¢ ¢
o Sle)1 3 2 1 3 3 3
At
s(Lbm){1 1 1 1 1 11
|
of sp(2.n) e —1 ¢ 1 -1 & ¢
af // sa(2.n) | ¢ -2 ¢ 0 = =
2k i 1 i 1 - S2n)l4 3 -2 -1 0 00
0.0 05 1.0 15 20 25 3.0
82
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Conclusion

Superdense time is useful for continuous-time models.
SR provides a foundation for DE and CT.

. Time between “ticks” is chosen in consultation with the
solver and breakpoints defined by actors.
ODE solver can be modeled as an ideal solver
semantically.
Get an operational and denotational semantics that
match up to the ability of the solver to match the ideal
solver.
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