
Heterogeneous Concurrent Modeling and Design

Chapter 4 from: C. Brooks, E. A. Lee, X. Liu, S.

Neuendorffer, Y. Zhao, H. Zheng "Heterogeneous

Concurrent Modeling and Design in Java (Volume

1: Introduction to Ptolemy II) ," Technical Memo-

randum UCB/ERL M04/27, July 29, 2004, Uni-

versity of California, Berkeley, CA USA 94720.
Actor Libraries

Authors: Elaine Cheong

Christopher Hylands
Edward A. Lee
Steve Neuendorffer
Yuhong Xiong

Contributors: Chamberlain Fong
Mudit Goel
Bart Kienhuis
Edward A. Lee
Michael Leung
Jie Liu
Xiaojun Liu
Sarah Packman
Shankar Rao
Michael Shilman
Jeff Tsay
Brian K. Vogel
Paul Whitaker

4.1 Overview
Ptolemy II focuses on component-based design. In this design approach, components are aggre-

gated and connected to construct a model. One of the advantages of component-based design is that
reuse of components becomes possible. Polymorphism is one of the key tenets of object-oriented
design. It refers to the ability of a component to adapt in a controlled way to the type of data being sup-
plied. For example, an addition operation is realized differently when adding vectors than when adding
scalars. In Ptolemy II, use of polymorphism maximizes the potential for reuse of components.

We call this classical form of polymorphism data polymorphism, because components are poly-
127

Actor Libraries
morphic with respect to data types. A second form of polymorphism, introduced in Ptolemy II, is
domain polymorphism, where a component adapts in a controlled way to the protocols that are used to
exchange data between components. For example, an addition operation can accept input data deliv-
ered by any of a number of mechanisms, including discrete events, rendezvous, and asynchronous
message passing.

Ptolemy II includes libraries of polymorphic actors that use both kinds of polymorphism to maxi-
mize reusability. Actors from these libraries can be used in a broad range of domains, where the
domain provides the communication protocol between actors. In addition, most of these actors are data
polymorphic, meaning that they can operate on a broad range of data types. In general, writing data
and domain polymorphic actors is considerably more difficult than writing more specialized actors.
This chapter discusses some of the issues.

4.2 Actor Classes
Figure 4.1 shows a UML static structure diagram for the key classes in the ptolemy.actor.lib pack-

age (see appendix A of chapter 1 for an introduction to UML). All the classes in figure 4.1 extend
TypedAtomicActor, except TimedActor and SequenceActor, which are interfaces. TypedAtomicActor
is in the ptolemy.actor package, and is described in more detail in volume 2, on software architecture.
For our purposes here, it is sufficient to know that TypedAtomicActor provides a base class for actors
with ports where the ports carry typed data (encapsulated in objects called tokens).

None of the classes in figure 4.1 have any methods, except those inherited from the base classes
(which are not shown). The classes in figure 4.1 do, however, have public members, most of which are
instances of TypedIOPort or Parameter. By convention, actors in Ptolemy II expose their ports and
parameters as public members, and much of the functionality of an actor is accessed through its ports
and parameters.

Many of the actors are transformers, which extend the Transformer base class. These actors read
input data, modify it in some way, and produce output data. Some other actors that also have this char-
acter, such as AddSubtract, MultiplyDivide, and Expression, do not extend Transformer because they
have somewhat unconventional port names. These actors are represented in figure 4.1 by the box
labeled “... Other Actors ...”.

The stacked boxes labeled “... Transformers ...” and “... Other Actors ...” in figure 4.1 are not stan-
dard UML. They are used here to refer to a set of actors that are listed below. There are too many
actors to show them individually in the static structure diagram. The diagram would lose its utility
because of the resulting clutter.

Most of the library actors can be used in any domain. Some domains, however, can only execute a
subset of the actors in this library. For example, the CT (continuous time) domain, which solves ordi-
nary differential equations, may present data to actors that represent arbitrarily spaced samples of a
continuous-time signal. For such signals, the data presented to an actor cannot be assumed by the actor
to be a sequence, since the domain determines how closely spaced the samples are. For example, the
SampleDelay actor would produce unpredictable results, since the spacing of samples is likely to be
uneven over time.

The TimedActor and SequenceActor interfaces are intended to declare assumptions that the actor
makes about the inputs. They are empty interfaces (i.e., they contain no methods), and hence they are
used only as markers. An actor that implements SequenceActor declares that it assumes its inputs are
sequences of distinct data values, and that it will produce sequences of distinct data values as outputs.
In particular, the input must not be a continuous-time waveform. Thus, any actor that will not work
128 Ptolemy II

Actor Libraries
properly in the CT domain should declare that it implements this interface1. Most actors do not imple-
ment SequenceActor, because they do not care whether the input is a sequence.

An actor that implements the TimedActor interface declares that the current time in a model exe-
cution affects its behavior. Currently, all domains can execute actors that implement TimedActor,
because all directors provide a notion of current time. However, the results may not be what is
expected. The SDF (synchronous dataflow) domain, for example, does not advance current time. Thus,

1. Unfortunately, a scan of the current actor library (as of version 4.0) will reveal that we have not been very rigor-
ous about this, and many actors that make a sequential assumption about the input fail to implement this inter-
face. We are working on a more rigorous way of making this distinction, based on the concept of behavioral
types.

FIGURE 4.1. Key actor base classes and interfaces.

... SequenceSources SequenceSources RandomSources RandomSources ...

Source

+output : TypedIOPort
+trigger : TypedIOPort(Token,multi)

TypedAtomicActor

«Interface»
SequenceActor

«Interface»
TimedActor

Sink

+input : TypedIOPort(multi)

Transformer

+input : TypedIOPort
+output : TypedIOPort

... Sinks Sources Transformers Other Actors ...

TimedSource

+stopTime : Parameter(DoubleToken)

SequenceSource

+firingCountLimit : Parameter(IntToken)

RandomSource

+seed : Parameter(LongToken)

... Timed Sources SequenceSources RandomSources ...
Heterogeneous Concurrent Modeling and Design 129

Actor Libraries
if SDF is the top-level domain, the current time will always be zero, which is likely to lead to some
confusion with timed actors.

4.3 Actor Summaries
In this section, we summarize the actors that are provided in the default Vergil actor library, shown

at the left-hand side of the window in figure 4.2. Note that this library is organized for user conve-
nience, and the organization does not exactly match the package structure. Here, we give brief descrip-
tions of each actor to give a high-level view of what actors are available in the library. Refer to the
class documentation for a complete description of these actors (in Vergil, you can right-click on an
icon and select “Get Documentation” to get the detailed documentation for an actor).

It is useful to know some general patterns of behavior:
• Unless otherwise stated, actors will read at most one input token from each input channel of each

input port, and will produce at most one output token. No output token is produced unless there are
input tokens.

• Unless otherwise stated, actors can operate in all domains except the FSM (finite state machine)
domain, where components are instances of the State class. Additionally, actors that implement the
SequenceActor or TimedActor interfaces may be rejected by some domains.

