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3.1  Introduction
In Ptolemy II, models specify computations by composing actors. Many computations, however,

are awkward to specify this way. A common situation is where we wish to evaluate a simple algebraic
expression, such as “sin(2π (x-1)).” It is possible to express this computation by composing actors in a
block diagram, but it is far more convenient to give it textually.

The Ptolemy II expression language provides infrastructure for specifying algebraic expressions
textually and for evaluating them. The expression language is used to specify the values of parameters,
guards and actions in state machines, and for the calculation performed by the Expression actor. In
fact, the expression language is part of the generic infrastructure in Ptolemy II, and it can be used by
programmers extending the Ptolemy II system. In this chapter, we describe how to use expressions
from the perspective of a user rather than a programmer.

3.1.1  Expression Evaluator
Vergil provides an interactive expression evaluator, which is accessed through the File:New

menu. This operates like an interactive command shell, and is shown in figure 3.1. It supports a com-
mand history. To access the previously entered expression, type the up arrow or Control-P. To go back,
type the down arrow or Control-N. The expression evaluator is useful for experimenting with expres-
sions.
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3.2  Simple Arithmetic Expressions
3.2.1  Constants and Literals

The simplest expression is a constant, which can be given either by the symbolic name of the con-
stant, or by a literal. By default, the symbolic names of constants supported are PI, pi, E, e, true, false,
i, j, NaN, Infinity, PositiveInfinity, NegativeInfinity, MaxUnsignedByte, MinUnsignedByte, MaxInt,
MinInt, MaxLong, MinLong, MaxDouble, MinDouble. For example,

PI/2.0

is a valid expression that refers to the symbolic name “PI” and the literal “2.0.” The constants i and j
are the imaginary number with value equal to the square root of −1. The constant NaN is “not a num-
ber,” which for example is the result of dividing 0.0/0.0. The constant Infinity is the result of dividing
1.0/0.0. The constants that start with “Max” and “Min” are the maximum and minimum values for
their corresponding types.

Numerical values without decimal points, such as “10” or “−3” are integers (type int). Numerical
values with decimal points, such as “10.0” or “3.14159” are of type double. Numerical values without
decimal points followed by the character “l” (el) or “L” are of type long. Unsigned integers followed
by “ub” or “UB” are of type unsignedByte, as in “5ub”. An unsignedByte has a value between 0 and
255; note that it not quite the same as the Java byte, which has a value between -128 and 127.

Numbers of type int, long, or unsignedByte can be specified in decimal, octal, or hexadecimal.
Numbers beginning with a leading “0” are octal numbers. Numbers beginning with a leading “0x” are
hexadecimal numbers. For example, “012” and “0xA” are both equal to the integer 10. 

A complex is defined by appending an “i” or a “j” to a double for the imaginary part. This gives a
purely imaginary complex number which can then leverage the polymorphic operations in the Token

FIGURE 3.1.  Expression evaluator, which is accessed through the File:New menu.
94 Ptolemy II



Expressions
classes to create a general complex number. Thus “2 + 3i” will result in the expected complex num-
ber. You can optionally write this “2 + 3*i”.

Literal string constants are also supported. Anything between double quotes, “...”, is interpreted as
a string constant. The following built-in string-valued constants are defined:

The value of these variables is the value of the Java virtual machine property, such as user.home. The
properties user.dir and user.home are standard in Java. Their values are platform dependent; see the
documentation for the java.lang.System.getProperties() method for details. Note that user.dir and
user.home are usually not readable in unsigned applets, in which case, attempts to use these variables
in an expression will result in an exception. Vergil will display all the Java properties if you invoke
JVM Properties in the View menu of a Graph Editor.

The ptolemy.ptII.dir property is set automatically when Vergil or any other Ptolemy II executable
is started up. You can also set it when you start a Ptolemy II process using the java command by a syn-
tax like the following:

java -Dptolemy.ptII.dir=${PTII} classname

where classname is the full class name of a Java application.
The constants() utility function returns a record with all the globally defined constants. If you open

the expression evaluator and invoke this function, you will see that its value is something like:

{CWD="C:\ptII\ptolemy\data\expr", E=2.718281828459, HOME="C:\Documents 
and Settings\eal", Infinity=Infinity, MaxDouble=1.7976931348623E308, 
MaxInt=2147483647, MaxLong=9223372036854775807L, 
MaxUnsignedByte=255ub, MinDouble=4.9E-324, MinInt=-2147483648, 
MinLong=-9223372036854775808L, MinUnsignedByte=0ub, NaN=NaN, 
NegativeInfinity=-Infinity, PI=3.1415926535898, PTII="c:\ptII", 
PositiveInfinity=Infinity, boolean=false, complex=0.0 + 0.0i, 
double=0.0, e=2.718281828459, false=false, fixedpoint=fix(0.0,2,1), 

TABLE 1: String-valued constants defined in the expression language.

Variable name Meaning Property name Example under Windows

PTII The directory in which Ptolemy II is installed ptolemy.ptII.dir c:\tmp

HOME The user home directory user.home c:\Documents and Settings\you

CWD The current working directory user.dir c:\ptII

TMPDIR The temporary directory java.io.tmpdir c:\Documents and Set-
tings\you\Local Settings\Temp
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general=present, i=0.0 + 1.0i, int=0, j=0.0 + 1.0i, long=0L, matrix=[], 
object=object(null),pi=3.1415926535898, scalar=present, string="", 
true=true, unknown=present, unsignedByte=0ub}

3.2.2  Variables
Expressions can contain identifiers that are references to variables within the scope of the expres-

sion. For example,

PI*x/2.0

is valid if “x” is a variable in scope. In the expression evaluator, the variables that are in scope include
the built-in constants plus any assignments that have been previously made. For example,

>> x = pi/2
1.5707963267949
>> sin(x)
1.0
>>

In the context of Ptolemy II models, the variables in scope include all parameters defined at the same
level of the hierarchy or higher. So for example, if an actor has a parameter named “x” with value 1.0,
then another parameter of the same actor can have an expression with value “PI*x/2.0”, which will
evaluate to π /2.

Consider a parameter P in actor X which is in turn contained by composite actor Y. The scope of an
expression for P includes all the parameters contained by X and Y, plus those of the container of Y, its
container, etc. That is, the scope includes any parameters defined above in the hierarchy.

You can add parameters to actors (composite or not) by right clicking on the actor, selecting “Con-
figure” and then clicking on “Add”, or by dragging in a parameter from the utilities library. Thus, you
can add variables to any scope, a capability that serves the same role as the “let” construct in many
functional programming languages.

3.2.3  Operators
The arithmetic operators are +, −, *, /, ^, and %. Most of these operators operate on most data

types, including arrays, records, and matrices. The ^ operator computes “to the power of” or exponen-
tiation where the exponent can only be an int or an unsignedByte. 

