
l 1

Concurrent Models of
Computation for Embedded
Software

Edward A. Lee
Professor, UC Berkeley
EECS 219D
Concurrent Models of Computation
Fall 2011

Copyright © 2009-2011, Edward A. Lee, All rights reserved

Lecture 17: Actor-Oriented Type Systems

Lee 17: 2

Does Actor-Oriented Design Offer Best-Of-Class SW Engineering
Methods?

Abstraction
l  procedures/methods
l  classes

Modularity
l  subclasses
l  inheritance
l  interfaces
l  polymorphism
l  aspects

Correctness
l  type systems

l 2

Lee 17: 3

Example of an Actor-Oriented Framework: Simulink

basic abstraction
mechanism is
hierarchy.

Lee 17: 4

Observation

By itself, hierarchy is a very weak

abstraction mechanism.

l 3

Lee 17: 5

Tree Structured Hierarchy

Does not represent
common class
definitions. Only
instances.

Multiple instances

of the same
hierarchical
component are
copies.

hierarchical
component copy

leaf components: instances of an OO class

container container

Lee 17: 6

Alternative Hierarchy:
Roles and Instances

class

role hierarchy
(“design-time” view)

instance hierarchy
(“run time” view)

instance instance

one definition,
multiple containers

l 4

Lee 17: 7

Role Hierarchy

Multiple instances of the
same hierarchical
component are
represented by classes
with multiple
containers.

This makes hierarchical

components more like
leaf components.

hierarchical
class

Lee 17: 8

A Motivating Application: Modeling Sensor Networks

These 49 sensor nodes are
actors that are instances of
the same class, defined as:

Making these objects
instances of a class rather
than copies reduced the XML
representation of the model
from 1.1 Mbytes to 87
kBytes, and offered a number
of other advantages.

Model of Massimo Franceschetti’s “small
world” phenomenon with 49 sensor nodes.

l 5

Lee 17: 9

Subclasses, Inheritance?
Interfaces, Subtypes? Aspects?

Now that we have classes, can we bring in more of the

modern programming world?
l  subclasses?
l  inheritance?
l  interfaces?
l  subtypes?
l  aspects?

Lee 17: 10

Example Using AO Classes

instance

instance

subclass

inherited actors

override actors

local class
definition

execution

l 6

Lee 17: 11

Inner Classes

Local class definitions
are important to
achieving modularity.

Encapsulation implies
that local class
definitions can exist
within class definitions.

A key issue is then to
define the semantics of
inheritance and
overrides.

Lee 17: 12

Ordering Relations

containment relation

parent-child relation

Mathematically, this structure is a doubly-nested diposet, the formal
properties of which help to define a clean inheritance semantics. The
principle we follow is that local changes override global changes.

limited form
of multiple
inheritance.

l 7

Lee 17: 13

Formal Structure: Containment

¢  Let D be the set of derivable objects (actors,
composite actors, attributes, and ports).

¢  Let c: D → D be a partial function (containment).
¢  Let c+ ⊂ D × D be the transitive closure of c (deep

containment). When (x, y) ∈ c+ we say that
x is deeply contained by y.

¢  Disallow circular containment (anti-symmetry):

So (D, c+) is a strict poset.

++ ∉⇒∈ cxycyx),(),(

Lee 17: 14

Containment Relation

containment relation

l 8

Lee 17: 15

Formal Structure: Parent-Child

¢  Let p: D → D be a partial function (parent).
¢  Interpret p(x) = y to mean y is the parent of x, meaning

that either x is an instance of class y or x is a subclass
of y . We say x is a child of y.

¢  Let p+ ⊂ D × D be the transitive closure of p (deep
containment). When (x, y) ∈ p+ we say that
x is descended from y.

¢  Disallow circular containment (anti-symmetry):

Then (D, p+) is a strict poset.

++ ∉⇒∈ pxypyx),(),(

Lee 17: 16

Parent-Child Relation

parent-child relation

l 9

Lee 17: 17

Structural Constraint

We require that

That is, if x is deeply contained by y, then it cannot be

descended from y, nor can y be descended from it.

Correspondingly, if x is descended from y, then it cannot

be deeply contained by y, nor can y be deeply
contained by it.

This is called a doubly nested diposet [Davis, 2000]

+++ ∉∉⇒∈ cxycyxpyx),(and),(),(
+++ ∉∉⇒∈ pxypyxcyx),(and),(),(

Lee 17: 18

Labeling

¢  Let L be a set of identifying labels.
¢  Let l: D → L be a labeling function.
¢  Require that if c(x) = c(y) then l(x) ≠ l(y).

(Labels within a container are unique).

 Labels function like file names in a file system, and
they can be appended to get “full labels” which are
unique for each object within a single model (but are
not unique across models).

l 10

Lee 17: 19

Derived Relation

¢  Let d ⊂ D × D be the least relation so that (x, y) ∈ d

implies either that:
(x, y) ∈ p+

 or
(c(x), c(y)) ∈ d and l(x) = l(y)

 x is derived from y if either:

l x is descended from y or
l x and y have the same label and the container of x is

derived from the container of y.

Lee 17: 20

Derived Relation

containment relation

parent-child relation

this object is derived from
more than one other object:
multiple inheritance.

derived relation

l 11

Lee 17: 21

Implied Objects and the Derivation Invariant

We say that y is implied by z in D if
(y, z) ∈ d and (y, z) ∉ p+.

 I.e., y is implied by z if it is derived but is not a
descendant.