4.3.1 Sources
A source actor is a source of tokens. Most source actors extend the Source base class, as shown in

figure 4.1. Such actors have a trigger input port, which in some domains serves to stimulate an output.
In the DE (discrete event) domain, for example, an input at the trigger port causes the current value of
the source to be produced at the time stamp of the trigger input. The trigger port is a multiport, mean-

FIGURE 4.2. The default Vergil actor library is shown at the left, expanded to the first level.
130 Ptolemy II

Actor Libraries
ing that multiple channels can be connected to it. The trigger port can also be left unconnected in
domains that will invoke the actor automatically (SDF, DT, PN, ...). There is no need for a trigger in
these domains.

Some source actors use the fireAt() method of the director to request that the actor be fired at par-
ticular times in the future. In domains that do not ignore fireAt(), such as DE, such actors will fire
repeatedly even if there is no trigger input. In the DE domain, the fireAt() method schedules an event
in the future to refire the actor.

Source actors that extend TimedSource have a parameter called stopTime. When the current time
of the model reaches this time, then the actor requests of the director that this actor not be invoked
again. Thus, stopTime can be used to generate a finite source signal. By default, the stopTime parame-
ter has value 0.0, which indicates unbounded execution.

Source actors that extend SequenceSource have a parameter called firingCountLimit. When the
number of iterations of the actor reaches this limit, then the actor requests of the director that this actor
not be invoked again. Thus, firingCountLimit can be used to generate a finite source signal. By default,
the firingCountLimit parameter has value 0, which indicates unbounded execution.

In some domains, such as SDF and DT, it makes no sense to stop the execution of a single actor.
The statically constructed schedule would be disrupted. In these domains, when the specified stopTime
or firingCountLimit is reached, the execution of the entire model will stop.

Some of the most useful actors are Clock, which is used extensively in DE models to trigger regu-
larly timed events; Ramp, which produces a counting sequence; Const, which produces a constant; and
Pulse, which produces an arbitrary sequence. In Vergil, the source library is divided into generic
sources, timed sources, and sequence sources. The first group includes only one source, Const, which
is agnostic about whether its output is interpreted as a timed output or a sequence output. The other
two groups contain actors for which the output is either timed or is logically a sequence.

Generic Sources

Const (extends Source): Produce a constant output with value given by the value parameter.

Timed Sources

Clock (extends TimedSource): Produce samples of a piecewise constant signal with the specified val-
ues. The transitions between values occur with the specified period and offsets within the period. This
actor uses fireAt() to schedule firings when time matches the transition times, and thus will at least
produce outputs at these times. To generate a continuous-time clock, you will likely want to use Con-
tinuousClock instead; that version produces two outputs at the transition times, one with the old value
and one with the new.

CurrentTime (extends TimedSource): Produce an output token with value equal to the current time
(the model time when the actor is fired).

PoissonClock (extends TimedSource): Produce samples of a piecewise constant signal with the speci-
fied values. The transitions between values occur according to a Poisson process (which has random
interarrival times with an exponential distribution). This actor uses fireAt() to schedule firings when
time matches the transition times, and thus will at least produce outputs at these times.
Heterogeneous Concurrent Modeling and Design 131

Actor Libraries
TimedSinewave (composite actor) Output samples of a sinusoidal waveform taken at current time
(when the actor is fired). Note that to generate a continuous-time sine wave in the CT domain you
probably want to use ContinuousSinewave instead.

TriggeredClock (extends Clock): This actor is an extension of Clock with a start and stop input. A
token at the start input will start the clock. A token at the stop input will stop the clock, if it is still run-
ning. To generate a continuous-time clock, you will likely want to use TriggeredContinuousClock
instead; that version produces two outputs at the transition times, one with the old value and one with
the new.

VariableClock (extends Clock): An extension of Clock with an input to dynamically control the period.
NOTE: This actor will likely be replaced at some point by a version of Clock with a period PortParam-
eter.

Sequence Sources

InteractiveShell (extends TypedAtomicActor): This actor creates a command shell on the screen, send-
ing commands that are typed by the user to its output port, and reporting strings received at its input by
displaying them. Each time it fires, it reads the input, displays it, then displays a command prompt
(which by default is ">>"), and waits for a command to be typed. The command is terminated by an
enter or return character, which then results in the command being produced on the output.

Interpolator (extends SequenceSource): Produce an output sequence by interpolating a specified set of
values. This can be used to generate complex, smooth waveforms.

Pulse (extends SequenceSource): Produce a sequence of values at specified iteration indexes. The
sequence repeats itself when the repeat parameter is set to true. This is similar to the Clock actor, but it
is not timed. Whenever it is fired, it progresses to the next value in the values array, irrespective of the
current time.

Ramp (extends SequenceSource): Produce a sequence that begins with the value given by init and is
incremented by step after each iteration. The types of init and step are required to support addition.

Sinewave (composite actor): Output successive samples of a sinusoidal waveform. This is a sequence
actor. The timed and continuous versions are TimedSinewave and ContinuousSinewave respectively.

SketchedSource (implements SequenceActor): Output a signal that has been sketched by the user on
the screen.

4.3.2 Sinks
Sink actors are the ultimate destinations for tokens. Sink actors have no outputs, and include actors

that display data in plots, textual form, or tables.
Many of these actors are shown in figure 4.3, which shows a UML static structure diagram. Sev-

eral of these sinks have both time-based and sequence-based versions. TimedPlotter, for example, dis-
plays a plot of its input data as a function of time. SequencePlotter, by contrast, ignores current time,
and uses for the horizontal axis the position of an input token in a sequence of inputs. XYPlotter, on the
other hand, uses neither time nor sequence number, and therefore implements neither TimedActor nor
SequenceActor. All three are derived from Plotter, a base class with a public member, plot, which
implements the plot. This base class has a fillOnWrapup parameter, which has a boolean value. If the
132 Ptolemy II

Actor Libraries
FIGURE 4.3. Organization of actors in the ptolemy.actor.lib.gui package.

Ty
pe

dA
to

m
ic

A
ct

or

Pl
ot

te
r

+f
ill

O
nW

ra
pu

p
: P

ar
am

et
er

(B
oo

le
an

To
ke

n)
+l

eg
en

d
: S

tri
ng

A
ttr

ib
ut

e
+p

lo
t :

 P
lo

t
+s

ta
rti

ng
D

at
as

et
 :

P
ar

am
et

er
(In

tT
ok

en
)

«I
nt

er
fa

ce
»

Pl
ac

ea
bl

e

+p
la

ce
(c

 :
C

on
ta

in
er

)

Se
qu

en
ce

Pl
ot

te
r

+i
np

ut
 :

Ty
pe

dI
O

P
or

t(D
ou

bl
eT

ok
en

, m
ul

ti)
+x

In
it

: P
ar

am
et

er
(D

ou
bl

eT
ok

en
)

+x
U

ni
t :

 P
ar

am
et

er
(D

ou
bl

eT
ok

en
)

Ti
m

ed
Pl

ot
te

r

+i
np

ut
 :

Ty
pe

dI
O

P
or

t(D
ou

bl
eT

ok
en

, m
ul

ti)

XY
Pl

ot
te

r

+i
np

ut
X

 :
Ty

pe
dI

O
P

or
t(D

ou
bl

eT
ok

en
, m

ul
ti)

