
l 1

Concurrent Models of
Computation for Embedded
Software

Edward A. Lee
Professor, UC Berkeley
EECS 219D
Concurrent Models of Computation
Fall 2011

Copyright © 2009-2011, Edward A. Lee, All rights reserved

Lecture 14: Continuous-Time and Hybrid Systems

Lee 14: 2

Basic Continuous-Time Modeling
A basic continuous-
time model describes
an ordinary differential
equation (ODE).

l 2

Lee 14: 3

Basic Continuous-Time Modeling

)),(()(ttxftx =

)),((ttxf

x

∫

∫+=
t

t

dxtxtx
0

)()()(0 ττ

A basic continuous-
time model describes
an ordinary differential
equation (ODE).

Lee 14: 4

Basic Continuous-Time Modeling

The state trajectory is modeled as a vector function of time,

)),(()(ttxftx =

)),((ttxf ∫+=
t

t

dxtxtx
0

)()()(0 ττx
x

nRTx →:

mm RTRf →×:

RtT ⊂∞=),[0

l 3

Lee 14: 5

ODE Solvers

Numerical solution approximates the state trajectory of the ODE by
estimating its value at discrete time points:

t t0 t1 t2 t3 ts ...

Reasonable choices for these points depend on the function f.

Using such solvers, signals are discrete-event signals.

Ttt ⊂,...},{ 10

Lee 14: 6

Simple Example

This simple example integrates a ramp, generated by the
CurrentTime actor. In this case, it is easy to find a closed
form solution,

)(tx

)(tx

2/)()(2ttxttx =⇒=

l 4

Lee 14: 7

Trapezoidal Method

Classical method
estimates the area
under the curve by
calculating the area
of trapezoids.

However, with this
method, an
integrator is only
causal, not strictly
causal or delta
causal.

)(tx

)(ntx
)(1+ntx

2/))()(()()(11 ++ ++= nnnn txtxhtxtx 

h

Lee 14: 8

Trapezoidal Method is Problematic with Feedback
We have no assurance
of a unique fixed point,
nor a method for
constructing it.

l 5

Lee 14: 9

Forward Euler Solver

Given x(tn) and a time increment h, calculate:

)),(()()(1

1

nnnn

nn

ttxfhtxtx
htt

+=

+=

+

+

This method is strictly causal, or, with a lower bound on
the step size h, delta causal. It can be used in feedback
systems. The solution is unique and non-Zeno.

Lee 14: 10

Forward Euler on Simple Example

In this case, we have
used a fixed step size
h = 0.1. The result is
close, but diverges
over time.

)(tx

)(tx

)(tx

)(~ tx

l 6

Lee 14: 11

“Stiff” systems require small step sizes

For spring-mass damper,
large stiffness constant k
makes the system “stiff.”

Variable step-size methods
will dynamically modify the
step size h in response to
estimates of the integration
error. Even these, however,
run into trouble when
stiffness varies over time.
Extreme case of increasing
stiffness results in Zeno
behavior:

Lee 14: 12

Runge-Kutta 2-3 Solver (RK2-3)
Given x(tn) and a time increment h, calculate

then let

Note that this is strictly (delta) causal, but requires three
evaluations of f at three different times with three different
inputs.

)75.0,75.0)((
)5.0,5.0)((

)),((

12

01

0

hthKtxfK
hthKtxfK

ttxfK

nn

nn

nn

++=

++=

=
)(ntx

)5.0(htx n +

)75.0(htx n +

estimate of

estimate of

2101

1

)9/4()9/3()9/2()()(hKhKhKtxtx
htt

nn

nn

+++=

+=

+

+

l 7

Lee 14: 13

Operational Requirements

In a software system, the blue box below can be specified by a
program that, given x(t) and t calculates f (x(t), t) . But this requires
that the program be functional (have no side effects).

)),(()(ttxftx =

)),((ttxf ∫+=
t

t

dxtxtx
0

)()()(0 ττx
x

mm RTRf →×:

For variable-step size RK2-3, have to
be able to evaluate f at tn , tn + 0.5h ,
and tn + 0.75h without committing to
the step size h . (Evaluation must
have no side effects).

