
Heterogeneous Concurrent Modeling and Design 45

Using Vergil
Authors: Edward A. Lee

Steve Neuendorffer

2.1 Introduction
There are many ways to use Ptolemy II. It can be used as a framework for assembling software

components, as a modeling and simulation tool, as a block-diagram editor, as a system-level rapid pro-
totyping application, as a toolkit supporting research in component-based design, or as a toolkit for
building Java applications. This chapter introduces its use as a modeling and simulation tool.

In this chapter, we describe how to graphically construct models using Vergil, a graphical user
interface (GUI) for Ptolemy II. Figure 2.1 shows a simple Ptolemy II model in Vergil, showing the
graph editor, one of several editors available in Vergil. Keep in mind as you read this document that
graphical entry of models is only one of several possible entry mechanisms available in Ptolemy II. For
example, you can define models in Java, as shown in figure 1.5, or in XML, as shown in figure 1.3 of
the previous chapter. Moreover, only some of the execution engines (called domains) are described
here. A major emphasis of Ptolemy II is to provide a framework for the construction of modeling and
design tools, so the specific modeling and design tools described here should be viewed as representa-
tive of our efforts.

2.2 Quick Start
This section shows how to start Vergil, how to execute and explore pre-built models, and how to

construct your own models.

2.2.1 Starting Vergil
First start Vergil. From the command line, enter “vergil”, or select Ptolemy II and Vergil in the

Start menu1, or click on a Web Start link on a web page supporting the web edition. You should see an

Chapter 2 from: C. Brooks, E. A. Lee, X. Liu,
S. Neuendorffer, Y. Zhao, H. Zheng
"Heterogeneous Concurrent Modeling and
Design in Java (Volume 1: Introduction to
Ptolemy II) ," Technical Memorandum UCB/
ERL M04/27, July 29, 2004, University of
California, Berkeley, CA USA 94720.

46 Ptolemy II

Using Vergil

initial welcome window that looks like the one in figure 2.2. Feel free to explore the links in this win-
dow. The “Quick tour” link takes you to the page shown in figure 2.3.

1. Depending on your installation, you could have several versions of Vergil available in the Start menu. This doc-
ument assumes you select “Vergil - Full.” There are separate tutorial documents for “Vergil - HyVisual” (which
is specialized for modeling hybrid systems) and “Vergil - VisualSense” (which is specialized for modeling wire-
less and sensor network systems).

FIGURE 2.1. Example of a Vergil window.

FIGURE 2.2. Initial welcome window.

Heterogeneous Concurrent Modeling and Design 47

Using Vergil

2.2.2 Executing a Pre-Built Model: A Signal Processing Example
The very first example on the quick tour page is the model shown in figure 2.1. It creates a sinuso-

idal signal, multiplies it by a sinusoidal carrier, adds noise, and then estimates the power spectrum. You
can execute this model in either of two ways. First, you can select Run Window in the View menu, and
then click on Go. The result is shown in figure 2.4. The upper plot shows the spectrum of the time-
domain signal shown in the lower plot. Note the four peaks, which indicate the modulated sinusoid. In
the run window you can adjust the frequencies of the signal and the carrier as well as the amount of
noise. These can also be adjusted in the block diagram in figure 2.1 by double clicking on the bulleted
parameters near the upper right of the window.

The second alternative for running the model is to click on the run button in the toolbar, which is
indicated by a red triangle pointing to the right. If you use this alternative, then the two signal plots are
displayed in their own windows.

You can study the way the model is constructed in figure 2.1. Note the Expression actor in the mid-
dle, whose icon indicates the expression being calculated: “signal*carrier + noise”. The identi-
fiers in this expression, signal, carrier, and noise refer to the input ports by name. The names of

FIGURE 2.3. The quick-tour page.

48 Ptolemy II

Using Vergil

these ports are shown in the diagram. The Expression actor is a very flexible actor in the Ptolemy II
actor library. It can have any number of input ports, with arbitrary names, and uses a rich and expres-
sive expression language to specify the value of the output as a function of the inputs (and parameters
of the containing model, if desired).

Three of the actors in figure 2.1 are composite actors, which means that their implementation is
itself given as a block diagram. Composite actors are indicated visually by the red outline. You can
look inside to reveal the implementation, as shown in figure 2.5, which shows the implementation of
the Signal Source in figure 2.1. It is evident from the block diagram how a sinusoidal signal is gener-
ated.

2.2.3 Executing a Pre-Built Model: A Continuous-Time Example
A key principle of the Ptolemy II system is that the model of computation that defines the meaning

of a block diagram is not built-in, but is rather specified by the director component that is included in
the model. The box labeled “SDF Director” in figures 2.1 and 2.5 specifies that these block diagrams
have synchronous dataflow semantics, which is explained further below. The second example in the
quick tour of figure 2.3, by contrast, has continuous-time semantics (the one labeled “Continuous-
Time Modeling”). The example is the well-known Lorenz attractor, a non-linear feedback system that
exhibits chaotic behavior.

FIGURE 2.4. The run window for the model shown in figure 2.1.

