Concurrent Models of
Computation for Embedded
Software

Edward A. Lee

Professor, UC Berkeley

EECS 219D

Concurrent Models of Computation
Fall 2011

Copyright © 2009-2011, Edward A. Lee, All rights reserved

Lecture 17: Actor-Oriented Type Systems

Does Actor-Oriented Design Offer Best-Of-Class SW Engineering
Methods?

Abstraction
procedures/methods
classes

Modularity
subclasses
inheritance
interfaces
polymorphism
aspects

Correctness
type systems

Lee 17: 2

'Y

Example of an Actor-Oriented Framework: Simulink

IZ] cruisecontrolonoff *

P4 =] cruisecontrolonoff/Enabled Subsystem1 *

File Edit View Simulation Format Tools Help

File Edit View Simulation Format Tools Help DE=Ea B I
DSES& o B
Enabled
Subeptem Enable
int /94
o ¥
G
< In1 Out1
~ Zero-Order Controller
onsant » (simple gain)
Gain n
outt

Car model F = ma)

.
acceleration;
acce EEHN
s

timass Integrator

(force)

basic abstraction

n. n mechanism is

Simple Cruise Control System

o hierarchy.

o
Observation
By itself, hierarchy is a very weak
abstraction mechanism.
Lee 17: 4

o2

Tree Structured Hierarchy

Does not represent container container
common class
definitions. Only hierarchical
instances. component copy

Multiple instances
of the same

hierarchical l | | 1 | |

component are
copies.

leaf components: instances of an OO class

Lee 17: 5

Alternative Hierarchy:
Roles and Instances

one definition, I I I I
multiple containers
class instance instance
role hierarchy instance hierarchy
(“design-time” view) (“run time” view)
Lee 17: 6

o3

Role Hierarchy

Multiple instances of the
same hierarchical
component are
represented by classes
with multiple
containers.

hierarchical
class

This makes hierarchical | | | |
components more like
leaf components.

Lee 17:7

A Motivating Application: Modeling Sensor Networks

Model of Massimo Franceschetti’ s “small
world” phenomenon with 49 sensor nodes.

These 49 sensor nodes are
actors that are instances of
the same class, defined as:

Making these objects

DEDirector

instances of a class rather
than copies reduced the XML
representation of the model
from 1.1 Mbytes to 87
kBytes, and offered a number

@ nodeColor: {0.0,1.0,00, 1.0}
@ randomize: randomize

Send through only the first event to arrive.
% __ TimedDelay
In Discard the rest. BooleanSwitch Expression2 out

e ™

Configure (C

of other advantages Costomie sy ot ynariod oo nan 1 hos.
g - Get Documer] i (0.0,10,00,1.0)
Channet TS channel has range given by the Configure o £10.00.00 707§
“range" parameter and probability of %t Ion SingleEvent Set o red T The signar’s

P i " e § tr ited by 1 hop.
delivery given by the "probability’ Save Actor I Set to white at th "“ oy Thop
ST Listento Actd _ Startof the run. 0.10.10,

Lee 17: 8

o4

Subclasses, Inheritance?
Interfaces, Subtypes? Aspects?

Now that we have classes, can we bring in more of the
modern programming world?

subclasses?
inheritance?
interfaces?
subtypes?
aspects?

Lee 17:9
e This model illustrates the mechanisms in Ptolemy I Creneansitory Frota =il il
L for defining classes and subclasses with inheritance.
1
0
NoisySinewave This actoris a class definition, indicated by the blue halo. Itis i
IJ, — 'S ignored by ifie directar, and serves as a declaration. To create an 00 01 02 03 04 05 06 07 08 08 10
noisy instance of this class, right click on the ciass definition and select ‘sample nurnber i xic?
|00€§L§§Sb "Create Instance" (or type Ctrl-N). To see the class definition, look inside. eXeCUt|0n
definition

This is an instance
of the abowe class
definition. Look
inside to see the

subclass definition.