The unsignedByte, int and long types can only represent integer numbers. Operations on these
types are integer operations, which can sometimes lead to unexpected results. For instance, 1/2 yields 0
if 1 and 2 are integers, whereas 1.0/2.0 yields 0.5. The exponentiation operator ‘^’ when used with
negative exponents can similarly yield unexpected results. For example, 2^−1 is 0 because the result is
computed as 1/(2^1).
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The % operation is a modulo or remainder operation. The result is the remainder after division.
The sign of the result is the same as that of the dividend (the left argument). For example,

>> 3.0 % 2.0
1.0
>> -3.0 % 2.0
-1.0
>> -3.0 % -2.0
-1.0
>> 3.0 % -2.0
1.0

The magnitude of the result is always less than the magnitude of the divisor (the right argument). Note
that when this operator is used on doubles, the result is not the same as that produced by the remain-
der() function (see Table 5 on page 119). For instance,

>> remainder(-3.0, 2.0)
1.0

The remainder() function calculates the IEEE 754 standard remainder operation. It uses a rounding
division rather than a truncating division, and hence the sign can be positive or negative, depending on
complicated rules (see page 113). For example, counter intuitively,

>> remainder(3.0, 2.0)
-1.0

When an operator involves two distinct types, the expression language has to make a decision
about which type to use to implement the operation. If one of the two types can be converted without
loss into the other, then it will be. For instance, int can be converted losslessly to double, so 1.0/2 will
result in 2 being first converted to 2.0, so the result will be 0.5. Among the scalar types, unsignedByte
can be converted to anything else, int can be converted to double, and double can be converted to com-
plex. Note that long cannot be converted to double without loss, nor vice versa, so an expression like
2.0/2L yields the following error message:

Error evaluating expression "2.0/2L"
 in .Expression.evaluator
Because:
divide method not supported between ptolemy.data.DoubleToken '2.0' and 
ptolemy.data.LongToken '2L' because the types are incomparable.

All scalar types have limited precision and magnitude. As a result of this, arithmetic operations are
subject to underflow and overflow. 
• For double numbers, overflow results in the corresponding positive or negative infinity. Under-

flow (i.e. the precision does not suffice to represent the result) will yield zero.
• For integer types and fixedpoint, overflow results in wraparound. For instance, while the value of 

MaxInt is 2147483647, the expression MaxInt + 1 yields −2147483648. Similarly, while Max-
UnsignedByte has value 255ub, MaxUnsignedByte + 1ub has value 0ub. Note, however, that 
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MaxUnsignedByte + 1 yields 256, which is an int, not an unsignedByte. This is because Max-
UnsignedByte can be losslessly converted to an int, so the addition is int addition, not unsigned-
Byte addition.

The bitwise operators are &, |, #, and ~. They operate on boolean, unsignedByte, int and long (but not
fixedpoint, double or complex). The operator & is bitwise AND, ~ is bitwise NOT, and | is bitwise OR,
and # is bitwise XOR (exclusive or, after MATLAB). 

The relational operators are <, <=, >, >=, == and !=. They return type boolean. Note that these
relational operators check the values when possible, irrespective of type. So, for example,

1 == 1.0

returns true. If you wish to check for equality of both type and value, use the equals() method, as in

>> 1.equals(1.0)
false

Boolean-valued expressions can be used to give conditional values. The syntax for this is 

boolean ? value1 : value2

If the boolean is true, the value of the expression is value1; otherwise, it is value2.
The logical boolean operators are &&, ||, !, & and |. They operate on type boolean and return type

boolean. The difference between logical && and logical & is that & evaluates all the operands regardless
of whether their value is now irrelevant. Similarly for logical || and |. This approach is borrowed
from Java. Thus, for example, the expression “false && x” will evaluate to false irrespective of
whether x is defined. On the other hand, “false & x” will throw an exception.

The << and >> operators performs arithmetic left and right shifts respectively. The >>> operator
performs a logical right shift, which does not preserve the sign. They operate on unsignedByte, int, and
long.

3.2.4  Comments
In expressions, anything inside /*...*/ is ignored, so you can insert comments.

3.3  Uses of Expressions
3.3.1  Parameters

The values of most parameters of actors can be given as expressions1. The variables in the expres-
sion refer to other parameters that are in scope, which are those contained by the same container or
some container above in the hierarchy. They can also reference variables in a scope-extending

1. The exceptions are parameters that are strictly string parameters, in which case the value of 
the parameter is the literal string, not the string interpreted as an expression, as for example 
the function parameter of the TrigFunction actor, which can take on only “sin,” “cos,” 
“tan”, “asin”, “acos”, and “atan” as values.
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attribute, which includes variables defining units, as explained below in section 3.9. Adding parame-
ters to actors is straightforward, as explained in the previous chapter.

3.3.2  Port Parameters
It is possible to define a parameter that is also a port. Such a PortParameter provides a default

value, which is specified like the value of any other parameter. When the corresponding port receives
data, however, the default value is overridden with the value provided at the port. Thus, this object
functions like a parameter and a port. The current value of the PortParameter is accessed like that of
any other parameter. Its current value will be either the default or the value most recently received on
the port.

A PortParameter might be contained by an atomic actor or a composite actor. To put one in a com-
posite actor, drag it into a model from the utilities library, as shown in figure 3.2. The resulting icon is
actually a combination of two icons, one representing the port, and the other representing the parame-
ter. These can be moved separately, but doing so might create confusion, so we recommend selecting
both by clicking and dragging over the pair and moving both together.

To be useful, a PortParameter has to be given a name (the default name, “portParameter,” is not
very compelling). To change the name, right click on the icon and select “Customize Name,” as shown
in figure 3.2. In the figure, the name is set to “noiseLevel.” Then set the default value by either double
clicking or selecting “Configure.” In the figure, the default value is set to 10.0.

An example of a library actor that uses a PortParameter is the Sinewave actor, which is found in
the sources library in Vergil. It is shown in figure 3.3. If you double click on this actor, you can set the
default values for frequency and phase. But both of these values can also be set by the corresponding
ports, which are shown with grey fill.

FIGURE 3.2.  A portParameter is both a port and a parameter. To use it in a composite actor, drag it into the 
actor, change its name to something meaningful, and set its default value.

customize the name:
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3.3.3  String Parameters
Some parameters have values that are always strings of characters. Such parameters support a sim-

ple string substitution mechanism where the value of the string can reference other parameters in scope
by name using the syntax $name, where name is the name of the parameter in scope. For example, the
StringCompare actor in figure 3.4 has as the value of firstString “The answer is $PI”. This references
the built-in constant PI. The value of secondString is “The answer is 3.1415926535898”. As shown in
the figure, these two strings are deemed to be equal because $PI is replaced with the value of PI.

3.3.4  Expression Actor
The Expression actor is a particularly useful actor found in the math library. By default, it has one

output and no inputs, as shown in Figure 3.5(a). The first step in using it is to add ports, as shown in (b)
and (c), resulting in a new icon as shown in (d). Note: In (c) when you click on Add, you will be
prompted for a Name (pick one) and a Class. Leave the Class entry blank and click OK. You then
specify an expression using the port names, as shown in (e), resulting in the icon shown in (f).

FIGURE 3.3.  Sinewave actor, showing its port parameters, and their use at the lower level of the hierarchy.
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3.3.5  State Machines
Expressions give the guards for state transitions, as well as the values used in actions that produce

outputs and actions that set values of parameters in the refinements of destination states. This mecha-
nism was explained in the previous chapter.