+i
np

ut
Y

 :
Ty

pe
dI

O
P

or
t(D

ou
bl

eT
ok

en
, m

ul
ti)

H
is

to
gr

am
Pl

ot
te

r

+b
in

O
ffs

et
 :

P
ar

am
et

er
(D

ou
bl

eT
ok

en
)

+b
in

W
id

th
 :

P
ar

am
et

er
(D

ou
bl

eT
ok

en
)

+f
ill

O
nW

ra
pu

p
: P

ar
am

et
er

(B
oo

le
an

To
ke

n)
+h

is
to

gr
am

 :
H

is
to

gr
am

+i
np

ut
 :

Ty
pe

dI
O

P
or

t(D
ou

bl
eT

ok
en

)
+l

eg
en

d
: S

tri
ng

A
ttr

ib
ut

e

D
is

pl
ay

+c
ol

um
ns

D
is

pl
ay

ed
 :

P
ar

am
et

er
(In

tT
ok

en
)

+r
ow

sD
is

pl
ay

ed
 :

P
ar

am
et

er
(In

tT
ok

en
)

+t
ex

tA
re

a
: J

Te
xt

A
re

a
+t

itl
e

: S
tri

ng
A

ttr
ib

ut
e

«I
nt

er
fa

ce
»

Ti
m

ed
A

ct
or

Si
nk

+i
np

ut
 :

Ty
pe

dI
O

P
or

t(m
ul

tip
or

t)

M
at

rix
Vi

ew
er

+h
ei

gh
t :

 P
ar

am
et

er
(In

tT
ok

en
)

+i
np

ut
 :

Ty
pe

dI
O

P
or

t(M
at

rix
To

ke
n)

+w
id

th
 :

P
ar

am
et

er
(In

tT
ok

en
)

«I
nt

er
fa

ce
»

Se
qu

en
ce

A
ct

or
So
ur
ce

+o
ut

pu
t :

 T
yp

ed
IO

P
or

t Sk
et

ch
ed

So
ur

ce

+d
at

aS
et

 :
In

tT
ok

en
+l

en
gt

h
: I

nt
To

ke
n

+p
er

io
d

: I
nt

To
ke

n

Ti
m

ed
Sc

op
e

+w
id

th
 :

P
ar

am
et

er
(D

ou
bl

eT
ok

en
)

+p
er

si
st

en
ce

 :
P

ar
am

et
er

(D
ou

bl
eT

ok
en

)

XY
Sc

op
e

+p
er

si
st

en
ce

 :
P

ar
am

et
er

(In
tT

ok
en

)

Se
qu

en
ce

Sc
op

e

+w
id

th
 :

P
ar

am
et

er
(In

tT
ok

en
)

+p
er

si
st

en
ce

 :
P

ar
am

et
er

(In
tT

ok
en

)

B
ar

G
ra

ph

+i
np

ut
 :

Ty
pe

dI
O

P
or

t(a
rra

ys
 o

f d
ou

bl
e)

+i
te

ra
tio

ns
P

er
U

pd
at

e
: P

ar
am

et
er

M
at

rix
Vi

su
al

iz
er

+i
np

ut
 :

Ty
pe

dI
O

P
or

t(I
nt

To
ke

n,
 m

ul
ti)

+x
M

ax
 :

P
ar

am
et

er
(D

ou
bl

eT
ok

en
)

+x
M

in
 :

P
ar

am
et

er
(D

ou
bl

eT
ok

en
)

+y
M

ax
 :

P
ar

am
et

er
(D

ou
bl

eT
ok

en
)

+y
M

in
 :

P
ar

am
et

er
(D

ou
bl

eT
ok

en
)

R
ea

lT
im

eP
lo

tte
r

+i
np

ut
 :

Ty
pe

dI
O

P
or

t(D
ou

bl
eT

ok
en

, m
ul

ti)

Sl
id

er
So

ur
ce

+m
ax

im
um

 :
P

ar
am

et
er

(In
tT

ok
en

)
+m

in
im

um
 :

P
ar

am
et

er
(In

tT
ok

en
)

+s
lid

er
 :

Js
lid

er
+t

itl
e

: S
tri

ng
A

ttr
ib

ut
e

«I
nt

er
fa

ce
»

C
ha

ng
eL

is
te

ne
r

Heterogeneous Concurrent Modeling and Design 133

Actor Libraries
value is true (the default), then at the conclusion of the execution of the model, the axes of the plot will
be adjusted to just fit the observed data.

All of the sink actors implement the Placeable interface. Actors that implement this interface have
graphical widgets that a user of the actor may wish to place on the screen. Vergil constructs a display
panel by placing such actors. More customized placement can be achieved by calling the place()
method of the Placeable interface in custom Java code.

In Vergil, the sinks library is divided into generic sinks, timed sinks, and sequence sinks. The first
group includes sinks that are agnostic about whether their inputs are interpreted as timed events or as
sequence inputs. The other two groups contain actors for which the input is either timed or is logically
a sequence.

Generic Sinks

Discard (extends Sink): Consume and discard input tokens.

Display (extends Sink): Display input tokens in a text area on the screen.

MonitorValue (extends Sink): Display input tokens in the icon of the actor in the block diagram. The
value parameter specifies what to display before any inputs are provided.

Recorder (extends Sink): Record all input tokens for later querying (by Java code). This actor is useful
for Java code that executes models and then wishes to query for results.

SetVariable (extends TypedAtomicActor): Set the value of a variable contained by the container. The
change to the value of the variable takes hold at the end of the current iteration. This helps ensure that
users of value of the variable will see changes to the value deterministically (independent of the sched-
ule of execution of the actors).

XYPlotter (extends Plotter): Display a plot of the data on each inputY channel vs. the data on the cor-
responding inputX channel.

XYScope (extends XYPlotter): Display a plot of the data on each inputY channel vs. the data on the
corresponding inputX channel with finite persistence.

Timed Sinks

TimedPlotter (extends Plotter): Plot inputs as a function of time.

TimedScope (extends TimedPlotter): Plot inputs as a function of time in an oscilloscope style.

Sequence Sinks

ArrayPlotter (extends Plotter): Plot a sequence of arrays of doubles.

BarGraph (extends ArrayPlotter): Plot bar graphs, given arrays of doubles as inputs.

HistogramPlotter (extends PlotterBase): Display a histogram of the data on each input channel.

SequencePlotter (extends Plotter): Plot the input tokens vs. their index number.
134 Ptolemy II

Actor Libraries
SequenceScope (extends SequencePlotter): Plot sequences that are potentially infinitely long in an
oscilloscope style.

4.3.3 Array
The array library supports manipulations of arrays, which are ordered collections of tokens of arbi-

trary type.

ArrayAppend (extends Transformer): Append arrays on the input channels to produce a single output
array.

ArrayAverage (extends Transformer): Output the average of the input array.

ArrayElement (extends Transformer): Extract an element from an array and produce it on the output.

ArrayExtract (extends Transformer): Extract a subarray from an array and produce it on the output.

ArrayLength (extends Transformer): Output the length of the input array.