Lee 14: 14

Adjusting the Time Steps

For time step given by , let

If ε is less than the “error tolerance” e, then the step is
deemed “successful” and the next time step is estimated
at:

If ε is greater than the “error tolerance,” then the time
step h is reduced and the whole thing is tried again.

htt nn +=+1

))8/1()9/1()12/1()72/5((
)),((

3210

113

KKKKh
ttxfK nn

−+++−=

= ++

ε

3 /8.0 εeh =ʹ′

l 8

Lee 14: 15

Comparing RK2-3 to Forward Euler

RK2-3:

Forward Euler:

For this example, RK2-3
is exact at 3.0, while
Forward Euler
undershoots by a
significant amount.

Lee 14: 16

Accumulating Errors

In feedback systems, the errors of FE accumulate more rapidly than
those of RK2-3.

)),(()(ttxftx =

)),((ttxf ∫+=
t

t

dxtxtx
0

)()()(0 ττx
x

mm RTRf →×:

l 9

Lee 14: 17

Adjusting the Time Steps due to Discrete Events

A step size h may cause the model to skip over a point
where the behavior of the system changes abruptly:

Such events must be detected and treated similarly as
requiring a smaller step size.

Lee 14: 18

Bouncing Ball

note smaller
step size
where needed
due to bump

note smaller step
size where needed
due to stiffness

l 10

Lee 14: 19

Bouncing Ball in a Decreasing
Gravitational Field

Lee 14: 20

Examining This Computationally

At each discrete time tn, given a time increment
tn+1 = tn+ h, we can estimate x(tn+1) by repeatedly
evaluating f with different values for the arguments. We
may then decide that h is too large and reduce it and
redo the process.

)),((ttxf ∫+=
t

t

dxtxtx
0

)()()(0 ττx
x

l 11

Lee 14: 21

How General Is This MoC?
Does it handle:

l Systems without feedback? yes
l External inputs? yes
l State machines?

)),(()(ttxftx =

f
∫+=
t

dxxtx
0

)()0()(ττx

x

Lee 14: 22

How General Is This MoC?
Does it handle:

l Systems without feedback?
l External inputs? yes
l State machines?

)),(),(()),(()(ttxtugttxftx ==

f
∫+=
t

dxxtx
0

)()0()(ττx

x

g
u

l 12

Lee 14: 23

The Model Itself as a Function

Note that the model function has the form:
)()(: mm RTRTF →→→

f
∫+=
t

dxxtx
0

)()0()(ττx xg
u

F

Lee 14: 24

Is the MoC Compositional?

∫+=
t

t

dytyty
0

)()()(0 ττ
xy =

uy =
)),((ttxf ∫+=

t

t

dxtxtx
0

)()()(0 ττx
x

For a model of computation to be compositional, it must be possible
to turn a model into a component in another model.

f
∫+=
t

dxxtx
0

)()0()(ττx xg
u

F

l 13

Lee 14: 25

The Model Itself as a Function

Note that the model function has the form:

Which does not match the form:

)()(: mm RTRTF →→→

f
∫+=
t

dxxtx
0

)()0()(ττx xg
u

F

mm RTRf →×:

Given the model, we don’t actually know the function f.

Lee 14: 26

Consequently, the MoC is
Not Compositional!
In general, the behavior of the inside dynamical system
cannot be given by a function of form:

∫+=
t

t

dxtxtx
0

)()()(0 ττx
x

)),((ttxf ∫+=
t

t

dxtxtx
0

)()()(0 ττx
x

mm RTRf →×:

To see this, just note that the output must depend only on
the current value of the input and the time to conform with
this form.

l 14

Lee 14: 27

So How General Is This MoC?
Does it handle:

l External inputs?
l Systems without feedback?
l State machines? No… The model needs work…

∫+=
t

dxxtx
0

)()0()(ττx

x

Since this model is itself a state machine, the inability to
put a state machine in the left box explains the lack of
compositionality.

Lee 14: 28

Start with Simple State Machines
Hysteresis Example

This model shows the use
of a two-state FSM to
model hysteresis.
Semantically, the output of
the ModalModel block is
discontinuous. If transitions
take zero time, this is
modeled as a signal that
has two values at the same
time, and in a particular
order.

l 15

Lee 14: 29

Hysteresis Example Requires Superdense Time

It is common to model
discontinuities in two
successive values. But
then the trace depends on
the step sizes chosen by
the solver.