FIGURE 3.4.  String parameters are indicated in the parameter editor boxes by a light blue background. A 
string parameter can include references to variables in scope with $name, where name is the name of the 
variable. In this example, the built-in constant $PI is referenced by name in the first 

FIGURE 3.5.  Illustration of the Expression actor.

(a)

(b)

(c)

(d)

(e) (f)
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3.4  Composite Data Types
3.4.1  Arrays

Arrays are specified with curly brackets, e.g., “{1, 2, 3}” is an array of int, while “{"x",
"y", "z"}” is an array of string. The types are denoted “{int}” and “{string}” respectively. An
array is an ordered list of tokens of any type, with the only constraint being that the elements all have
the same type. If an array is given with mixed types, the expression evaluator will attempt to losslessly
convert the elements to a common type. Thus, for example, 

{1, 2.3}

has value

{1.0, 2.3}

Its type is {double}. The elements of the array can be given by expressions, as in the example
“{2*pi, 3*pi}.” Arrays can be nested; for example, “{{1, 2}, {3, 4, 5}}” is an array of
arrays of integers. The elements of an array can be accessed as follows:

>> {1.0, 2.3}(1)
2.3

which yields 2.3. Note that indexing begins at 0. Of course, if name is the name of a variable in scope
whose value is an array, then its elements may be accessed similarly, as shown in this example:

>> x = {1.0, 2.3}
{1.0, 2.3}
>> x(0)
1.0

Arithmetic operations on arrays are carried out element-by-element, as shown by the following
examples:

>> {1, 2}*{2, 2}
{2, 4}
>> {1, 2}+{2, 2}
{3, 4}
>> {1, 2}-{2, 2}
{-1, 0}
>> {1, 2}^2
{1, 4}
>> {1, 2}%{2, 2}
{1, 0}
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An array can be checked for equality with another array as follows:

>> {1, 2}=={2, 2}
false
>> {1, 2}!={2, 2}
true

For other comparisons of arrays, use the compare() function (see Table 5 on page 119). As with sca-
lars, testing for equality using the == or != operators tests the values, independent of type. For exam-
ple,

>> {1, 2}=={1.0, 2.0}
true

You can extract a subarray by invoking the subarray() method as follows:

>> {1, 2, 3, 4}.subarray(2, 2)
{3, 4}

The first argument is the starting index of the subarray, and the second argument is the length.
You can also extract non-contiguous elements from an array using the extract() method. This

method has two forms. The first form takes a boolean array of the same length as the original array
which indicates which elements to extract, as in the following example:

>> {"red","green","blue"}.extract({true,false,true})
{"red", "blue"}

The second form takes an array of integers giving the indices to extract, as in the following example:

>> {"red","green","blue"}.extract({2,0,1,1})
{"blue", "red", "green", "green"}

3.4.2  Matrices
In Ptolemy II, arrays are ordered sets of tokens. Ptolemy II also supports matrices, which are more

specialized than arrays. They contain only certain primitive types, currently boolean, complex, double,
fixedpoint, int, and long. Currently unsignedByte matrices are not supported. Matrices cannot contain
arbitrary tokens, so they cannot, for example, contain matrices. They are intended for data intensive
computations.

Matrices are specified with square brackets, using commas to separate row elements and semico-
lons to separate rows. E.g., “[1, 2, 3; 4, 5, 5+1]” gives a two by three integer matrix (2 rows and 3 col-
umns). Note that an array or matrix element can be given by an expression. A row vector can be given
as “[1, 2, 3]” and a column vector as “[1; 2; 3]”. Some MATLAB-style array constructors are sup-
ported. For example, “[1:2:9]” gives an array of odd numbers from 1 to 9, and is equivalent to “[1, 3, 5,
7, 9].” Similarly, “[1:2:9; 2:2:10]” is equivalent to “[1, 3, 5, 7, 9; 2, 4, 6, 8, 10].” In the syntax
“[p:q:r]”, p is the first element, q is the step between elements, and r is an upper bound on the last ele-
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ment. That is, the matrix will not contain an element larger than r. If a matrix with mixed types is spec-
ified, then the elements will be converted to a common type, if possible. Thus, for example, “[1.0, 1]”
is equivalent to “[1.0, 1.0],” but “[1.0, 1L]” is illegal (because there is no common type to which both
elements can be converted losslessly).

Reference to elements of matrices have the form “matrix(n, m)” or “name(n, m)” where name is
the name of a matrix variable in scope, n is the row index, and m is the column index. Index numbers
start with zero, as in Java, not 1, as in MATLAB. For example,

>> [1, 2; 3, 4](0,0)
1
>> a = [1, 2; 3, 4]
[1, 2; 3, 4]
>> a(1,1)
4

Matrix multiplication works as expected. For example, as seen in the expression evaluator (see fig-
ure 3.1),

>> [1, 2; 3, 4]*[2, 2; 2, 2]
[6, 6; 14, 14]

Of course, if the dimensions of the matrix don’t match, then you will get an error message. To do ele-
ment wise multiplication, use the multipyElements() function (see Table 6 on page 121). Matrix addi-
tion and subtraction are element wise, as expected, but the division operator is not supported. Element
wise division can be accomplished with the divideElements() function, and multiplication by a matrix
inverse can be accomplished using the inverse() function (see Table 6 on page 121). A matrix can be
raised to an int or unsignedByte power, which is equivalent to multiplying it by itself some number of
times. For instance,

>> [3, 0; 0, 3]^3
[27, 0; 0, 27]

A matrix can also be multiplied or divided by a scalar, as follows:

>> [3, 0; 0, 3]*3
[9, 0; 0, 9]

A matrix can be added to a scalar. It can also be subtracted from a scalar, or have a scalar subtracted
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from it. For instance,

>> 1-[3, 0; 0, 3]
[-2, 1; 1, -2]

A matrix can be checked for equality with another matrix as follows:

>> [3, 0; 0, 3]!=[3, 0; 0, 6]
true
>> [3, 0; 0, 3]==[3, 0; 0, 3]
true

For other comparisons of matrices, use the compare() function (see Table 5 on page 119). As with sca-
lars, testing for equality using the == or != operators tests the values, independent of type. For exam-
ple,

>> [1, 2]==[1.0, 2.0]
true

To get type-specific equality tests, use the equals() method, as in the following examples:

>> [1, 2].equals([1.0, 2.0])
false
>> [1.0, 2.0].equals([1.0, 2.0])
true
>> 

3.4.3  Records
A record token is a composite type containing named fields, where each field has a value. The

value of each field can have a distinct type. Records are delimited by curly braces, with each field
given a name. For example, “{a=1, b="foo"}” is a record with two fields, named “a” and “b”, with
values 1 (an integer) and “foo” (a string), respectively. The value of a field can be an arbitrary expres-
sion, and records can be nested (a field of a record token may be a record token).