Heterogeneous Concurrent Modeling and Design 49

Using Vergil

The Lorenz attractor model, shown in figure 2.6, is a block diagram representation of a set of non-
linear ordinary differential equations. The blocks with integration signs in their icons are integrators.
At any given time t, their output is given by

, (1)

where is the initial state of the integrator, is the start time of the model, and is the input sig-
nal. Note that since the output is the integral of the input, then at any given time, the input is the deriv-
ative of the output,

FIGURE 2.5. Look inside composite actors to reveal their implementation.

x t() x t0() x· τ() τd

t0

t

∫+=

x t0() t0 x·

50 Ptolemy II

Using Vergil

. (2)

Thus, the system describes either an integral equation or a differential equation, depending on which of
these two forms you use.

Let the output of the top integrator in figure 2.6 be , the output of the middle integrator be ,
and the output of the bottom integrator be . Then the equations described by figure 2.6 are

. (3)

For each equation, the expression on the right is implemented by an Expression actor, whose icon
shows the expression. Each expression refers to parameters (such as lambda for and sigma for)
and input ports of the actor (such as x1 for and x2 for). The names of the input ports are not
shown in the diagram, but if you linger over them with the mouse cursor, the name will pop up in a
tooltip. The expression in each Expression actor can be edited by double clicking on the actor, and the
parameter values can be edited by double clicking on the parameters, which are shown next to bullets
on the right.

The integrators each also have initial values, which you can examine and change by double click-
ing on the corresponding integrator icon. These define the initial values of , , and , respec-
tively. For this example, all three are set to 1.0.

FIGURE 2.6. A block diagram representation of a set of nonlinear ordinary differential equations.

x· t()
td

d x t()=

x1 x2
x3

x·1 t() σ x2 t() x1 t()–()=

x·2 t() λ x3 t()–()x1 t() x2 t()–=

x·3 t() x1 t()x2 t() bx3 t()–=

λ σ
x1 x2

x1 x2 x3

Heterogeneous Concurrent Modeling and Design 51

Using Vergil

The Continuous-Time (CT) Solver, shown at the upper right, manages a simulation of the model. It
contains a sophisticated ODE solver, and to use it effectively, you will need to understand some of its
parameters. The parameters are accessed by double clicking on the solver box, which results in the dia-
log shown in figure 2.7. The simplest of these parameters are the startTime and the stopTime, which are
self-explanatory. They define the region of the time line over which a simulation will execute.

To execute the model, you can click on the run button in the toolbar (with a red triangle icon), or
you can open the Run Window in the View menu. In the former case, the model executes, and the
results are plotted in their own window, as shown in figure 2.8. What is plotted is vs. for
values of t in between startTime and stopTime.

FIGURE 2.7. Dialog box showing solver parameters for the model in figure 2.6.

FIGURE 2.8. Result of running the Lorenz model using the run button in the toolbar.

x1 t() x2 t()

52 Ptolemy II

Using Vergil

Like the Lorenz model, a typical continuous-time model contains integrators in feedback loops, or
more elaborate blocks that realize linear and non-linear dynamical systems given abstract mathemati-
cal representations of them (such as Laplace transforms). In the next section, we will explore how to
build a model from scratch.

2.2.4 Creating a New Model
Create a new model by selecting File->New->Graph Editor in the welcome window. You should

see something like the window shown in figure 2.9. Ignoring the menus and toolbar for a moment, on
the left is a palette of objects that can be dragged onto the page on the right. To begin with, the page on
the right is blank. Open the Actors library in the palette, and go into the Sources library. Find the Const
actor under GenericSources and drag an instance over onto the blank page. Then go into the Sinks
library (GenericSinks sublibrary) and drag a Display actor onto the page. Each of these actors can be
dragged around on the page. However, we would like to connect one to the other. To do this, drag a
connection from the output port on the right of the Const actor to the input port of the Display actor.
Lastly, open the Directors library and drag an SDFDirector onto the page. The director gives a mean-
ing (semantics) to the graph, but for now we don’t have to be concerned about exactly what that is.

Now you should have something that looks like figure 2.10. The Const actor is going to create our
string, and the Display actor is going to print it out for us. We need to take care of one small detail to
make it look like figure 2.10: we need to tell the Const actor that we want the string “Hello World”. To
do this we need to edit one of the parameters of the Const. To do this, either double click on the Const
actor icon, or right click1 on the Const actor icon and select “Configure”. You should see the dialog

1. On a Macintosh, which typically has only one mouse button, instead of right clicking, hold the control key and
click the one button.

FIGURE 2.9. An empty Vergil Graph Editor.

library of components

navigation area

model-building area

Heterogeneous Concurrent Modeling and Design 53

Using Vergil

box in figure 2.11. Enter the string "Hello World" for the value parameter and click the Commit button.
Be sure to include the double quotes, so that the expression is interpreted as a string.

You may wish to save your model, using the File menu. File names for Ptolemy II models should
end in “.xml” or “.moml” so that Vergil will properly process the file the next time you open that file.