ArrayLevelCrossing (extends TypedAtomicActor): Find and output the index of the first item in an
input array to cross a specified threshold.

ArrayMaximum (extends Transformer): Extract the maximum element from an array.

ArrayMinimum (extends Transformer): Extract the minimum element from an array.

ArrayPeakSearch (extends TypedAtomicActor): Output the indices and values of peaks in an input
array.

ArraySort (extends Transformer): Sort the elements of an input array.

ArrayToElements (extends Transformer): Send out each element of an input array to the correspond-
ing channel of the output port.

ArrayToSequence (extends SDFTransformer): Extract all elements from an input array and produce
them sequentially on the output port.

ElementsToArray (extends Transformer): Read exactly one token from each channel of the input port,
assemble the tokens into an array and send it to the output port.

SequenceToArray (extends SDFTransformer): Collect a sequence of inputs into an array and produce
the array on the output port.

4.3.4 Conversions
Ptolemy II has a sophisticated type system that allows actors to be polymorphic (to operate on

multiple data types). Typically, actors express type constraints between their ports and their parame-
ters. When actors are connected, these type constraints are resolved to determine the type of each port.
Conversions between types are automatic if they result in no loss of data. However, sometimes, a
model builder may wish to force a particular conversion. The actors in the conversions library support
this.

BooleanToAnything (extends Converter): Convert a Boolean input token to any data type.
Heterogeneous Concurrent Modeling and Design 135

Actor Libraries
BitsToInt (extends SDFConverter): Convert 32 successive binary inputs into a two’s complement inte-
ger.

CartesianToComplex (extends TypedAtomicActor): Convert two tokens representing the real and
imaginary of a complex number into their complex representation.

CartesianToPolar (extends TypedAtomicActor): Convert a Cartesian pair (a token on the x input and a
token on the y input) to two tokens representing its polar form (which are output on angle and magni-
tude).

ComplexToCartesian (extends TypedAtomicActor): Convert a token representing a complex number
into its Cartesian components (which are output on real and imag).

ComplexToPolar (extends TypedAtomicActor): Convert a token representing a complex number into
two tokens representing its polar form (which are output on angle and magnitude).

DoubleToFix (extends Converter): Convert a double into a fix point number with a specific precision,
using a specific quantization strategy.

ExpressionToToken (extends Converter): Read a string expression from the input port and outputs the
token resulting from the evaluation.

FixToDouble (extends Converter): Convert a fix point into a double, by first setting the precision of
the fix point to the supplied precision, using a specific quantization strategy.

FixToFix (extends Converter): Convert a fix point into another fix point with possibly a different pre-
cision, using a specific quantizer and overflow strategy.

IntToBits (extends SDFConverter): Convert an input integer into 32 successive binary outputs.

InUnitsOf (extends Transformer): Convert input tokens to specified units by dividing the input by the
value of the units parameter. This actor is designed to be used with a unit system, which must be
included in the model (note that some Ptolemy II applications do not include unit systems).

LongToDouble (extends Converter): Convert an input of type long to an output of type double.

PolarToCartesian (extends TypedAtomicActor): Converts two tokens representing a polar coordinate
(a token on angle and a token on magnitude) to two tokens representing their Cartesian form (which
are output on x and y).

PolarToComplex (extends TypedAtomicActor): Converts two tokens representing polar coordinates (a
token on angle and a token on magnitude) to a token representing their complex form.

Round (extends TypedAtomicActor): Produce an output token with a value that is a rounded version of
the input. The rounding method is specified by the function attribute, where valid functions are ceil,
floor, round, and truncate.

StringToUnsignedByteArray (extends Converter): Convert an input of type string to an array of type
unsignedByte.

TokenToExpression (extends Converter): Read a string expression from the input port and output the
token resulting from the evaluation.
136 Ptolemy II

Actor Libraries
UnsignedByteArrayToString (extends Converter): Convert an input that is an array of bytes into a
string.

4.3.5 Flow Control
The flow control actors route tokens or otherwise affect the flow of control.

Aggregators

BusAssembler (extends TypedAtomicActor): Assemble input port channels into output bus.

BusDisassembler (extends TypedAtomicActor): Split input bus channels onto output port channels.

Commutator (extends Transformer): Interleave the data on the input channels into a single sequence
on the output.

Distributor (extends Transformer): Distribute the data on the input sequence into multiple sequences
on the output channels.

Multiplexor (extends Transformer): Produce as output the token on the channel of input specified by
the select input. Exactly one token is consumed from each channel of input in each firing.

RecordAssembler (extends TypedAtomicActor): Produce an output token that results from combining a
token from each of the input ports (which must be added by the user). To add input ports to the actor in
Vergil, right click on its icon and select “Configure Ports,” and then select “Add.” The name of each
field in the record is the name of the port that supplies the field.

RecordDisassembler (extends TypedAtomicActor): Produce output tokens on the output ports (which
must be added by the user) that result from separating the record on the input port. To add output ports
to the actor in Vergil, right click on its icon and select “Configure Ports,” and then select “Add.” The
name of each field extracted from the record is the name of the output port to which the value of the
field is sent.

RecordUpdater (extends TypedAtomicActor): Produce an output token that results from the union of
the record read from the input port and the values supplied by the other input ports. The user must cre-
ate the other input ports. Input ports with the same name as a field in the original input record are used
to update the corresponding field in the output token.

Select (extends Transformer): Produce as output the token on the channel of input specified by the
control input. Tokens on channels that are not selected are not consumed.

Switch (extends Transformer): Produce the token read from the input port on the channel of output
specified by the control input.

Synchronizer (extends Transformer): Wait until at least one token exists on each channel of input, then
consume exactly one token from each input channel and output each token on its corresponding output
channel.

VectorAssembler (extends Transformer): On each firing, read exactly one token from each channel of
the input port and assemble the tokens into a double matrix with one column.
Heterogeneous Concurrent Modeling and Design 137

Actor Libraries
VectorDisassembler (extends Transformer): On each firing, read one column vector (i.e. a double
matrix token with one column) from the input port and send out individual doubles to each channel of
the output port.

Boolean Flow Control

BooleanMultiplexor (extends TypedAtomicActor): Produce as output the token from either trueInput
or falseInput as specified by the select input. Exactly one token from each input port is consumed.

BooleanSelect (extends TypedAtomicActor): Produce as output the token from either trueInput or
falseInput as specified by the control input. Tokens from the port that is not selected are not consumed.

BooleanSwitch (extends TypedAtomicActor): Produce the token read from the input port on either the
trueOutput or the falseOutput port, as specified by the control input port.

CountTrues (extends SDFTransformer): Read the specified number of input booleans and output the
number that are true.

Sequence Control

Chop (extends SDFTransformer): Chop an input sequence and construct from it a new output
sequence. This actor can be used, for example, for zero-padding, overlapping windows, delay lines,
etc.

Repeat (extends SDFTransformer): Repeat each input sample (a block of tokens) a specified number
of times.

SampleDelay (extends SDFTransformer): Produce a set of initial tokens during the initialize() method,
and subsequently pass input tokens to the output. Used to break dependency cycles in directed loops of
SDF models.