Lee 14: 30
 30

Recall Superdense Time

 At each tag, the signal has exactly one value. At each time
point, the signal has an infinite number of values. The red
arrows indicate value changes between tags, which
correspond to discontinuities.

l 16

Lee 14: 31

Initial and Final Value Signals

A signal has no chattering Zeno
condition if there is an integer m > 0 such that

A non-chattering signal has a corresponding final value
signal, where

It also has an initial value signal where

Lee 14: 32

Piecewise Continuous Signals

A piecewise continuous signal is a non-chattering signal

where
¢  The initial signal xi is continuous on the left,
¢  The final signal xf is continuous on the right, and
¢  The signal x has only one value at all t ∈ T \ D where

 D ⊂ T is a discrete set.

l 17

Lee 14: 33

Requirements

The hysteresis example illustrates two requirements:

¢  A signal may have more than one value at a particular

time, and the values it has have an order.

¢  The times at which the solver evaluates signals must
precisely include the times at which interesting events
happen, like a guard becoming true.

Lee 14: 34

Both Requirements Are Dealt With By an
Abstract Semantics
Previously

Ss ∈1 Ss ∈2
][RNTS →×=

The new function f gives outputs in terms of inputs and the current
state. The function g updates the state at the specified time.

state space

Now we need:

mm RTRf →××Σ:
][RTS →=

Σ→××Σ TRg m:

mm RTRf →×:

Ss ∈1 Ss ∈2

)),(()(, 12 ttsftsTt =∈∀

?),(,),(2 =×∈∀ ntsNTnt

l 18

Lee 14: 35

Abstract Semantics

Ss ∈1 Ss ∈2
][RNTS →×=

mm RTRf →××Σ:
Σ→××Σ TRg m:

€

s1(t,0) = f (σ(t),s1(t,0), t)
σ1(t) = g(σ (t),s1(t,0), t)
s2(t,1) = f (σ1(t),s2(t,1), t)
σ 2(t) = g(σ1(t),s2(t,1), t)
...
until the state no longer changes. We use
the final state on any evaluation at later
times.
This deals with the first requirement.

At each t ∈ T the output is a sequence
of one or more values where given the
current state σ (t) ∈ Σ and the input s1(t)
we evaluate the procedure

Fixed-point
problem

Lee 14: 36 Require backtracking

Second Requirement:
Points on the Time Line that Must Be
Included in a Discrete Trace

¢  Predictable breakpoints
l Can be registered in advance with the solver

¢  Unpredictable breakpoints
l Known after they have been missed

¢  Points that make the step size “sufficiently small”
l Dependent on error estimation in the solver

l 19

Lee 14: 37

Event Times
In continuous-time models, Ptolemy II can use event detectors to identify
the precise time at which an event occurs:

or it can use Modal Models, where guards on the transitions specify
when events occur. In the literature, you can find two semantic
interpretations to guards: enabling or triggering.

If only enabling semantics are provided, then it becomes nearly
impossible to give models whose behavior does not depend on the step-
size choices of the solver.

Lee 14: 38
 38

Another Example: Newton’s Cradle

Assumptions
l  Ideal pendulum
l Balls have the same mass.

l Collisions happen
instantaneously.

l When a collision happens, two
and only two balls are involved.

1 2 31 2 31 2 3

)sin(θθ mgml −=)sin(θθ mgml −=

Slide from Haiyang Zheng

l 20

Lee 14: 39
 39

A Model of Newton’s Cradle

1 2 3

Slide from Haiyang Zheng

Lee 14: 40
 40

Dynamics of Balls

Three second order
ODE’s are used to
model the dynamics
of three pendulums.

Slide from Haiyang Zheng

l 21

Lee 14: 41
 41

One Behavior

1

2

X-axis is time and Y-axis is displacement.

X-axis is time and Y-axis is velocity.

 Ball #1 is moved away from its
equilibrium position with angle
PI/8.

 Perfectly elastic collisions.

Slide from Haiyang Zheng

Lee 14: 42
 42

Interactions Between CT and DE
Dynamics

Two transitions at the
same time, called
simultaneous discrete
events.

These events cause a
discontinuity consisting of
three values.

Agreement on the
assumption of
instantaneous collisions

Slide from Haiyang Zheng

l 22

Lee 14: 43
 43

Another Behavior:
Perfectly Inelastic Collisions

Slide from Haiyang Zheng

Lee 14: 44
 44

A Zeno Phenomenon

1 2 3

Slide from Haiyang Zheng

l 23

Lee 14: 45

Recall Requirements

We have two requirements:

¢  A signal may have more than one value at a particular

time, and the values it has have an order.

