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Lecture 17: Actor-Oriented Type Systems 
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Does Actor-Oriented Design Offer Best-Of-Class SW Engineering 
Methods? 

Abstraction 
l  procedures/methods 
l  classes 

Modularity 
l  subclasses 
l  inheritance 
l  interfaces 
l  polymorphism 
l  aspects 

Correctness 
l  type systems 
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Example of an Actor-Oriented Framework: Simulink 

basic abstraction 
mechanism is 
hierarchy. 
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Observation 

 
 
By itself, hierarchy is a very weak 

abstraction mechanism. 
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Tree Structured Hierarchy 

Does not represent 
common class 
definitions. Only 
instances. 

 
Multiple instances 

of the same 
hierarchical 
component are 
copies. 

hierarchical 
component copy 

leaf components: instances of an OO class 

container container 
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Alternative Hierarchy: 
Roles and Instances 

class 

role hierarchy 
(“design-time” view) 

instance hierarchy 
(“run time” view) 

instance instance 

one definition, 
multiple containers 
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Role Hierarchy 

Multiple instances of the 
same hierarchical 
component are 
represented by classes 
with multiple 
containers. 

 
This makes hierarchical 

components more like 
leaf components. 

hierarchical 
class 
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A Motivating Application: Modeling Sensor Networks 

These 49 sensor nodes are 
actors that are instances of 
the same class, defined as: 

Making these objects 
instances of a class rather 
than copies reduced the XML 
representation of the model 
from 1.1 Mbytes to 87 
kBytes, and offered a number 
of other advantages. 

Model of Massimo Franceschetti’s “small 
world” phenomenon with 49 sensor nodes. 
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Subclasses, Inheritance? 
Interfaces, Subtypes? Aspects? 

 
Now that we have classes, can we bring in more of the 

modern programming world? 
l  subclasses? 
l  inheritance? 
l  interfaces? 
l  subtypes? 
l  aspects? 
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Example Using AO Classes 

instance 

instance 

subclass 

inherited actors 

override actors 

local class 
definition 

execution 
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Inner Classes 

Local class definitions 
are important to 
achieving modularity. 

Encapsulation implies 
that local class 
definitions can exist 
within class definitions. 

A key issue is then to 
define the semantics of 
inheritance and 
overrides. 
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Ordering Relations 

containment relation 

parent-child relation 

Mathematically, this structure is a doubly-nested diposet, the formal 
properties of which help to define a clean inheritance semantics. The 
principle we follow is that local changes override global changes. 

limited form 
of multiple 
inheritance. 
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Formal Structure: Containment 

¢  Let D  be the set of derivable objects (actors, 
composite actors, attributes, and ports). 

¢  Let c: D → D  be a partial function (containment). 
¢  Let c+ ⊂ D × D  be the transitive closure of c (deep 

containment). When (x,  y) ∈ c+ we say that  
x is deeply contained by y. 

¢  Disallow circular containment (anti-symmetry): 

So (D, c+) is a strict poset. 

 

++ ∉⇒∈ cxycyx ),(),(
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Containment Relation 

containment relation 
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Formal Structure: Parent-Child 

¢  Let p: D → D  be a partial function (parent). 
¢  Interpret p(x) = y  to mean y is the parent of x, meaning 

that either x is an instance of class y or x is a subclass 
of y . We say x is a child of y. 

¢  Let p+ ⊂ D × D  be the transitive closure of p (deep 
containment). When (x,  y) ∈ p+ we say that  
x is descended from y. 

¢  Disallow circular containment (anti-symmetry): 

Then (D, p+) is a strict poset. 

 

++ ∉⇒∈ pxypyx ),(),(
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Parent-Child Relation 

parent-child relation 
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Structural Constraint 

We require that 
 
 
 
That is, if x is deeply contained by y, then it cannot be 

descended from y, nor can y be descended from it. 
 
Correspondingly, if x is descended from y, then it cannot 

be deeply contained by y, nor can y be deeply 
contained by it. 

This is called a doubly nested diposet [Davis, 2000] 
 

+++ ∉∉⇒∈ cxycyxpyx ),(    and),(),(
+++ ∉∉⇒∈ pxypyxcyx ),(    and),(),(
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Labeling 

¢  Let L  be a set of identifying labels. 
¢  Let l: D → L  be a labeling function. 
¢  Require that if c(x) = c(y) then l(x) ≠ l(y).  

(Labels within a container are unique). 

 Labels function like file names in a file system, and 
they can be appended to get “full labels” which are 
unique for each object within a single model (but are 
not unique across models). 
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Derived Relation 

¢  Let d ⊂ D × D  be the least relation so that (x,  y) ∈ d 

implies either that: 
(x,  y) ∈ p+ 

 or  
(c(x),  c(y)) ∈ d   and  l(x) = l(y) 

  
 x is derived from y if either: 

l x is descended from y or 
l x and y have the same label and the container of x is 

derived from the container of y. 
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Derived Relation 

containment relation 

parent-child relation 

this object is derived from 
more than one other object: 
multiple inheritance. 

derived relation 
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Implied Objects and the Derivation Invariant 

We say that y is implied by z in D if 
(y, z) ∈ d  and (y, z) ∉ p+. 

 
 I.e., y is implied by z if it is derived but is not a 
descendant.  