Fields may be accessed using the period operator. For example,

{a=1,b=2}.a

yields 1. You can optionally write this as if it were a method call:

{a=1,b=2}.a()

The arithmetic operators +, −, *, /, and % can be applied to records. If the records do not have identical
fields, then the operator is applied only to the fields that match, and the result contains only the fields
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that match. Thus, for example,

{foodCost=40, hotelCost=100} + {foodCost=20, taxiCost=20}

yields the result

{foodCost=60}

You can think of an operation as a set intersection, where the operation specifies how to merge the val-
ues of the intersecting fields. You can also form an intersection without applying an operation. In this
case, using the intersect() function, you form a record that has only the common fields of two specified
records, with the values taken from the first record. For example,

>> intersect({a=1, c=2}, {a=3, b=4})
{a=1}

Records can be joined (think of a set union) without any operation being applied by using the
merge() function. This function takes two arguments, both of which are record tokens. If the two
record tokens have common fields, then the field value from the first record is used. For example,

merge({a=1, b=2}, {a=3, c=3})

yields the result {a=1, b=2, c=3}. 
Records can be compared, as in the following examples:

>> {a=1, b=2}!={a=1, b=2}
false
>> {a=1, b=2}!={a=1, c=2}
true

Note that two records are equal only if they have the same field labels and the values match. As with
scalars, the values match irrespective of type. For example:

>> {a=1, b=2}=={a=1.0, b=2.0+0.0i}
true

The order of the fields is irrelevant. Hence

>> {a=1, b=2}=={b=2, a=1}
true

Moreover, record fields are reported in alphabetical order, irrespective of the order in which they are
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defined. For example,

>> {b=2, a=1}
{a=1, b=2}

To get type-specific equality tests, use the equals() method, as in the following examples:

>> {a=1, b=2}.equals({a=1.0, b=2.0+0.0i})
false
>> {a=1, b=2}.equals({b=2, a=1})
true
>> 

3.5  Invoking Methods
Every element and subexpression in an expression represents an instance of the Token class in

Ptolemy II (or more likely, a class derived from Token). The expression language supports invocation
of any method of a given token, as long as the arguments of the method are of type Token and the
return type is Token (or a class derived from Token, or something that the expression parser can easily
convert to a token, such as a string, double, int, etc.). The syntax for this is (token).methodName(args),
where methodName is the name of the method and args is a comma-separated set of arguments. Each
argument can itself be an expression. Note that the parentheses around the token are not required, but
might be useful for clarity. As an example, the ArrayToken and RecordToken classes have a length()
method, illustrated by the following examples:

{1, 2, 3}.length()
{a=1, b=2, c=3}.length()

each of which returns the integer 3.
The MatrixToken classes have three particularly useful methods, illustrated in the following exam-

ples:

[1, 2; 3, 4; 5, 6].getRowCount()

which returns 3, and

[1, 2; 3, 4; 5, 6].getColumnCount()

which returns 2, and

[1, 2; 3, 4; 5, 6].toArray()

which returns {1, 2, 3, 4, 5, 6}. The latter function can be particularly useful for creating arrays using
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MATLAB-style syntax. For example, to obtain an array with the integers from 1 to 100, you can enter:

[1:1:100].toArray()

3.6  Defining Functions
The expression language supports definition of functions. The syntax is:

function(arg1:Type, arg2:Type...)
    function body 

where “function” is the keyword for defining a function. The type of an argument can be left unspeci-
fied, in which case the expression language will attempt to infer it. The function body gives an expres-
sion that defines the return value of the function. The return type is always inferred based on the
argument type and the expression. For example:

function(x:double) x*5.0

defines a function that takes a double argument, multiplies it by 5.0, and returns a double. The return
value of the above expression is the function itself. Thus, for example, the expression evaluator yields:

>> function(x:double) x*5.0
(function(x:double) (x*5.0))
>> 

To apply the function to an argument, simply do

>> (function(x:double) x*5.0) (10.0)
50.0
>> 

Alternatively, in the expression evaluator, you can assign the function to a variable, and then use the
variable name to apply the function. For example,

>> f = function(x:double) x*5.0
(function(x:double) (x*5.0))
>> f(10)
50.0
>> 

Functions can be passed as arguments to certain “higher-order functions” that have been defined
(see table Table 9 on page 125). For example, the iterate() function takes three arguments, a function,
an integer, and an initial value to which to apply the function. It applies the function first to the initial
value, then to the result of the application, then to that result, collecting the results into an array whose
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length is given by the second argument. For example, to get an array whose values are multiples of 3,
try

>> iterate(function(x:int) x+3, 5, 0)
{0, 3, 6, 9, 12}

The function given as an argument simply adds three to its argument. The result is the specified initial
value (0) followed by the result of applying the function once to that initial value, then twice, then
three times, etc.

Another useful higher-order function is the map() function. This one takes a function and an array
as arguments, and simply applies the function to each element of the array to construct a result array.
For example,

>> map(function(x:int) x+3, {0, 2, 3})
{3, 5, 6}

A typical use of functions in a Ptolemy II model is to define a parameter in a model whose value is
a function. Suppose that the parameter named “f” has value “function(x:double) x*5.0”. Then
within the scope of that parameter, the expression “f(10.0)” will yield result 50.0.

Functions can also be passed along connections in a Ptolemy II model. Consider the model shown
in figure 3.6. In that example, the Const actor defines a function that simply squares the argument. Its
output, therefore, is a token with type function. That token is fed to the “f” input of the Expression
actor. The expression uses this function by applying it to the token provided on the “y” input. That
token, in turn, is supplied by the Ramp actor, so the result is the curve shown in the plot on the right.

A more elaborate use is shown in figure 3.7. In that example, the Const actor produces a function,
which is then used by the Expression actor to create new function, which is then used by Expression2
to perform a calculation. The calculation performed here adds the output of the Ramp to the square of
the output of the Ramp.

FIGURE 3.6.  Example of a function being passed from one actor to another.
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Functions can be recursive, as illustrated by the following (rather arcane) example:

>> fact = function(x:int,f:(function(x,f) int)) (x<1?1:x*f(x-1,f))
(function(x:int, f:function(a0:general, a1:general) int) 
(x<1)?1:(x*f((x-1), f)))
>> factorial = function(x:int) fact(x,fact)
(function(x:int) (function(x:int, f:function(a0:general, a1:general) 
int) (x<1)?1:(x*f((x-1), f)))(x, (function(x:int, f:function(a0:gen-
eral, a1:general) int) (x<1)?1:(x*f((x-1), f)))))
>> map(factorial, [1:1:5].toArray())
{1, 2, 6, 24, 120}
>> 

The first expression defines a function named “fact” that takes a function as an argument, and if the
argument is greater than or equal to 1, uses that function recursively. The second expression defines a
new function “factorial” using “fact.” The final command applies the factorial function to an array to
compute factorials.

3.7  Built-In Functions
The expression language includes a set of functions, such as sin(), cos(), etc. The functions that are

built in include all static methods of the classes shown in Table 2 on page 111, which together provide
a rich set1. The functions currently available are shown in the tables in the appendix, which also show
the argument types and return types.

In most cases, a function that operates on scalar arguments can also operate on arrays and matrices.

1. Moreover, the set of available can easily be extended if you are writing Java code by registering another class 
that includes static methods (see the PtParser class in the ptolemy.data.expr package).