¢  The times at which the solver evaluates signals must
precisely include the times at which interesting events
happen, like a guard becoming true, or any point of
discontinuity in a signal (a time where it has more than
one value).

Lee 14: 46

Ideal Solver Semantics
[Liu and Lee, HSCC 2003]

Given an interval and an initial value
and a function that is Lipschitz in x on
the interval (meaning that there exists an L ≥ 0 such that

then the following equation has a unique solution x
satisfying the initial condition where

The ideal solver yields the exact value of .

],[1+= ii ttI)(itxmm RTRf →×:

)(')()),('()),((, txtxLttxfttxfIt −≤−∈∀

)),(()(, ttxftxIt =∈∀ 

)(1+itx

l 24

Lee 14: 47

Piecewise Lipschitz Systems

In our CT semantics, signals have multiple values at the
times of discontinuities. Between discontinuities, a
necessary condition that we can impose is that the
function f be Lipschitz, where we choose the points at the
discontinuities to ensure this:

t ti ti+1 ti+2

],[1+= ii ttI
mRNRs →×:

mRRx →:

Lee 14: 48

Abstracted Structure of the Model of
Continuous Dynamics
Between discontinuities, the state trajectory is modeled as a vector
function of time,

)),(()(ttxftx =

)),((ttxf ∫+=
t

t

dxtxtx
0

)()()(0 ττx
x

nRTx →:

mm RTRf →×:

RtT ⊂∞=),[0

The key to the ideal solver semantics
is that continuity and local Lipschitz
conditions on f are sufficient to ensure
uniqueness of the solution over a
sufficiently small interval of time.

l 25

Lee 14: 49

RK2-3 Solver Approximates Ideal Solver
Given x(tn) and a time increment h, calculate

then let

Note that this is strictly (delta) causal, but requires three
evaluations of f at three different times with three different
inputs.

)75.0,75.0)((
)5.0,5.0)((

)),((

12

01

0

hthKtxfK
hthKtxfK

ttxfK

nn

nn

nn

++=

++=

=
)(ntx

)5.0(htx n +

)75.0(htx n +

estimate of

estimate of

2101

1

)9/4()9/3()9/2()()(hKhKhKtxtx
htt

nn

nn

+++=

+=

+

+

Lee 14: 50

Generalizing: Multiple Events at the
Same Time using Transient States

If an outgoing guard is true upon
entering a state, then the time spent
in that state is identically zero. This is
called a “transient state.”

l 26

Lee 14: 51

Contrast with Simulink/Stateflow

Transient States

The simulator engine of Simulink introduces
a non-zero delay to consecutive transitions.

In Simulink semantics, a signal can only have one value at a given
time. Consequently, Simulink introduces solver-dependent behavior.

Lee 14: 52

The Abstract Semantics Supports the
Second Requirement as Well

Ss ∈1 Ss ∈2
][RNTS →×=

mm RTRf →××Σ:
Σ→××Σ TRg m:

This deals with the second requirement.

At each t ∈ T the calculation of the
output given the input is separated from
the calculation of the new state. Thus, the
state does not need to updated until after
the step size has been decided upon.

In fact, the variable step size solver relies
on this, since any of several integration
calculations may result in refinement of
the step size because the error is too
large.

l 27

Lee 14: 53

Third Requirement:
Compositional Semantics
We require that the system below yield an execution that
is identical to a flattened version of the same system.
That is, despite having two solvers, it must behave as if it
had one.

∫+=
t

t

dxtxtx
0

)()()(0 ττx
x

)),((ttxf ∫+=
t

t

dxtxtx
0

)()()(0 ττx
x

Achieving this appears to require that the two solvers
coordinate quite closely. This is challenging when the
hierarchy is deeper.

Lee 14: 54

Hierarchical Executions

A correct result

An incorrect result
Results are calculated
with the Runge-Kutta

23 solver.

l 28

Lee 14: 55

The “right” semantics supports deeper
hierarchies

Consider two masses on springs which,
when they collide, will stick together with
a decaying stickiness until the force of
the springs pulls them apart again.

Lee 14: 56

Modal Models

The Masses actor
refines to a state
machine with two
states, Separate and
Together. The
transitions have
guards and reset
maps.

l 29

Lee 14: 57

Mode Refinements

Each state has a
refinement that
gives the
behavior of the
modal model
while in that
state.