 
Consequences: 
¢  There is no need to represent implied objects in a 

persistent representation of the model, unless they 
somehow override the object from which they are 
derived. 
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Implied Objects 

containment relation 

parent-child relation 

implied by 
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Derivation Invariant 

If x is derived from y then for all z where c(z) = y, there 
exists a z' where c(z') = x and l(z) = l(z') and either 

1.    p(z) and p(z') are undefined, or 
2.    (p(z), p(z')) ∈ d, or 
3.    p(z) = p(z') and both (p(z), y) ∉ c+ and (p(z'), x) ∉ c+  

 
I.e. z' is implied by z, and it is required that either 
1.     z' and z have no parents 
2.     the parent of z is derived from the parent of z' or  
3.     z' and z have the same parent, not contained by x or 

y 
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Persistent Representation 

This is all that is required to be 
stored in a file to represent the 
model. All other objects are 
implied. 
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Values and Overrides 

¢  Derived objects can contain more than the objects from 
which they derive (but not less). 

¢  Derived objects can override their value. 
¢  Since there may be multiple derivation chains from one 

object to an object derived from it, there are multiple 
ways to specify the value of the derived object. 

¢  A reasonable policy is that more local overrides 
supercede less local overrides. Ensuring this is far 
from simple (but it is doable!  see paper and/or 
Ptolemy II code). 
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Advanced Topics 

¢  Interfaces and interface refinement 
¢  Types, subtypes, and component composition 
¢  Abstract actors 
¢  Aspects 
¢  Recursive containment 
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Defining Actor Interfaces: 
Ports and Parameters 

input ports 
output port 

p1 

p2 

p3 

parameters: 
a1 = value 
a2 = value 

input/output 
port 

port 

Example: 
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Actor Subtypes 

General 

String 

Scalar Boolean 
Complex 

Double 

Long 

Int 

Event 

a1: Int = value 

p3: Double  
p1: Int 

Example of a simple type lattice: 

a1: Double = value 

p3: Int  
p1: Double 

subtype 
relation 

C
ov

ar
ia

nt
 

C
on

tra
va

ria
nt
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Actor Subtypes (cont) 

a1: Int = value 

p3: Double  
p1: Int 

p3: Int  

Remove (ignore) 
or add parameters 

subtype 
relation 

p4: Double  

Remove 
(ignore) 

input 
ports 

Add output ports 

Subtypes can have: 
¢    Fewer input ports 
¢    More output ports 
 
Of course, the types of 

these can have co/
contravariant 
relationships with the 
supertype. 
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Observations 

¢  Subtypes can remove (or ignore) parameters and also add new 
parameters because parameters always have a default value 
(unlike inputs, which a subtype cannot add) 

¢  Subtypes cannot modify the types of parameters (unlike ports). 
Co/contravariant at the same time. 

¢  PortParameters are ports with default values. They can be 
removed or added just like parameters because they provide 
default values. 

 
Are there similar exceptions to co/contravariance in OO languages? 
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Composing Actors 

A connection implies a type constraint. Can: 

Source  

in: Int 

Sink  

out: Int  

in: Double out: Int  
in: Unknown out: Int  

check compatibility 
perform conversions 
infer types 

The Ptolemy II type system does all three. 
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τ1 <= τ3  

τ3  

DerivedClass 

What Happens to Type Constraints When a Subclass 
Adds Connections? 

Type resolution results may be 
different in different 
subclasses of the same base 
class (connection with let-
bound variables in a Hindley-
Milner type system?) 

Source  Sink  

τ1 <= τ2  

BaseClass 

τ1 τ
2  
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Abstract Actors? 

Suppose one of the 
contained actors is an 
interface only. Such a 
class definition cannot 
be instantiated (it is 
abstract). Concrete 
subclasses would 
have to provide 
implementations for 
the interface. 
 
Is this useful? 
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Implementing Multiple Interfaces 
An Example 

energy: Double  

EnergyConsumer interface has a single 
output port that produces a Double 
representing the energy consumed by a firing. 

out: Double  
in: Double 

Filter interface for a 
stream transformer 
component.  

out: Double  

subtype 
relation 

power: Double  

in: Double 

EnergyConsumingFilter 
composed interface.  

in: Event 

Event is a peculiar type 
that can yield a token 
of any type. It is the 
bottom of the type 
lattice. 
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A Model Using 
Such an Actor 

out: Double  

out: Double  

power: Double  

in: Double 

EnergyConsumingFilter  

Source  

in: Double 

in: Double 

Sink  

EnergyTabulator  
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Heterarchy? Multi-View Modeling? Aspects? 

EnergyTabulator  EnergyConsumingFilter  Sink  Source  

This is multi-view modeling, 
similar to what GME 
(Vanderbilt) can do. 

Is this an actor-oriented 
version of aspect-oriented 
programming? 

FunctionModel  

Filter 

Source  

Sink  
Abstract 

EnergyConsumer  

EnergyTabulator  EnergyModel  

Abstract 

Is this what Metropolis does 
with function/architecture 
models? 
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Recursive Containment 
Can Hierarchical Classes Contain Instances of 
Themselves? 

class 

role hierarchy 

instance hierarchy 

class 

instance 

instance 

instance 

… 

Note that in this case, unrolling 
cannot occur at “compile time”.  
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Primitive Realization of this in Ptolemy Classic 

FFT implementation in Ptolemy Classic (1995) used a partial 
evaluation strategy on higher-order components. 

recursive reference 
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Conclusion 

¢  Actor-oriented design remains a relatively immature 
area, but one that is progressing rapidly. 

¢  It has huge potential. 

¢  Many questions remain… 