FIGURE 3.7.  More elaborate example with functions passed between actors.
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Thus, for example, you can fill a row vector with a sine wave using an expression like

sin([0.0:PI/100:1.0])

Or you can construct an array as follows,

sin({0.0, 0.1, 0.2, 0.3})

Functions that operate on type double will also generally operate on int or unsignedByte, because these
can be losslessly converted to double, but not generally on long or complex.

Tables of available functions are shown in the appendix. For example, Table 4 on page 118 shows
trigonometric functions. Note that these operate on double or complex, and hence on int and unsigned-
Byte, which can be losslessly converted to double. The result will always be double. For example,

>> cos(0)
1.0

These functions will also operate on matrices and arrays, in addition to the scalar types shown in the
table, as illustrated above. The result will be a matrix or array of the same size as the argument, but
always containing elements of type double

Table 5 on page 119 shows other arithmetic functions beyond the trigonometric functions. As with
the trigonometric functions, those that indicate that they operate on double will also work on int and
unsignedByte, and unless they indicate otherwise, they will return whatever they return when the argu-
ment is double. Those functions in the table that take scalar arguments will also operate on matrices
and arrays. For example, since the table indicates that the max() function can take int, int as arguments,

TABLE 2: The classes whose static methods are available as functions in the expression language.

java.lang.Math ptolemy.math.IntegerMatrixMath

java.lang.Double ptolemy.math.DoubleMatrixMath

java.lang.Integer ptolemy.math.ComplexMatrixMath

java.lang.Long ptolemy.math.LongMatrixMath

java.lang.String ptolemy.math.IntegerArrayMath

ptolemy.data.MatrixToken ptolemy.math.DoubleArrayStat

ptolemy.data.RecordToken ptolemy.math.ComplexArrayMath

ptolemy.data.expr.UtilityFunctions ptolemy.math.LongArrayMath

ptolemy.data.expr.FixPointFunctions ptolemy.math.SignalProcessing

ptolemy.math.Complex ptolemy.math.FixPoint

ptolemy.math.ExtendedMath
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then by implication, it can also take {int}, {int}. For example,

>> max({1, 2}, {2, 1})
{2, 2}

Notice that the table also indicates that max() can take {int} as an argument. E.g.

>> max({1, 2, 3})
3

In the former case, the function is applied pointwise to the two arguments. In the latter case, the
returned value is the maximum over all the contents of the single argument.

Table 6 shows functions that only work with matrices, arrays, or records (that is, there is no corre-
sponding scalar operation). Recall that most functions that operate on scalars will also operate on
arrays and matricesTable 7 shows utility functions for evaluating expressions given as strings or repre-
senting numbers as strings. Of these, the eval() function is the most flexible (see page 112). 

A few of the functions have sufficiently subtle properties that they require further explanation.
That explanation is here.

eval() and traceEvaluation()

The built-in function eval() will evaluate a string as an expression in the expression language. For
example,

eval("[1.0, 2.0; 3.0, 4.0]")

will return a matrix of doubles. The following combination can be used to read parameters from a file:

eval(readFile("filename"))

where the filename can be relative to the current working directory (where Ptolemy II was started, as
reported by the property user.dir), the user’s home directory (as reported by the property user.home),
or the classpath, which includes the directory tree in which Ptolemy II is installed.

Note that if eval() is used in an Expression actor, then it will be impossible for the type system to
infer any more specific output type than general. If you need the output type to be more specific, then
you will need to cast the result of eval(). For example, to force it to type double:

>> cast(double, eval("pi/2"))
1.5707963267949

The traceEvaluation() function evaluates an expression given as a string, much like eval(), but instead
of reporting the result, reports exactly how the expression was evaluated. This can be used to debug
expressions, particularly when the expression language is extended by users.

random(), gaussian()

The functions random() and gaussian() shown in Table 5 on page 119 return one or more random
numbers. With the minimum number of arguments (zero or two, respectively), they return a single
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number. With one additional argument, they return an array of the specified length. With a second
additional argument, they return a matrix with the specified number of rows and columns.

There is a key subtlety when using these functions in Ptolemy II. In particular, they are evaluated
only when the expression within which they appear is evaluated. The result of the expression may be
used repeatedly without re-evaluating the expression. Thus, for example, if the value parameter of the
Const actor is set to “random()”, then its output will be a random constant, i.e., it will not change on
each firing. The output will change, however, on successive runs of the model. In contrast, if this is
used in an Expression actor, then each firing triggers an evaluation of the expression, and consequently
will result in a new random number.

property()

The property() function accesses system properties by name. Some possibly useful system proper-
ties are:
• ptolemy.ptII.dir: The directory in which Ptolemy II is installed.
• ptolemy.ptII.dirAsURL: The directory in which Ptolemy II is installed, but represented as a URL.
• user.dir: The current working directory, which is usually the directory in which the current execut-

able was started.

remainder()

This function computes the remainder operation on two arguments as prescribed by the IEEE 754
standard, which is not the same as the modulo operation computed by the % operator. The result of
remainder(x, y) is , where  is the integer closest to the exact value of . If two integers
are equally close, then  is the integer that is even. This yields results that may be surprising, as indi-
cated by the following examples:

>> remainder(1,2)
1.0
>> remainder(3,2)
-1.0

Compare this to

>> 3%2
1

which is different in two ways. The result numerically different and is of type int, whereas remain-
der() always yields a result of type double. The remainder() function is implemented by the
java.lang.Math class, which calls it IEEEremainder(). The documentation for that class gives the
following special cases:
• If either argument is NaN, or the first argument is infinite, or the second argument is positive zero 

or negative zero, then the result is NaN. 
• If the first argument is finite and the second argument is infinite, then the result is the same as the 

first argument.

DCT() and IDCT()

The DCT function can take one, two, or three arguments. In all three cases, the first argument is an
array of length  and the DCT returns an 

x yn– n x/y
n

N 0>
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(4)

for  from 0 to , where  is the size of the specified array and  is the size of the DCT. If only
one argument is given, then  is set to equal the next power of two larger than . If a second argu-

ment is given, then its value is the order of the DCT, and the size of the DCT is . If a third argu-
ment is given, then it specifies the scaling factors  according to the following table:

The default, if a third argument is not given, is “Normalized.”
The IDCT function is similar, and can also take one, two, or three arguments. The formula in this

case is

. (5)

3.8  Fixed Point Numbers
Ptolemy II includes a preliminary fixed point data type. We represent a fixed point value in the

expression language using the following format: 

fix(value, totalBits, integerBits)

Thus, a fixed point value of 5.375 that uses 8 bit precision of which 4 bits are used to represent the
(signed) integer part can be represented as:

fix(5.375, 8, 4)

The value can also be a matrix of doubles. The values are rounded, yielding the nearest value repre-
sentable with the specified precision. If the value to represent is out of range, then it is saturated, mean-
ing that the maximum or minimum fixed point value is returned, depending on the sign of the specified

TABLE 3: Normalization options for the DCT function

Name Third argument Normalization

Normalized 0

Unnormalized 1

Orthonormal 2
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114 Ptolemy II



Expressions
value. For example,

fix(5.375, 8, 3)

will yield 3.968758, the maximum value possible with the (8/3) precision.
In addition to the fix() function, the expression language offers a quantize() function. The argu-

ments are the same as those of the fix() function, but the return type is a DoubleToken or DoubleMa-
trixToken instead of a FixToken or FixMatrixToken. This function can therefore be used to quantize
double-precision values without ever explicitly working with the fixed-point representation.