Lee 14: 58

Modeling Dynamics within the
Separate Mode
Dynamics while separate:

Equivalently:

l 30

Lee 14: 59

Mode Refinements (2)

In the Together mode, the dynamics is
that of a single mass and two springs.

Lee 14: 60

Modeling Dynamics within the
Together Mode
Dynamics while together:

l 31

Lee 14: 61

Consider Corner Cases

¢  When triggering transitions based on predicates on
discontinuous signals, how should the discontinuity
affect the transition?

¢  What should samples of discontinuous signals be?

Lee 14: 62

Recall Hysteresis Example

This model
generates a
discontinuous
signal.

l 32

Lee 14: 63

Observing the Discontinuous Signal
ModalModel2 will enter
the error state if its inputs
ever have the same sign.
Note from the plot that it
never enters that state
(the output would go to
10, but it stays at 0).

Lee 14: 64

Simultaneous Events: The
Order of Execution Question

The output of the Scale actor
has the same tag as its input,
so ModelModel2 sees only two
values with opposite signs.

RNTs →×:
Semantics of a signal:

In Ptolemy II CT, every
continuous-time signal has a
value at (t, 0) for any t ∈ T . This
yields deterministic execution of
the above model.

l 33

Lee 14: 65

Alternative Interpretations

•  Nondeterministic: Some hybrid systems languages
(e.g. Charon) declare this to be nondeterministic,
saying that perfectly zero time delays never occur
anyway in physical systems. Hence, ModalModel2
may or may not see the output of ModalModel before
Scale gets a chance to negate it.

•  Delta Delays: Some models (e.g. VHDL) declare that
every block has a non-zero delay in the index space.
Thus, ModalModel2 will see an event with time
duration zero where the inputs have the same sign.

Lee 14: 66

Disadvantages of These Interpretations

•  Nondeterministic:
•  Constructing deterministic models is extremely difficult
•  What should a simulator do?

•  Delta Delays:
•  Changes in one part of the model can unexpectedly

change behavior elsewhere in the model.

l 34

Lee 14: 67

Nondeterministic Ordering
In favor

l  Physical systems have no true simultaneity
l  Simultaneity in a model is artifact
l  Nondeterminism reflects this physical reality

Against
l  It surprises the designer

•  counters intuition about causality
l  It is hard to get determinism

•  determinism is often desired (to get repeatability)
l  Getting the desired nondeterminism is easy

•  build on deterministic ordering with nondeterministic FSMs
l  Writing simulators that are trustworthy is difficult

•  It is incorrect to just pick one possible behavior!

Lee 14: 68

Consider Nondeterministic Semantics

Under nondeterministic semantics, we
could modify the model to explicitly
schedule the firings.

Suppose we want deterministic
behavior in the above (rather
simple) model. How could we
achieve it?

l 35

Lee 14: 69

Non-Deterministic Interaction is the Wrong
Answer

turn one trigger into N,
where N is the number of actors

encode the
desired sequence
as an automaton
that produces a
schedule

embellish the
guards with
conditions on the
schedule

An attempt to achieve deterministic
execution by making the scheduling
explicit shows that this is far too difficult
to do.

broadcast the
schedule

Lee 14: 70

OTOH: Nondeterminism is Easily Added in a
Deterministic Modeling Framework

At a time when
the event source
yields a positive
number, both
transitions are
enabled.

Although this can be done in
principle, Ptolemy II CT does not
support this sort of
nondeterminism by default. What
execution trace should it give?

l 36

Lee 14: 71

Sampling Discontinuous Signals

Samples must be
deterministically taken at t- or t+.
Our choice is t-, inspired by
hardware setup times.

Note that in Ptolemy II CT, unlike Simulink,
discrete signals have no value except at discrete
points.

Continuous signal with sample times chosen by the solver:

Discrete result of sampling:

Lee 14: 72

The Continuous (vs. CT) Director
Building continuous-time semantics on SR

A signal has a value or is
absent at each tick of a
“clock.” By default, all ticks
of the “clock” occur at
model time 0.0, but they can
optionally be spaced in time
by setting the period
parameter of the SR
Director.

A signal is a set of events
with time stamps (in model
time) and the DE Director is
responsible for presenting
these events in time-stamp
order to the destination
actor.