This is an instance
of the base class
for the above class
definition.

inStanC_ . o AddSubtract
> frequency: 4400 It bﬂg‘nte ff 7 5|LS— *-

. SDF Director.
InstanceOfNoisySinewave Ft

Sinewave

] 8o | instance
SDF Director :: H:
= Generate a sine wave. it

[>>phase:00

Ramp

AddSublract TrigFunction

,,,,,,,,,,,,, @ noiseStandardDeviation: 0.1

SequencePlotter E-; Generate a sine wave:

The objects highlighted in pink are

defined in the superclass. Such objects
cannot be removed in this derived class.
Their parameters can be changed, however.
This implies that they can be moved and
can be assigned custom icons. To examine
the superclass, right click on the
background and select "Open Base Class".

,JogEunction output

Gaussian
noisy.

E-subclass

output

Lee 17: 10

o5

Inner Classes

This model illustrates classes, subclasses, inner classes
- and inheritance, using custom icons to make it visually
Local class definitions e, ey

are important to

H H H BaseClass Subclass! aseClass
achieving modularity. . -"‘\ Akey issue is then to
define the semantics of

Encapsulation implies e el

that local class .
InstanceOfBasetlass InstanceOfSubclassOBaseC -OVeErrides.

definitions can exist .
within class definitions. ‘ \

The BaseClass definition includ: : ol d The BaseClass definition includes an inner class and;
© Basetiass ol prclgedes an inner ciass an a subclass of that inner class, plus instances of each;
a subclass of that inner class, plus instances of each. | | | T T TR R R SRR AR
»SubclassOfinnerClass
SubclassOfinnerClass f !
InnerClass 1 i
1 |
(. 4
The triangle added to the icon of the inner
class here effectively overrides the inner
class definition inherited from BaseClass.
InstanceQfSubclassOfinnerClass
InstanceOfSubclassOfinnerClass _InstanceOfinnerClass H '
InstanceOflnnerClass H . H

Lee 17: 11
Ordering Relations
containment relation
BaseClass sOfBaseClass
parent-child relation
limited form
of multiple
inheritance.

InnerClass SubclassOfinnerClass

Of
InstanceOfinnerClass ‘ nnerClass

Mathematically, this structure is a doubly-nested diposet, the formal
properties of which help to define a clean inheritance semantics. The
principle we follow is that local changes override global changes.

OfinnerClass

Lee 17: 12

o6

Formal Structure: Containment

o Let D be the set of derivable objects (actors,
composite actors, attributes, and ports).

o Let ¢: D — D be a partial function (containment).

o Let ¢*C D x D be the transitive closure of ¢ (deep
containment). When (x, y) € ¢t we say that
x is deeply contained by y.

o Disallow circular containment (anti-symmetry):
(x,)Ec” = (y,x)&c”

So (D, c¢*) is a strict poset.

Lee 17: 13

Containment Relation

Top

BaseClass SubclassOfBaseClass

containment relation

InnerClass SubclassOfinnerClass

Lee 17: 14

o/

Formal Structure: Parent-Child

o Let p: D — D be a partial function (parent).

o Interpret p(x) =y to mean y is the parent of x, meaning
that either x is an instance of class y or x is a subclass
of y . We say x is a child of y.

o Let p*C D x D be the transitive closure of p (deep
containment). When (x, y) € p* we say that
x is descended from y.

o Disallow circular containment (anti-symmetry):
(x,)EP =y, x)&p"

Then (D, p*) is a strict poset.

Lee 17: 15

Parent-Child Relation

Top

BaseClass SubclassOfBaseClass

parent-child relation

InnerClass |

SubclassOfinnerClass _InnerClass »SubclassOfinnerClass
i 1 | H
i

Lee 17: 16

o3

Structural Constraint

We require that

(x,»)Ep" = (x,y)éc" and (y,x)&c’
(x,))Ec" = (x,y)Ep" and (y,x)&p”

That is, if x is deeply contained by y, then it cannot be
descended from y, nor can y be descended from it.