Sequencer (extends Transformer): Put tokens in order according to their numbers in a sequence.

Execution Control

Stop (extends Sink): Stop execution of a model when it receives a true token on any input channel.

ThrowException (extends Sink): Throw an IllegalActionException when it receives a true token on
any input channel.

ThrowModelError (extends Sink): Throw a model error when it receives a true token on any input
channel. A model error is an exception that is passed up the containment hierarchy rather than being
immediately thrown as an exception.

4.3.6 Higher Order Actors
Most actors in Ptolemy II have parameters (or inputs) that allow users to control the computation

performed by the actors. Such parameters usually have “simple” values, such as integers, records, and
matrices. A higher order actor may have a parameter that is a reference to another model, or an input
that receives specifications from which submodels are created.
138 Ptolemy II

Actor Libraries
MobileFunction (extends TypedAtomicActor): Apply a function to the input and output the result. The
function is defined by the most recent function token received by the actor from its function input.
Before the first function is received, the identity function is applied. Currently, only functions with one
argument are supported.

MobileModel (extends TypedCompositeActor): A MobileModel actor delegates the computation to a
submodel that can be changed during execution. The submodel is changed when a string token is
received from the modelString input of the actor. The string token contains the MoML (see the MoML
chapter for details) description of the submodel. The input and output of the actor is connected to the
corresponding port of the submodel. Currently, it only accepts models with one input and one output,
and requires that the model name its input port as “input” and output port as “output.”

ModalModel: This is a typed composite actor designed to be a modal model. Inside the modal model is
a finite-state machine controller, and inside each state of the FSM is a refinement model. To use this
actor, just drag it into a model, and look inside to start constructing the controller. You may add ports to
get inputs and outputs, and add states to the controller. You may add one or more refinements to a state.
Each refinement is required to have its own director. See the Modal Model section in the FSM Domain
chapter for more details.

ModelReference (extends TypedAtomicActor): This is an atomic actor that can execute a model speci-
fied by a file or URL. This can be used to define an actor whose firing behavior is given by a complete
execution of another model. An instance of this actor can have ports added to it. If it has input ports,
then on each firing, before executing the referenced model, the actor will read an input token from
each input port, if there is one, and use the token to set the value of a top-level parameter in the refer-
enced model that has the same name as the port, if there is one. Input ports should not be multiports,
and if they are, then all but the first channel will be ignored. If this actor has output ports and the refer-
enced model is executed, then upon completion of that execution, this actor looks for top-level param-
eters in the referenced model whose names match those of the output ports. If there are such
parameters, then the final value of those parameters is sent to the output ports. Normally, when you
create output ports for this actor, you will have to manually set the type. There is no type inference
from the parameters of the referenced model.

MultiInstanceComposite (extends TypedCompositeActor): A MultiInstanceComposite actor may be
used to instantiate nInstances identical processing blocks within a model. This actor (the “master”)
creates nInstances − 1 additional instances (clones) of itself during the preinitialize phase of model
execution and destroys these additional instances during model wrapup. MultiInstanceComposite must
be opaque (have a local director). Each instance may refer to its instance parameter which is set auto-
matically between 0 and nInstances-1 by the master if it needs to know its instance number.

RunCompositeActor (extends LifeCycleManager): This is a composite actor that can execute the con-
tained model completely, as if it were a top-level model, on each firing. This can be used to define an
actor whose firing behavior is given by a complete execution of a submodel. An instance of this actor
can have ports added to it. On each firing, if there is a token at an input port, and the actor has a param-
eter with the same name as the port, then the token is used to set the value of the parameter. The sim-
plest way to ensure that there is a matching parameter is to use a PortParameter for inputs. However,
this actor will also work with ordinary ports. Input ports should not be multiports, and if they are, then
all but the first channel will be ignored. Upon completion of executing the contained model, if this
actor has parameters whose names match those of the output ports, then the final value of those param-
eters is sent to the output ports.
Heterogeneous Concurrent Modeling and Design 139

Actor Libraries
VisualModelReference (extends ModelReference): This actor extends the base class with the capabil-
ity to open the referenced model in a Vergil window.

4.3.7 I/O
The IO library (see figure 4.2) consists of actors that read and write to the file system or network.

Note that the “comm” library under “more libraries” includes a Windows only SerialComm actor that
communicates with serial ports.

ArrowKeySensor (extends TypedAtomicActor): Pop up a frame that senses arrow keystrokes and pro-
duces outputs accordingly.

DatagramReader (extends TypedAtomicActor): Read datagram packets from the network socket spec-
ified by localSocketNumber and produce them on the output.

DatagramWriter (extends TypedAtomicActor): Send input data received on data port as a UDP data-
gram packet to the network address specified by remoteAddress and remoteSocketNumber.

DirectoryListing (extends Source): Output an array that lists the contents of a directory.

ExpressionReader (extends LineReader): Read a file or URL, one line at a time, evaluate each line as
an expression, and output the token resulting from the evaluation.

ExpressionWriter (extends LineWriter): Read input tokens and write them, one line at a time, to a
specified file.

FileReader (extends Source): Read a file or URL and output the entire content as a single string.

LineReader (extends Source): Read a file or URL, one line at a time, and output each line as a string
token.

LineWriter (extends Sink): Read input string-valued tokens and write them, one line at a time, to a
specified file.

4.3.8 Logic
The logic actors perform logical operations on inputs.

Comparator (extends TypedAtomicActor): Produce an output token with a value that is a comparison
of the input. The comparison is specified by the comparison attribute, where valid comparisons are >,
>=, <, <=, and ==.

Equals (extends Transformer): Consume at most one token from each channel of input, and produce
an output token with value true if these tokens are equal in value, and false otherwise.

IsPresent (extends Transformer): Consume at most one token from each channel of input, and output a
boolean on the corresponding output channel (if there is one). The value of the boolean is true if the
input is present and false otherwise.

LogicalNot (extends Transformer): Produce an output token which is the logical negation of the input
token.
140 Ptolemy II

Actor Libraries
LogicFunction (extends Transformer): Produce an output token with a value that is a logical function
of the tokens on the channels of input. The function is specified by the function attribute, where valid
functions are and, or, xor, nand, nor, and xnor.

4.3.9 Math
The Math library (see figure 4.2) consists mostly of transformer actors, each of which calculates

some mathematical function.

AbsoluteValue (extends Transformer): Produce an output on each firing with a value that is equal to
the absolute value of the input.

AddSubtract (extends TypedAtomicActor): Add tokens on the plus input channels and subtract tokens
on the minus input channels.

Accumulator (extends Transformer): Output the initial value plus the sum of all the inputs since the
last time a true token was received at the reset port.

Average (extends Transformer): Output the average of the inputs since the last time a true token was
received at the reset port. The reset input may be left disconnected in most domains.

Counter (extends TypedAtomicActor): An up-down counter of received tokens.

Differential (extends Transformer): Output the difference between successive inputs.

DotProduct (extends TypedAtomicActor): Output the dot product of two input arrays.