A signal is defined
everywhere (in model time)
and the Continuous Director
chooses where it is
evaluated. The value of the
signal may be “absent,”
allowing for signals that are
discrete or have gaps.

l 37

Lee 14: 73

Metric Time in SR

By default, “time” does not advance when executing an
SR model in Ptolemy II (“current time” remains at 0.0, a
real number).

Optionally, the SR Director can increment time by a fixed
amount on each clock tick.

Lee 14: 74

Time in SR Models in Ptolemy II

A signal has a value or is
absent at each tick of a
“clock.” By default, all ticks
of the “clock” occur at
model time 0.0, but they can
optionally be spaced in time
by setting the period
parameter of the SR
Director.

l 38

Lee 14: 75

Execution of an SR Model (Conceptually)

Start with all signals empty (i.e. defined on
the empty initial segment).
Initialize all actors.

Invoke the following on all actors until
either all signals are defined on the initial
segment {(0,0)} or no progress can be
made:

 if (prefire()) { fire(); }

If not all signals are defined on {(0,0)},
declare a causality loop.
Invoke postfire() for all actors.

Choose the next tag t ((0,1) or (p, 0))

Repeat to define signals on the initial
segment [(0, 0), t].
Etc.

The correctness of this is guaranteed
by the fixed point semantics. Efficiency,
of course, depends on being smart
about the order in which actors are
invoked.

Lee 14: 76

Metric Time in SR

By default, “time” does not advance when executing an
SR model in Ptolemy II (“current time” remains at 0.0, a
real number).
Optionally, the SR Director can increment time by a fixed
amount on each clock tick.

More interestingly, SR can be embedded within timed
MoCs that model the environment and govern the
passage of time.

l 39

Lee 14: 77

Discrete Events (DE): A Timed Concurrent Model
of Computation

DE Director implements timed
semantics using an event queue

SR subsystem
implements structured
nondeterminacy.

Actors communicate via “signals” that
are marked point processes (discrete,
valued, time-stamped events).

Lee 14: 78

Advancing Time

A signal is a partial function

defined on an initial segment of

But how to increment the initial segment on which the
signal is defined? It won’t work to just proceed to the
next one, as we did with SR.

l 40

Lee 14: 79

Execution of a DE Model (Conceptually)

Start with all signals empty.
Initialize all actors (some will post tags on the
event ueue).
Take the smallest tag (t, n) from the event
queue.
Invoke the following on all actors that have
input events until either all signals are defined
on the initial segment S = [(0,0), (t,n)] or no
progress can be made:

 if (prefire()) { fire(); }
If not all signals are defined on S, declare a
causality loop.
Invoke postfire() for all actors (some will post
tags on the event queue).
Repeat with the next smallest tag on the
event queue.

This is exactly the execution policy of
SR, except that rather than just
choosing the next tag in the tag set, we
use a sorted event queue to choose an
interval over which to increment the
initial segment.

Lee 14: 80

Subtle Difference Between SR and DE

In SR, every actor is fired at every tick of its clock, as determined by
a clock calculus and/or structured subclocks.

In DE, an actor is fired at a tag only if it has input events at that tag
or it has previously posted an event on the event queue with that
tag.

 In DE semantics, event counts may matter. If every actor
were to be fired at every tick, then adding an actor in one part of a
model could change the behavior in another part of the model in
unexpected ways.

l 41

Lee 14: 81

Recall Subtle Difference Between
SR and DE. CT is more like SR.

In SR, every actor is fired at every tick of its clock, as determined by
a clock calculus and/or structured subclocks.

In DE, an actor is fired at a tag only if it has input events at that tag
or it has previously posted an event on the event queue with that
tag.

In CT, every actor is fired at every tick of the clock, as determined
by an ODE solver.

In CT semantics, a signal has a value at every tag. But the solver to
chooses to explicitly represent those values only at certain tags.

Lee 14: 82
 82

Integrator with DE Input Signals

s1

s2 s3

s’
The following table shows the
integration results with more complicated
DE input signals.

Slide from Haiyang Zheng

l 42

Lee 14: 83

Conclusion

•  Superdense time is useful for continuous-time models.
•  SR provides a foundation for DE and CT.
•  Time between “ticks” is chosen in consultation with the

solver and breakpoints defined by actors.
•  ODE solver can be modeled as an ideal solver

semantically.
•  Get an operational and denotational semantics that

match up to the ability of the solver to match the ideal
solver.