To make the FixToken accessible within the expression language, the following functions are
available: 
• To create a single FixPoint Token using the expression language:

fix(5.34, 10, 4)

This will create a FixToken. In this case, we try to fit the number 5.34 into a 10 bit representation 
with 4 bits used in the integer part. This may lead to quantization errors. By default the round 
quantizer is used. 

• To create a Matrix with FixPoint values using the expression language:
fix([ -.040609, -.001628, .17853 ], 10, 2) 

This will create a FixMatrixToken with 1 row and 3 columns, in which each element is a FixPoint 
value with precision(10/2). The resulting FixMatrixToken will try to fit each element of the given 
double matrix into a 10 bit representation with 2 bits used for the integer part. By default the round 
quantizer is used.

• To create a single DoubleToken, which is the quantized version of the double value given, using 
the expression language:
quantize(5.34, 10, 4)

This will create a DoubleToken. The resulting DoubleToken contains the double value obtained by 
fitting the number 5.34 into a 10 bit representation with 4 bits used in the integer part. This may 
lead to quantization errors. By default the round quantizer is used. 

• To create a Matrix with doubles quantized to a particular precision using the expression language:
quantize([ -.040609, -.001628, .17853 ], 10, 2) 

This will create a DoubleMatrixToken with 1 row and 3 columns. The elements of the token are 
obtained by fitting the given matrix elements into a 10 bit representation with 2 bits used for the 
integer part. Instead of being a fixed point value, the values are converted back to their double rep-
resentation and by default the round quantizer is used.

3.9  Units
Ptolemy II supports units systems, which are built on top of the expression language. Units sys-

tems allow parameter values to be expressed with units, such as “1.0 * cm”, which is equal to “0.01 *
meters”. These are expressed this way (with the * for multiplication) because “cm” and “meters” are
actually variables that become in scope when a units system icon is dragged in to a model. A few sim-
ple units systems are provided (mainly as examples) in the utilities library.
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A model using one of the simple provided units systems is shown in figure 3.8. This unit system is
called BasicUnits; the units it defines can be examined by double clicking on its icon, or by invoking
Configure, as shown in figure 3.9. In that figure, we see that “meters”, “meter”, and “m” are defined,
and are all synonymous. Moreover, “cm” is defined, and given value “0.01*meters”, and “in”, “inch”
and “inches” are defined, all with value “2.54*cm”.

FIGURE 3.8.  Example of a model that includes a unit system.

FIGURE 3.9.  Units defined in a units system can be examined by invoking Configure on its icon.
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In the example in figure 3.8, a constant with value “1.0 * meter” is fed into a Scale actor with scale
factor equal to “2.0/ms”. This produces a result with dimensions of length over time. If we feed this
result directly into a Display actor, then it is displayed as “2000.0 meters/seconds”, as shown in figure
3.10, top display. The canonical units for length are meters, and for time are seconds.

In figure 3.8, we also take the result and feed it to the InUnitsOf actor, which performs divides its
input by its argument, and checks to make sure that the result is unitless. This tells us that 2 meters/ms
is equal to about 78,740 inches/second.

The InUnitsOf actor can be used to ensure that numbers are interpreted correctly in a model, which
can be effective in catching certain kinds of critical errors. For example, if in figure 3.8 we had entered
“seconds/inch” instead of “inches/second” in the InUnitsOf actor, we would have gotten the exception
in figure 3.11 instead of the execution in figure 3.10.

Units systems are built entirely on the expression language infrastructure in Ptolemy II. The units
system icons actually represent instances of scope-extending attributes, which are attributes whose
parameters are in scope as if those parameters were directly contained by the container of the scope-
extending attribute. That is, scope-extending attributes can define a collection of variables and con-
stants that can be manipulated as a unit. In version 2.0 of Ptolemy II, two fairly extensive units systems
are provided, CGSUnitBase and ElectronicUnitBase. Nonetheless, these are intended as examples
only, and can no doubt be significantly improved and extended.

FIGURE 3.10.  Result of running the model in figure 3.8.

FIGURE 3.11.  Example of an exception resulting from a units mismatch.
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Appendix A. Tables of Functions
In this appendix, we tabulate the functions available in the expression language. Further explana-

tion of many of these functions is given in section section 3.7 above.

A.1  Trigonometric Functions

TABLE 4: Trigonometric functions.

function argument type(s) return type description

acos double in the range
[-1.0, 1.0] or
complex

double in the range
[0.0, pi] or NaN if out of range or
complex

arc cosine

complex case: 

asin double in the range
[-1.0, 1.0] or
complex

double in the range
[-pi/2, pi/2] or NaN if out of range
or complex

arc sine

complex case: 

atan double or
complex

double in the range [-pi/2, pi/2]
or complex

arc tangent

complex case: 

atan2 double, double double in the range [-pi, pi] angle of a vector (note: the arguments are (y, x), not (x, y) 
as one might expect).

acosh double greater than 1 or 
complex

double or
complex

hyperbolic arc cosine, defined for both double and complex 

case by: 

asinh double or
complex

double or
complex

hyperbolic arc sine

complex case: 

cos double or
complex

double in the range , or
complex

cosine

complex case: 

cosh double or
complex

double or
complex

hyperbolic cosine, defined for double or complex by: 

sin double or
complex

double or
complex

sine function

complex case: 

sinh double or
complex

double or
complex

hyperbolic sine, defined for double or complex by: 

tan double or
complex

double or
complex

tangent function, defined for double or complex by: 

tanh double or
complex

double or
complex

hyperbolic tangent, defined for double or complex by: 

acos z( ) i z isqrt 1 z2–( )+( )log–=

z( )asin i iz sqrt 1 z2–( )+( )log–=

z( )atan i
2
--- i z–

i z+
---------- 

 log–=
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A.2  Basic Mathematical Functions
TABLE 5: Basic mathematical functions

function argument type(s) return type description

abs double or int or long or com-
plex

double or int or long
(complex returns double)

absolute value

complex case: 

angle complex double in the range [-pi, pi] angle or argument of the complex number: 

ceil double double ceiling function, which returns the smallest (closest to neg-
ative infinity) double value that is not less than the argu-
ment and is an integer.

compare double, double int compare two numbers, returning -1, 0, or 1 if the first argu-
ment is less than, equal to, or greater than the second.

conjugate complex complex complex conjugate

exp double or
complex

double in the range
[0.0, infinity] or complex

exponential function (e^argument)

complex case: 

floor double double floor function, which is the largest (closest to positive 
infinity) value not greater than the argument that is an inte-
ger.

gaussian double, double or
double, double, int, or
double, double, int, int

double or
{double} or
[double]

one or more Gaussian random variables with the specified 
mean and standard deviation (see page 112).