Expression (extends TypedAtomicActor): On each firing, evaluate the expression parameter, whose
value is set by an expression that may include references to any input ports that have been added to the
actor. The expression language is described in the Expressions chapter, with the addition that the
expression can refer to the values of inputs, and to the current time by the variable named “time,” and
to the current iteration count by the variable named “iteration.” To add input ports to the actor in
Vergil, right click on its icon and select “Configure Ports,” and then select “Add.”

Limiter (extends Transformer): Produce an output token on each firing with a value that is equal to the
input if the input lies between top and bottom. Otherwise, if the input is greater than top, output top. If
the input is less than bottom, output bottom.

LookupTable (extends Transformer): Output the value in the array of tokens specified by the table
parameter at the index specified by the input port.

MathFunction (extends TypedAtomicActor): Produce an output token with a value that is a function of
the input(s). The function is specified by the function attribute, where valid functions are exp, log,
modulo, sign, square, and sqrt.

Maximum (extends TypedAtomicActor): Broadcast an output token on each firing on maximumValue
with a value that is the maximum of the values on the input channels. The index of this maximum is
broadcast on channelNumber.

Minimum (extends TypedAtomicActor): Broadcast an output token on each firing on minimumValue
with a value that is the minimum of the values on the input channels. The index of this minimum is
broadcast on channelNumber.
Heterogeneous Concurrent Modeling and Design 141

Actor Libraries
MultiplyDivide (extends TypedAtomicActor): Multiply tokens on the multiply input channels, and
divide by tokens on the divide input channels.

Quantizer (extends Transformer): Produce an output token with the value in levels that is closest to the
input value.

Remainder (extends Transformer): Produce an output token with the value that is the remainder after
dividing the token on the input port by the divisor.

Scale (extends Transformer): Produce an output that is the product of the input and the factor.

TrigFunction (extends Transformer): Produce an output token with a value that is a function of the
input. The function is specified by the function attribute, where valid functions are acos, asin, atan,
cos, sin, and tan.

4.3.10 Matrix
The matrix library supports matrix manipulations. Currently this library is very small; if you need

matrix operations that are not in this library, then very likely they are available in the expression lan-
guage (see the Expression chapter). You can access these using the Expression actor.

MatrixToSequence (extends SDFTransformer): Unbundle a matrix into a sequence of output tokens.
On each firing, this actor writes the elements of the matrix to the output as a sequence of output tokens.

MatrixViewer (extends Sink): Display the contents of a matrix input.

SequenceToMatrix (extends SDFTransformer): Bundle a specified number of input tokens into a
matrix. On each firing, this actor reads rows times columns input tokens and writes one output matrix
token with the specified number of rows and columns.

4.3.11 Random
The random library (see figure 4.2) consists of actors that generate random data. All actors in this

library have a seed parameter. A seed of zero is interpreted to mean that no seed is specified. In such
cases, a seed based on the current machine time and the actor instance is used to make it unlikely that
two identical sequences are produced.

Bernoulli (extends RandomSource): Produce a random sequence of booleans (a source of coin flips).

DiscreteRandomSource (extends RandomSource): Produce tokens with the given probability mass
function.

Gaussian (extends RandomSource): Produce a random sequence with a Gaussian distribution.

Rician (extends RandomSource): Produce a random sequence with a Rician or Rayleigh distribution.

Uniform (extends RandomSource): Produce a random sequence with a uniform distribution.

4.3.12 Real Time
The behavior of the real time actors is affected by the amount of elapsed real time.

RealTimePlotter (extends Plotter): Plot input data as a function of elapsed real time.
142 Ptolemy II

Actor Libraries
Sleep (extends Transformer): Produce as output the tokens received on input after an amount of real
time specified by the sleepTime parameter.

VariableSleep (extends Transformer): Produce as output the tokens received on input after an amount
of real time specified by the sleepTime input. NOTE: This will likely be replaced by a version of Sleep
with a PortParameter.

WallClockTime (extends Source): Output the elapsed real time in seconds.

4.3.13 Signal Processing
The signal processing library is divided into sublibraries.

Audio

The audio library provides actors that can read and write audio files, can capture data from an
audio input such as a CD or microphone, and can play audio data through the speakers of the comput-
ers. It uses the javasound library, which is part of the Sun Microsystems’ Java 2 Standard Edition
(J2SE) version 1.3.0 and higher. The AudioCapture and AudioPlayer actors are unusual in that they
have coupled parameter values. Changing the parameters of one results in the parameters of the other
being changed. Also, as of this writing, they have the restriction that only one of each may be used in a
model at a time, and that if there are two models that use them, then those two models may not be exe-
cuted simultaneously.

AudioCapture (extends Source): Capture audio from the audio input port of the computer, or from its
microphone, and produce the samples at the output.

AudioReader (extends Source): Read audio from a URL, and produce the samples at the output.

AudioPlayer (extends Sink): Play audio samples on the audio output port of the computer, or from its
speakers.

AudioWriter (extends Sink): Write audio data to a file.

Communications

The communications library collects actors that support modeling and design of digital communi-
cation systems.

ConvolutionalCoder (extends Transformer): Encode an input sequence of bits using a convolutional
code.

DeScrambler (extends Transformer): Descramble the input bit sequence using a feedback shift regis-
ter.

HadamardCode (extends Source): Produce a Hadamard codeword by selecting a row from a Had-
amard matrix.

HammingCoder (extends Transformer): Encode an input sequence of bits using Hamming code.

HammingDecoder (extends Transformer): Decode an input sequence of bits using Hamming code.
Heterogeneous Concurrent Modeling and Design 143

Actor Libraries
LineCoder (extends SDFTransformer): Read a sequence of booleans (of length wordLength) and inter-
pret them as a binary index into the table, from which a token is extracted and sent to the output.

LMSAdaptive (extends FIR): Filter the input with an adaptive filter, and update the coefficients of the
filter using the input error signal according to the LMS (least mean-square) algorithm.

RaisedCosine (extends FIR): An FIR filter with a raised cosine frequency response. This is typically
used in a communication systems as a pulse shaper or a matched filter.

Scrambler (extends Transformer): Scramble the input bit sequence using a feedback shift register.

Slicer (extends Transformer): A decoder of the LineCoder.

TrellisDecoder (extends ViterbiDecoder): Decode convolutional code with non-antipodal constella-
tion.

ViterbiDecoder (extends Transformer): Decode inputs using (hard or soft) Viterbi decoding.

Filtering

DelayLine (extends SDFTransformer): In each firing, output the n most recent input tokens collected
into an array, where n is the length of initialValues. In the beginning, before there are n most recent
tokens, use the tokens from initialValues.

DownSample (extends SDFTransformer): Read factor inputs and produce only one of them on the out-
put.

FIR (extends SDFTransformer): Produce an output token with a value that is the input filtered by an
FIR filter with coefficients given by taps.

GradientAdaptiveLattice (extends Lattice): A lattice filter that adapts the reflection coefficients to
minimize the power of the output sequence.

IIR (extends Transformer): Produce an output token with a value that is the input filtered by an IIR fil-
ter using a direct form II implementation.

Lattice (extends Transformer): Produce an output token with a value that is the input filtered by an FIR
lattice filter with coefficients given by reflectionCoefficients.