Correspondingly, if x is descended from y, then it cannot
be deeply contained by y, nor can y be deeply
contained by it.

This is called a doubly nested diposet [Davis, 2000]

Lee 17: 17

Labeling

o Let L be a set of identifying labels.

o Letl: D — L be a labeling function.

o Require that if ¢(x) = c(y) then I(x) = ().
(Labels within a container are unique).

Labels function like file names in a file system, and
they can be appended to get “full labels” which are
unique for each object within a single model (but are
not unique across models).

Lee 17: 18

o9

Derived Relation

o LetdC D x D be the least relation so that (x, y) €d

implies either that:

or

(x, y)Ep*

(c(x), c)) Ed and I(x)=I(y)

x is derived from y if either:
x is descended from y or

x and y have the same label and the container of x is
derived from the container of y.

Lee 17: 19
Top
containment relation
BaseClass SubclassOfBaseClass
derived relation
InnerClass SubclassOfinnerClass _InnerClass ,SubclassOfinnerClass
- — {
NN\ X = N
Ins OfinnerClass
[e o] InslanneOfSubclassOllnner(iass ‘,InsjanoeoﬂnnerCIass '
& D < e
,,,,, <
this object is derived from /
more than one other object:
multiple inheritance. Lee 17: 20

e10

Implied Objects and the Derivation Invariant

We say that y is implied by z in D if
(v,z2)€d and (y,z) &€ p*.

l.e., yis implied by z if it is derived but is not a
descendant.

Consequences:

o There is no need to represent implied objects in a
persistent representation of the model, unless they
somehow override the object from which they are
derived.

Lee 17: 21

Implied Objects

Top

BaseClass SubclassOfBaseClass

containment relation

parent-child relation

InnerClass

SubclassOfinnerClass |mp||ed by :mﬂc‘;ﬁ.s ISypﬂaﬁﬁ_'OﬂnnerCIass
-— FEISS
< 1 \
N\ TN = ~ AN
e o] InslanceOfSubclassOﬁnnerC‘Iass “InstanceOfinnerClass '
Yok 2 < <t O

Lee 17: 22

o1

Derivation Invariant

If x is derived from y then for all z where c(z) =y, there
exists a z' where ¢(z") =x and I(z) = I(z") and either

1. p(z) and p(z) are undefined, or
2. (p(2), p(z)) €d, or
3. p(z) = p(z") and both (p(z), y) &€ c¢"and (p(z'), x) &€ c*

l.e. z'is implied by z, and it is required that either

1. z'and z have no parents

2. the parent of z is derived from the parent of z' or

3. z'and z have the same parent, not contained by x or

y Lee 17: 23

Persistent Representation

Top

BaseClass SubclassOfBaseClass

InnerClass SubclassOfinnerClass

i This is all that is required to be
stored in a file to represent the
e model. All other objects are

Lee 17: 24

e12

Values and Overrides

o Derived objects can contain more than the objects from
which they derive (but not less).

o Derived objects can override their value.

o Since there may be multiple derivation chains from one
object to an object derived from it, there are multiple
ways to specify the value of the derived object.

o A reasonable policy is that more local overrides
supercede less local overrides. Ensuring this is far
from simple (but it is doable! see paper and/or
Ptolemy Il code).

Lee 17: 25

Advanced Topics

o Interfaces and interface refinement

o Types, subtypes, and component composition
o Abstract actors

o Aspects

o Recursive containment

Lee 17: 26

e13

Defining Actor Interfaces:
Ports and Parameters

parameters:
a, = value
! Example:
a, = value
input ports
output port ArrayPeakSearch
startindex >peak’\/alues
pl endindex > N
input! >pealdndu:es
P
2
inputioutput ot @) = o
p lo} rt sguelch: 100
scale: Bbsolute ~|
startindex: 0
endindex: Maxint
maximumhumberOfPeaks: Maxint
Commit Add Remove Preferences | Help | Cancel |