Consequences:
¢  There is no need to represent implied objects in a

persistent representation of the model, unless they
somehow override the object from which they are
derived.

Lee 17: 22

Implied Objects

containment relation

parent-child relation

implied by

l 12

Lee 17: 23

Derivation Invariant

If x is derived from y then for all z where c(z) = y, there
exists a z' where c(z') = x and l(z) = l(z') and either

1.  p(z) and p(z') are undefined, or
2.  (p(z), p(z')) ∈ d, or
3.  p(z) = p(z') and both (p(z), y) ∉ c+ and (p(z'), x) ∉ c+

I.e. z' is implied by z, and it is required that either
1.  z' and z have no parents
2.  the parent of z is derived from the parent of z' or
3.  z' and z have the same parent, not contained by x or

y

Lee 17: 24

Persistent Representation

This is all that is required to be
stored in a file to represent the
model. All other objects are
implied.

l 13

Lee 17: 25

Values and Overrides

¢  Derived objects can contain more than the objects from
which they derive (but not less).

¢  Derived objects can override their value.
¢  Since there may be multiple derivation chains from one

object to an object derived from it, there are multiple
ways to specify the value of the derived object.

¢  A reasonable policy is that more local overrides
supercede less local overrides. Ensuring this is far
from simple (but it is doable! see paper and/or
Ptolemy II code).

Lee 17: 26

Advanced Topics

¢  Interfaces and interface refinement
¢  Types, subtypes, and component composition
¢  Abstract actors
¢  Aspects
¢  Recursive containment

l 14

Lee 17: 27

Defining Actor Interfaces:
Ports and Parameters

input ports
output port

p1

p2

p3

parameters:
a1 = value
a2 = value

input/output
port

port

Example:

Lee 17: 28

Actor Subtypes

General

String

Scalar Boolean
Complex

Double

Long

Int

Event

a1: Int = value

p3: Double
p1: Int

Example of a simple type lattice:

a1: Double = value

p3: Int
p1: Double

subtype
relation

C
ov

ar
ia

nt

C
on

tra
va

ria
nt

l 15

Lee 17: 29

Actor Subtypes (cont)

a1: Int = value

p3: Double
p1: Int

p3: Int

Remove (ignore)
or add parameters

subtype
relation

p4: Double

Remove
(ignore)

input
ports

Add output ports

Subtypes can have:
¢  Fewer input ports
¢  More output ports

Of course, the types of

these can have co/
contravariant
relationships with the
supertype.

Lee 17: 30

Observations

¢  Subtypes can remove (or ignore) parameters and also add new
parameters because parameters always have a default value
(unlike inputs, which a subtype cannot add)

¢  Subtypes cannot modify the types of parameters (unlike ports).
Co/contravariant at the same time.

¢  PortParameters are ports with default values. They can be
removed or added just like parameters because they provide
default values.

Are there similar exceptions to co/contravariance in OO languages?

l 16

Lee 17: 31

Composing Actors

A connection implies a type constraint. Can:

Source

in: Int

Sink

out: Int

in: Double out: Int
in: Unknown out: Int

check compatibility
perform conversions
infer types

The Ptolemy II type system does all three.

Lee 17: 32

τ1 <= τ3

τ3

DerivedClass

What Happens to Type Constraints When a Subclass
Adds Connections?

Type resolution results may be
different in different
subclasses of the same base
class (connection with let-
bound variables in a Hindley-
Milner type system?)

Source Sink

τ1 <= τ2

BaseClass

τ1 τ
2

l 17

Lee 17: 33

Abstract Actors?

Suppose one of the
contained actors is an
interface only. Such a
class definition cannot
be instantiated (it is
abstract). Concrete
subclasses would
have to provide
implementations for
the interface.

Is this useful?

Lee 17: 34

Implementing Multiple Interfaces
An Example

energy: Double

EnergyConsumer interface has a single
output port that produces a Double
representing the energy consumed by a firing.

out: Double
in: Double

Filter interface for a
stream transformer
component.

out: Double

subtype
relation

power: Double

in: Double

EnergyConsumingFilter
composed interface.

in: Event

Event is a peculiar type
that can yield a token
of any type. It is the
bottom of the type
lattice.

l 18

Lee 17: 35

A Model Using
Such an Actor

out: Double

out: Double

power: Double

in: Double

EnergyConsumingFilter

Source

in: Double

in: Double

Sink

EnergyTabulator

Lee 17: 36

Heterarchy? Multi-View Modeling? Aspects?

EnergyTabulator EnergyConsumingFilter Sink Source

This is multi-view modeling,
similar to what GME
(Vanderbilt) can do.

Is this an actor-oriented
version of aspect-oriented
programming?

FunctionModel

Filter

Source

Sink
Abstract

EnergyConsumer

EnergyTabulator EnergyModel

Abstract

Is this what Metropolis does
with function/architecture
models?

l 19

Lee 17: 37

Recursive Containment
Can Hierarchical Classes Contain Instances of
Themselves?

class

role hierarchy

instance hierarchy

class

instance

instance

instance

…

Note that in this case, unrolling
cannot occur at “compile time”.

Lee 17: 38

Primitive Realization of this in Ptolemy Classic

FFT implementation in Ptolemy Classic (1995) used a partial
evaluation strategy on higher-order components.

recursive reference

l 20

Lee 17: 39

Conclusion

¢  Actor-oriented design remains a relatively immature
area, but one that is progressing rapidly.

¢  It has huge potential.

¢  Many questions remain…