imag complex double imaginary part

isInfinite double boolean return true if the argument is infinite

isNaN double boolean return true if the argument is “not a number”

log double or
complex

double or
complex

natural logarithm
complex case: 

log10 double double log base 10

log2 double double log base 2

max double, double or
int, int or
long, long or
unsignedByte, unsignedByte or
{double} or
{int} or
{long} or
{unsignedByte}

double or
int or
long or
unsignedByte

maximum

min double, double or
int, int or
long, long or
unsignedByte, unsignedByte or
{double} or
{int} or
{long} or
{unsignedByte}

double or
int or
long or
unsignedByte

minimum

abs a ib+( ) z a2 b2+= =

z∠

ea ib+ ea b( )cos i b( )sin+( )=

z( )log abs z( ) iangle z( )+( )log=
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neighborhood type, type, double boolean return true if the first argument is in the neighborhood of 
the second, meaning that the distance is less than or equal 
to the third argument. The first two arguments can be any 
type for which such a distance is defined. For composite 
types, arrays, records, and matrices, then return true if the 
first two arguments have the same structure, and each cor-
responding element is in the neighborhood.

pow double, double or
complex, complex

double or
complex

first argument to the power of the second

random no arguments or
int or
int, int

double or
{double} or
[double]

one or more random numbers between 0.0 and 1.0 (see 
page 112)

real complex double real part

remainder double, double double remainder after division, according to the IEEE 754 float-
ing-point standard (see page 113).

round double long round to the nearest long, choosing the next greater integer 
when exactly in between, and throwing an exception if out 
of range. If the argument is NaN, the result is 0L. If the 
argument is out of range, the result is either MaxLong or 
MinLong, depending on the sign.

roundToInt double int round to the nearest int, choosing the next greater integer 
when exactly in between, and throwing an exception if out 
of range. If the argument is NaN, the result is 0. If the argu-
ment is out of range, the result is either MaxInt or MinInt, 
depending on the sign.

sgn double int -1 if the argument is negative, 1 otherwise

sqrt double or
complex

double or
complex

square root. If the argument is double with value less than 
zero, then the result is NaN.

complex case: 

toDegrees double double convert radians to degrees

toRadians double double convert degrees to radians

TABLE 5: Basic mathematical functions

function argument type(s) return type description

sqrt z( ) z z∠
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A.3  Matrix, Array, and Record Functions.
TABLE 6: Functions that take or return matrices, arrays, or records.

function argument type(s) return type description

arrayToMatrix {type}, int, int [type] Create a matrix from the specified array with the specified 
number of rows and columns

concatenate {type}, {type} {type} Concatenate two arrays.

concatenate {{type}} {type} Concatenate arrays in an array of arrays.

conjugateTranspose [complex] [complex] Return the conjugate transpose of the specified matrix.

createSequence type, type, int {type} Create an array with values starting with the first argument, 
incremented by the second argument, of length given by the 
third argument.

crop [int], int, int, int, int or
[double], int, int, int, int or
[complex], int, int, int, int or
[long], int, int, int, int or

[int] or
[double] or
[complex] or
[long] or

Given a matrix of any type, return a submatrix starting at the 
specified row and column with the specified number of rows 
and columns.

determinant [double] or 
[complex]

double or
complex

Return the determinant of the specified matrix.

diag {type} [type] Return a diagonal matrix with the values along the diagonal 
given by the specified array.

divideElements [type], [type] [type] Return the element-by-element division of two matrices

emptyArray type {type} Return an empty array whose element type matches the speci-
fied token.

find {type}, type {int} Return an array of the indices where elements of the specified 
array match the specified token.

find {boolean} {int} Return an array of the indices where elements of the specified 
array have value true.

hilbert int [double] Return a square Hilbert matrix, where .

A Hilbert matrix is nearly, but not quite singular.

identityMatrixComplex int [complex] Return an identity matrix with the specified dimension.

identityMatrixDouble int [double] Return an identity matrix with the specified dimension.

identityMatrixInt int [int] Return an identity matrix with the specified dimension.

identityMatrixLong int [long] Return an identity matrix with the specified dimension.

intersect record, record record Return a record that contains only fields that are present in 
both arguments, where the value of the field is taken from the 
first record.

inverse [double] or 
[complex]

[double] or
[complex]

Return the inverse of the specified matrix, or throw an excep-
tion if it is singular.

matrixToArray [type] {type} Create an array containing the values in the matrix

merge record, record record Merge two records, giving priority to the first one when they 
have matching record labels.

multiplyElements [type], [type] [type] Multiply element wise the two specified matrices.

orthogonalizeColumns [double] or 
[complex]

[double] or 
[complex]

Return a similar matrix with orthogonal columns.

orthogonalizeRows [double] or
[complex]

[double] or
[complex]

Return a similar matrix with orthogonal rows.

orthonormalizeColumns [double] or
[complex]

[double] or
[complex]

Return a similar matrix with orthonormal columns.

Aij 1/ i j 1+ +( )=
Heterogeneous Concurrent Modeling and Design 121 



Expressions
A.4  Functions for Evaluating Expressions

orthonormalizeRows [double] or
[complex]

[double] or
[complex]

Return a similar matrix with orthonormal rows.

repeat int, type {type} Create an array by repeating the specified token the specified 
number of times.

sort {string}or
{realScalar}

{string} or
{realScalar}

Return the specified array, but sorted in ascending order. 
realScalar is any scalar token except complex.

sortAscending {string}or
{realScalar}

{string} or
{realScalar}

Return the specified array, but sorted in ascending order. 
realScalar is any scalar token except complex.

sortDescending {string}or
{realScalar}

{string} or
{realScalar}

Return the specified array, but sorted in descending order. 
realScalar is any scalar token except complex.

subarray {type}, int, int {type} Extract a subarray starting at the specified index with the 
specified length.

sum {type} or
[type]

type Sum the elements of the specified array or matrix. This throws 
an exception if the elements do not support addition or if the 
array is empty (an empty matrix will return zero).

trace [type] type Return the trace of the specified matrix.

transpose [type] [type] Return the transpose of the specified matrix.

zeroMatrixComplex int, int [complex] Return a zero matrix with the specified number of rows and 
columns.

zeroMatrixDouble int, int [double] Return a zero matrix with the specified number of rows and 
columns.

zeroMatrixInt int, int [int] Return a zero matrix with the specified number of rows and 
columns.

zeroMatrixLong int, int [long] Return a zero matrix with the specified number of rows and 
columns.

TABLE 7: Utility functions for evaluating expressions

function argument type(s) return type description

eval string any type evaluate the specified expression (see page 112).

parseInt string or
string, int

int return an int read from a string, using the given radix if a sec-
ond argument is provided.

parseLong string or
string, int

int return a long read from a string, using the given radix if a sec-
ond argument is provided.

toBinaryString int or long string return a binary representation of the argument

toOctalString int or long string return an octal representation of the argument

toString double or
int or
int, int or
long or
long, int

string return a string representation of the argument, using the given 
radix if a second argument is provided.

traceEvaluation string string evaluate the specified expression and report details on how it 
was evaluated (see page 112).