Lee 17: 27

Actor Subtypes

Example of a simple type lattice:

a,: Int = value

General
String
Py Int
ps: Double Boolean Scalar
s Long Complex
S subtype = |
> N = 2
&\ relation a,: Double = value _g bouble
5 >
o 3 /
© © Int <« /
p,: Double
Ds: Int Event

Lee 17: 28

ol4

Actor Subtypes (cont)

a,: Int = value Subtypes can have:
o Fewer input ports
o More output ports

py: Int
p5- Double
Of course, the types of
subtype Remove (ignore) these can have co/
relation or add parameters .
contravariant
Remove relationships with the
(ignore) ps Int supertype.
input
ports p4: Double
Add output ports Leo 17 29
Observations

o Subtypes can remove (or ignore) parameters and also add new
parameters because parameters always have a default value
(unlike inputs, which a subtype cannot add)

o Subtypes cannot modify the types of parameters (unlike ports).
Col/contravariant at the same time.

o PortParameters are ports with default values. They can be
removed or added just like parameters because they provide
default values.

Are there similar exceptions to co/contravariance in OO languages?

Lee 17: 30

e15

Composing Actors

A connection implies a type constraint. Can:

check compatibility
perform conversions

infer types
out: Int in: Int
out: Int in: Double
Source out: Int in: Unknown Sink

The Ptolemy Il type system does all three. Loe 17 31

What Happens to Type Constraints When a Subclass
Adds Connections?
Type resolution results may be .
different in different DEMECIEEE N\
subclasses of the same base
class (connection with let-
bound variables in a Hindley-
Milner type system?)
J
T, T
T, <=T, 5 y
Source Sink
BaseClass
Lee 17: 32

o106

Abstract Actors?

Suppose one of the
contained actors is an
interface only. Such a
class definition cannot
be instantiated (it is
abstract). Concrete
subclasses would
have to provide
implementations for
the interface.

Is this useful?

Lee 17: 33

Implementing Multiple Interfaces
An Example

EnergyConsumer interface has a single Filter interface for a
output port that produces a Double stream transformer
representing the energy consumed by a firing. component.

in: Event

in: Double

energy: Double out: Double

subtype

Event is a peculiar typ relation

that can yield a token
of any type. Itis the
bottom of the type

lattice.

EnergyConsumingFilter
composed interface.

in: Double out: Double

power: Double

Lee 17: 34

e17

A Model Using

Such an Actor

in: Double

Sink

in: Double out: Double

ower: Double

EnergyConsumingFilter

out: Double

Source in: Double

EnergyTabulator

Lee 17: 35

Heterarchy? Multi-View Modeling? Aspects?

Abstract
3 Sink
Abstract EnergyConsumer
¥ Filter
Source FunctionModel EnergyModel EnergyTabulator
Source Sink EnergyConsumingFilter EnergyTabulator

This is multi-view modeling, s this an actor-oriented s this what Metropolis does
similar to what GME version of aspect-oriented with function/architecture
(Vanderbilt) can do. programming? models? Lee 17: 36

e18

Recursive Containment
Can Hierarchical Classes Contain Instances of

Themselves?

1 1
-

class instance
class instance
instance

role hierarchy

Note that in this case, unrolling instance hierarchy
cannot occur at “compile time”. Lee 17: 37

Primitive Realization of this in Ptolemy Classic

FFT implementation in Ptolemy Classic (1995) used a partial
evaluation strategy on higher-order components.

N B WT : ,") ;)

distributorl e

) 3 IfThenElse repeaf
b ,‘I
= ‘.‘_1,‘_:..' — T ’ a i :" ":; . il
Phervil pimym [T

FFT of half 0).
the order ._a X(0)
(recursive e
reference) L | exy X(2
“ N
QY X
recursive reference
x(3). »

19

Conclusion

o Actor-oriented design remains a relatively immature
area, but one that is progressing rapidly.

o It has huge potential.

o Many questions remain...

Lee 17: 39

20