LinearDifferenceEquationSystem (extends Transformer): Linear system given by an [A, b, c, d] state-
space model.

LMSAdaptive (extends FIR): Filter the input with an adaptive filter, and update the coefficients of the
filter using the input error signal according to the LMS (least mean-square) algorithm.

RecursiveLattice (extends Transformer): Produce an output token with a value that is the input filtered
by a recursive lattice filter with coefficients given by reflectionCoefficients.

UpSample (extends SDFTransformer): Read one input token and produce factor outputs, with all but
one of the outputs being a zero of the same type as the input.
144 Ptolemy II

Actor Libraries
VariableFIR (extends FIR): Filter the input sequence with an FIR filter with coefficients given on the
newTaps input port. The blockSize parameter specifies the number of successive inputs that are pro-
cessed for each set of taps provided on newTaps.

VariableLattice (extends Lattice): Filter the input sequence with an FIR lattice filter with coefficients
given on the newCoefficients input port. The blockSize parameter specifies the number of successive
inputs that are processed for each set of taps provided on newCoefficients.

VariableRecursiveLattice (extends Lattice): Filter the input sequence with a recursive lattice filter
with coefficients given on the newCoefficients input port. The blockSize parameter specifies the num-
ber of successive inputs that are processed for each set of taps provided on newCoefficients.

Spectrum

DB (extends Transformer): Produce a token that is the value in decibels (k*log10(z)) of the token
received, where k is 10 if inputIsPower is true, and 20 otherwise. The output is never less than min (it
is clipped if necessary).

FFT (extends SDFTransformer): A fast Fourier transform of size 2order.

IFFT (extends SDFTransformer): An inverse fast Fourier transform of size 2order.

LevinsonDurbin (extends SDFTransformer): Calculate the linear predictor coefficients (for both an
FIR and Lattice filter) for the specified autocorrelation input.

MaximumEntropySpectrum (composite actor): A fancy spectrum estimator that uses the Levinson-
Durbin algorithm to calculate linear predictor coefficients, and then uses those as a parametric model
for the random process.

Periodogram (composite actor): A spectrum estimator calculates a periodogram.

PhaseUnwrap (extends Transformer): A simple phase unwrapper.

SmoothedSpectrum (composite actor): A spectrum estimator called the Blackman-Tukey algorithm,
which estimates an autocorrelation function by averaging products of the input samples, and then cal-
culates the FFT of that estimate.

Spectrum (composite actor): A simple spectrum estimator that calculates the FFT of the input. For a
random process, this is called the periodogram spectral estimate.

Statistical

A small number of statistical analysis actors are provided.

Autocorrelation (extends SDFTransformer): Estimate the autocorrelation by averaging products of the
input samples.

ComputeHistogram (extends TypedAtomicActor): Compute a histogram of input data.

PowerEstimate (extends Transformer): Estimate the power of the input signal.
Heterogeneous Concurrent Modeling and Design 145

Actor Libraries
4.3.14 String
The String library consists of actors that operate on strings.

StringCompare (extends TypedAtomicActor): Compute a specified string comparison function on the
two string inputs. The function is specified by the function attribute, where valid functions are equals,
startsWith, endsWith, and contains.

StringFunction (extends Transformer): Apply a specified function on the input string and send the
result to the output. The function is specified by the function attribute, where valid functions are
toLowerCase, toUpperCase, and trim.

StringIndexOf (extends TypedAtomicActor): Output the index of a string (searchFor) contained in
another string (inText).

StringLength (extends Transformer): Output the length of an input string.

StringMatches (extends TypedAtomicActor): Output true if matchString matches pattern, false other-
wise.

StringReplace (extends TypedAtomicActor): Replace a substring of stringToEdit that matches pattern
by replacement. If replaceAll is true, then all matching substrings are replaced.

StringSubstring (extends Transformer): Output a substring of the input string, from the start index to
stop.

4.3.15 Domain Specific
Several sublibraries contain actors that are primarily useful only with corresponding directors.

Continuous Time

The continuous-time library contains a set of actors designed specifically for use in the CT
domain.

ContinuousClock: Generate a piecewise-constant signal with instantaneous transitions between levels.

TriggeredContinuousClock: Generate a piecewise-constant signal with instantaneous transitions
between levels, where two input ports are provided to start and stop the clock.

ContinuousSinewave: Generate a continuous-time sinusoidal signal.

CTCompositeActor: Composite actor to use when a continuous-time model is created within a contin-
uous-time model.

Continuous Time: Dynamics

The actors in this sublibrary have continuous-time dynamics (i.e., they involve integrators, and
hence must coordinate with the differential equation solver).
146 Ptolemy II

Actor Libraries
Integrator: Integrate the input signal over time to produce the output signal. That is, the input is the
derivative of the output with respect to time. This actor can be used to close feedback loops in CT to
define interesting differential equation systems.

LaplaceTransferFunction: Filter the input with the specified rational Laplace transform transfer func-
tion. Note that this actor constructs a submodel, so it might be interesting to look inside the actor after
it is initialized.

LinearStateSpace: Filter the input with a linear system. Note that this actor constructs a submodel, so
it might be interesting to look inside the actor after it is initialized.

DifferentialSystem: Filter the input with the specified system, which can nonlinear, and is specified
using the expression language. Note that this actor constructs a submodel, so it might be interesting to
look inside the actor after it is initialized.

RateLimiter: Limit the first derivative of the input signal, so that the output changes no faster than the
specified limit.

Continuous Time: To Discrete

The actors in this sublibrary produce discrete event signals, which are signals that only have values
at discrete points in time.

EventSource: Output a set of events at discrete set of time points.

LevelCrossingDetector: A event detector that converts continuous signals to discrete events when the
continuous signal crosses a level threshold.

PeriodicSampler: Sample the input signal with the specified rate, producing discrete output events.

TriggeredSampler: Sample the input signal at times where the trigger input has a discrete input events.

ThresholdMonitor: Output true if the input value is in the interval [a, b], which is centered at thresh-
oldCenter and has width thresholdWidth. This actor controls the integration step size so that the input
does not cross the threshold without producing at least one true output.

ZeroCrossingDetector: When the trigger is zero (within the specified errorTolerance), then output the
value from the input port as a discrete event. This actor controls the integration step size to accurately
resolve the time at which the zero crossing occurs.

Continuous Time: To Continuous

The actors in this sublibrary convert discrete event signals into continuous-time signals.

FirstOrderHold: Convert discrete events at the input to a continuous-time signal at the output by pro-
jecting the value with the derivative.

ZeroOrderHold: Convert discrete events at the input to a continuous-time signal at the output by hold-
ing the value of the discrete event until the next discrete event arrives.
Heterogeneous Concurrent Modeling and Design 147

Actor Libraries
4.3.16 Discrete Event
A library of actors is provided to particularly support discrete-event models. In discrete-event

models, signals consist of events placed in time, where time is a double. Events are processed in chro-
nological order.

EventButton: Output a token in response to the click of a button.

EventFilter: An actor that filters a stream of boolean tokens. Every true input token that it receives is
reproduced on the output port. False tokens are discarded. This is usually used to properly trigger other
discrete event actors (such as inhibit and select) based on boolean values.