TABLE 6: Functions that take or return matrices, arrays, or records.

function argument type(s) return type description
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TABLE 8: Functions performing signal processing operations

function argument type(s) return type description

convolve {double}, {double} 
or
{complex}, {com-
plex}

{double} or 
{complex}

Convolve two arrays and return an array whose length is sum 
of the lengths of the two arguments minus one. Convolution of 
two arrays is the same as polynomial multiplication.

DCT {double} or
{double}, int or
{double}, int, int

{double} Return the discrete cosine transform of the specified array, 
using the specified (optional) length and normalization strat-
egy (see page 113).

downsample {double}, int or
{double}, int, int

{double} Return a new array with every -th element of the argument 

array, where  is the second argument. If a third argument is 

given, then it must be between 0 and , and it specifies 
an offset into the array (by giving the index of the first output).

FFT {double} or
{complex} or
{double}, int
{complex}, int

{complex} Return the fast Fourier transform of the specified array. If the 
second argument is given with value , then the length of the 

transform is . Otherwise, the length is the next power of 
two greater than or equal to the length of the input array. If the 
input length does not match this length, then input is padded 
with zeros.

generateBartlettWindow int {double} Return a Bartlett (rectangular) window with the specified 
length. The end points have value 0.0, and if the length is odd, 
the center point has value 1.0. For length M + 1, the formula 

is: 

generateBlackmanWindow int {double} Return a Blackman window with the specified length. For 
length M + 1, the formula is: 

generateBlackmanHarrisWindow int {double} Return a Blackman-Harris window with the specified length. 
For length M + 1, the formula is: 

generateGaussianCurve double, double, int {double} Return a Gaussian curve with the specified standard deviation, 
extent, and length. The extent is a multiple of the standard 
deviation. For instance, to get 100 samples of a Gaussian 
curve with standard deviation 1.0 out to four standard devia-
tions, use generateGaussianCurve(1.0, 4.0, 100).

generateHammingWindow int {double} Return a Hamming window with the specified length. For 
length M + 1, the formula is: 

generateHanningWindow int {double} Return a Hanning window with the specified length. For 
length M + 1, the formula is: 
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generatePolynomialCurve {double}, double, 
double, int

{double} Return samples of a curve specified by a polynomial. The first 
argument is an array with the polynomial coefficients, begin-
ning with the constant term, the linear term, the squared term, 
etc. The second argument is the value of the polynomial vari-
able at which to begin, and the third argument is the increment 
on this variable for each successive sample. The final argu-
ment is the length of the returned array.

generateRaisedCosinePulse double, double, int {double} Return an array containing a symmetric raised-cosine pulse. 
This pulse is widely used in communication systems, and is 
called a “raised cosine pulse” because the magnitude its Fou-
rier transform has a shape that ranges from rectangular (if the 
excess bandwidth is zero) to a cosine curved that has been 
raised to be non-negative (for excess bandwidth of 1.0). The 
elements of the returned array are samples of the function: 

,

where x is the excess bandwidth (the first argument) and T is 
the number of samples from the center of the pulse to the first 
zero crossing (the second argument). The samples are taken 
with a sampling interval of 1.0, and the returned array is sym-
metric and has a length equal to the third argument. With an 
excessBandwidth of 0.0, this pulse is a sinc pulse.

generateRectangularWindow int {double} Return an array filled with 1.0 of the specified length. This is a 
rectangular window.

IDCT {double} or
{double}, int or
{double}, int, int

{double} Return the inverse discrete cosine transform of the specified 
array, using the specified (optional) length and normalization 
strategy (see page 113).

IFFT {double} or
{complex} or
{double}, int
{complex}, int

{complex} Return the inverse fast Fourier transform of the specified 
array. If the second argument is given with value , then the 

length of the transform is . Otherwise, the length is the 
next power of two greater than or equal to the length of the 
input array. If the input length does not match this length, then 
input is padded with zeros.

nextPowerOfTwo double int Return the next power of two larger than or equal to the argu-
ment.

poleZeroToFrequency {complex}, {com-
plex}, complex, int

{complex} Given an array of pole locations, an array of zero locations, a 
gain term, and a size, return an array of the specified size rep-
resenting the frequency response specified by these poles, 
zeros, and gain. This is calculated by walking around the unit 
circle and forming the product of the distances to the zeros, 
dividing by the product of the distances to the poles, and mul-
tiplying by the gain.

sinc double double Return the sinc function, , where special care is 
taken to ensure that 1.0 is returned if the argument is 0.0.

TABLE 8: Functions performing signal processing operations

function argument type(s) return type description

h t( ) πt/T( )sin
πt/T

----------------------- xπt/T( )cos
1 2xt/T( )2–
------------------------------×=

n

2n

x( )/xsin
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toDecibels double double Return , where  is the argument.

unwrap {double} {double} Modify the specified array to unwrap the angles. That is, if the 
difference between successive values is greater than  in 
magnitude, then the second value is modified by multiples of 

 until the difference is less than or equal to . In addition, 
the first element is modified so that its difference from zero is 
less than or equal to  in magnitude. 

upsample {double}, int {double} Return a new array that is the result of inserting  zeroes 
between each successive sample in the input array, where  is 
the second argument. The returned array has length , 
where L is the length of the argument array. It is required that 

.

TABLE 9: Miscellaneous functions.

function argument type(s) return type description

asURL string string Return a URL representation of the argument.

cast type1, type2 type1 Return the second argument converted to the type of the first, 
or throw an exception if the conversion is invalid.

constants none record Return a record identifying all the globally defined constants 
in the expression language.

findFile string string Given a file name relative to the user directory, current direc-
tory, or classpath, return the absolute file name of the first 
match, or return the name unchanged if no match is found.

filter function, {type} {type} Extract a sub-array consisting of all of the elements of an array 
for which the given predicate function returns true.

filter function, {type}, int {type} Extract a sub-array with a limited size consisting of all of the 
elements of an array for which the given predicate function 
returns true.

freeMemory none long Return the approximate number of bytes available for future 
memory allocation.

iterate function, int, type {type} Return an array that results from first applying the specified 
function to the third argument, then applying it to the result of 
that application, and repeating to get an array whose length is 
given by the second argument.

map function, {type} {type} Return an array that results from applying the specified func-
tion to the elements of the specified array.

property string string Return a system property with the specified name from the 
environment, or an empty string if there is none. Some useful 
properties are java.version, ptolemy.ptII.dir, 
ptolemy.ptII.dirAsURL, and user.dir.

TABLE 8: Functions performing signal processing operations

function argument type(s) return type description
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readFile string string Get the string text in the specified file, or throw an exception if 
the file cannot be found. The file can be absolute, or relative to 
the current working directory (user.dir), the user’s home direc-
tory (user.home), or the classpath.

readResource string string Get the string text in the specified resource (which is a file 
found relative to the classpath), or throw an exception if the 
file cannot be found.

totalMemory none long Return the approximate number of bytes used by current 
objects plus those available for future object allocation.

TABLE 9: Miscellaneous functions.

function argument type(s) return type description
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