Inhibit: Output a received input token, unless the inhibit port receives a token.

Merge: Merge input events into a single signal.

PreemptableTask: Simulate a preemptable task.

Previous: On each iteration, this actor produces the token received on the previous iteration. On the
first iteration, it produces the token given by the initialValue parameter, if such a value has been set.

Queue: This actor implements an event queue. When a token is received on the input port, it is stored
in the queue. When the trigger port receives a token, the oldest element in the queue is output. If there
is no element in the queue when a token is received on the trigger port, then no output is produced.

QueueWithNextOut: This actor is like the Queue actor above. An additional output port, nextOut, has
been added which allows the model to know what's next to come out. This new output produces a
token whenever the queue has been empty and a new token is queued. It also produces an output when-
ever a token is taken from the queue and at least one token remains. Otherwise, no output token is pro-
duced at nextOut. The token produced is the oldest token remaining in the queue.

Sampler: On each trigger input, produce at the output the most recently seen input.

Server: Delay input events until they have been “served” for the specified amount of time.

SingleEvent: Produce a single event with the specified time and value.

TimedDelay: Delay input events by the specified amount.

TimeGap: Produce at the output the amount of time between input events.

Timer: Given an input time value, produce value on the output that amount of time in the future.

VariableDelay: Delay input events by the specified amount.

WaitingTime: Measure the amount of time that one event (arriving on waiter) has to wait for an event
to arrive on waitee. There is an output event for every event that arrives on waiter, where the value of
that output is the time spent waiting, and the time of the output is time of the arriving waitee event.

4.4 Data Polymorphism
A data polymorphic actor is one that can operate on any of a number of input data types. For exam-

ple, AddSubtract can accept any numeric type of input.
148 Ptolemy II

Actor Libraries
Figure 4.4 shows the methods defined in the base class Token. Any data exchanged between actors
in Ptolemy II is wrapped in an instance of Token (or more precisely, in an instance of a class derived
from Token). Notice that add() and subtract() are methods of this base class. This makes it easy to
implement a data polymorphic adder.

It is instructive to examine the code in an actor that performs data polymorphic operations. The
fire() method of the AddSubtract actor is shown in figure 4.5. In this code, we first iterate through the
channels of plus input. The first token read (by the get() method) is assigned to sum. Subsequently, the
polymorphic add() method of that token is used to add additional tokens. The second iteration, over the
channels at the minus input port, is slightly trickier. If no tokens were read from the plus input, then the
variable sum is initialized by calling the polymorphic zero() method of the first token read at the minus
port. The zero() method returns whatever a zero value is for the token in question.

Not all classes derived from Token override all its methods. For example, StringToken overrides
add() but not subtract(). Adding strings means simply concatenating them, but it is hard to assign a rea-

FIGURE 4.4. The Token class defines a polymorphic interface that includes basic arithmetic operations.

Token

+Token()
+add(rightArg : Token) : Token
+addReverse(leftArg : Token) : Token
+convert(token : Token) : Token
+divide(divisor : Token) : Token
+divideReverse(dividend : Token) : Token
+getType() : Type
+isCloseTo(token : Token) : BooleanToken
+isCloseTo(token : Token, epsilon : double) : BooleanToken
+isEqualTo(token : Token) : BooleanToken
+modulo(rightArg : Token) : Token
+moduloReverse(leftArg : Token) : Token
+multiply(rightFactor : Token) : Token
+multiplyReverse(leftFactor : Token) : Token
+one() : Token
+subtract(rightArg : Token) : Token
+subtractReverse(leftArg : Token) : Token
+zero() : Token

FIGURE 4.5. The fire() method of the AddSubtract shows the use of polymorphic add() and subtract() meth-
ods in the Token class (see figure 4.4).

public void fire() throws IllegalActionException {
Token sum = null;
for (int i = 0; i < plus.getWidth(); i++) {

if (plus.hasToken(i)) {
if (sum == null) {

sum = plus.get(i);
} else {

sum = sum.add(plus.get(i));
}

 }
}
for (int i = 0; i < minus.getWidth(); i++) {

if (minus.hasToken(i)) {
Token in = minus.get(i);
if (sum == null) {

sum = in.zero();
}
sum = sum.subtract(in);

}
}
if (sum != null) {

output.send(0, sum);
}

}

Heterogeneous Concurrent Modeling and Design 149

Actor Libraries
sonable meaning to subtraction. Thus, if AddSubtract is used on strings, then the minus port must not
ever receive tokens. It may be simply left disconnected, in which case minus.getWidth() returns zero.
If the subtract() method of a StringToken is called, then a runtime exception will be thrown.

4.5 Domain Polymorphism
Most actors access their ports as shown in figure 4.5, using the hasToken(), get(), and send() meth-

ods. Those methods are polymorphic, in that their exact behavior depends on the domain. For example,
get() in the CSP domain causes a rendezvous to occur, which means that the calling thread is sus-
pended until another thread sends data to the same port (using, for example, the send() method on one
of its ports). Correspondingly, a call to send() causes the calling thread to suspend until some other
thread calls a corresponding get(). In the PN domain, by contrast, send() returns immediately (if there
is room in the channel buffers), and only get() causes the calling thread to suspend.

Each domain has slightly different behavior associated with hasToken(), get(), send() and other
methods of ports. The actor, however, does not really care. The fire() method shown in figure 4.5 will
work for any reasonable implementation of these methods. Thus, the AddSubtract actor is domain
polymorphic.

Domains also have different behavior with respect to when the fire() method is invoked. In pro-
cess-oriented domains, such as CSP and PN, a thread is created for each actor, and an infinite loop is
created to repeatedly invoke the fire() method. Moreover, in these domains, hasToken() always returns
true, since you can call get() on a port and it will not return until there is data available. In the DE
domain, the fire() method is invoked only when there are new inputs that happen to be the oldest ones
in the model, and hasToken() returns true only if there is new data on the input port. The design of
actors for multiple domains is covered in the Designing Actors chapter.
150 Ptolemy II

	4 Actor Libraries
	4.1 Overview
	4.2 Actor Classes
	FIGURE 4.1. Key actor base classes and interfaces.

	4.3 Actor Summaries
	FIGURE 4.2. The default Vergil actor library is shown at the left, expanded to the first level.
	4.3.1 Sources
	4.3.2 Sinks
	FIGURE 4.3. Organization of actors in the ptolemy.actor.lib.gui package.

	4.3.3 Array
	4.3.4 Conversions
	4.3.5 Flow Control
	4.3.6 Higher Order Actors
	4.3.7 I/O
	4.3.8 Logic
	4.3.9 Math
	4.3.10 Matrix
	4.3.11 Random
	4.3.12 Real Time
	4.3.13 Signal Processing
	4.3.14 String
	4.3.15 Domain Specific
	4.3.16 Discrete Event

	4.4 Data Polymorphism
	FIGURE 4.4. The Token class defines a polymorphic interface that includes basic arithmetic operations.
	FIGURE 4.5. The fire() method of the AddSubtract shows the use of polymorphic add() and subtract() methods in the Token class (see figure 4.4).

	4.5 Domain Polymorphism