2.2.5 Running the Model
To run the example, go to the View menu and select the Run Window. If you click the “Go” button,

you will see a large number of strings in the display at the right. To stop the execution, click the “Stop”
button. To see only one string, change the iterations parameter of the SDF Director to 1, which can be

FIGURE 2.10. The Hello World example.

FIGURE 2.11. The Const parameter editor.

54 Ptolemy II

Using Vergil

done in the run window, or in the graph editor in the same way you edited the parameter of the Const
actor before. The run window is shown in figure 2.12.

2.2.6 Making Connections
The model constructed above contained only two actors and one connection between them. If you

move either actor (by clicking and dragging), you will see that the connection is routed automatically.
We can now explore how to create and manipulate more complicated connections.

First create a model in a new graph editor that includes an SDFDirector, a Ramp actor (found in
the Sources) library, a Display actor, and a SequencePlotter actor, found in the Sinks library, as shown
in figure 2.13. Suppose we wish to route the output of the Ramp to both the Display and the Sequence-
Plotter. If we simply attempt to make the connections, we get the exception shown in figure 2.13.

FIGURE 2.12. Execution of the Hello World example.

FIGURE 2.13. Exception that occurs if you attempt to simply wire the output of the Ramp in figure 2.14 to
the inputs of the other two actors.

FIGURE 2.14. Three unconnected actors in a model.

Heterogeneous Concurrent Modeling and Design 55

Using Vergil

Don’t panic! Exceptions are normal and common. The key information in this exception report is the
text:

Attempt to link more than one relation to a single port.

The last line gives the names of the objects involved, which in this case are:

in .broadcastRelations.Ramp.output and .broadcastRelations.relation2

(This assumes the model has been saved under the name “broadcastRelations.”) In Ptolemy II models,
all objects have a dotted name. The dots separate elements in the hierarchy. Thus, “.<Unnamed
Object>.Ramp.output” is an object named “output” contained by an object named “Ramp”, which is
contained by an unnamed object (the model itself). The model has no name because we have not
assigned one (it acquires a name when we save it).

Why did this exception occur? Ptolemy II supports two distinct flavors of ports, indicated in the
diagrams by a filled triangle or an unfilled triangle. The output port of the Ramp actor is a single port,
indicated by a filled triangle, which means that it can only support a single connection. The input port
of the Display and SequencePlotter actors are multiports, indicated by unfilled triangles, which means
that they can support multiple connections. Each connection is treated as a separate channel, which is a
path from an output port to an input port (via relations) that can transport a single stream of tokens.

So how do we get the output of the Ramp to the other two actors? We need an explicit relation in
the diagram. A relation is represented in the diagram by a black diamond, as shown in figure 2.15. It
can be created by either control-clicking on the background or by clicking on the button in the toolbar
with the black diamond on it.

Making a connection to a relation can be tricky, since if you just click and drag on the relation, the
relation gets selected and moved. To make a connection, hold the control button while clicking and
dragging on the relation.1

In the model shown in figure 2.15, the relation is used to broadcast the output from a single port to
a number of places. The single port still has only one connection to it, a connection to a relation. Rela-
tions can also be used to control the routing of wires in the diagram. However, as of the 4.0 release of

1. On a Macintosh, hold the command key rather than the control key.

FIGURE 2.15. A relation can be used to broadcast an output from a single port.

Click here to create
a relation, or control-
click on the background.

56 Ptolemy II

Using Vergil

Ptolemy II, a connection can only have a single relation on it, so the degree to which routing can be
controlled is limited.

To explore multiports, try putting some other signal source in the diagram and connecting it to the
SequencePlotter or to the Display. If you explore this fully, you will discover that the SequencePlotter
can only accept inputs of type double, or some type that can be losslessly converted to double, such as
int. These data type issues are explored next.

2.3 Tokens and Data Types
In the example of figure 2.10, the Const actor creates a sequence of values on its output port. The

values are encapsulated as tokens, and sent to the Display actor, which consumes them and displays
them in the run window.

The tokens produced by the Const actor can have any value that can be expressed in the Ptolemy II
expression language. We will say more about the expression language in chapter 3, ”Expressions”, but
for now, try giving the value 1 (the integer with value one), or 1.0 (the floating-point number with
value one), or {1.0} (An array containing a one), or {value=1, name="one"} (A record with two ele-
ments: an integer named “value” and a string named “name”), or even [1,0;0,1] (the two-by-two iden-
tity matrix). These are all expressions.

The Const actor is able to produce data with different types, and the Display actor is able to display
data with different types. Most actors in the actor library are polymorphic, meaning that they can oper-
ate on or produce data with multiple types. The behavior may even be different for different types.
Multiplying matrices, for example, is not the same as multiplying integers, but both are accomplished
by the MultiplyDivide actor in the math library. Ptolemy II includes a sophisticated type system that
allows this to be done efficiently and safely.

To explore data types a bit further, try creating the model in figure 2.16. The Ramp actor is listed
under Sources, SequenceSources, and the AddSubtract actor is listed under Math. Set the value param-
eter of the constant to be 0 and the iterations parameter of the director to 5. Running the model should
result in 5 numbers between 0 and 4, as shown in the figure. These are the values produced by the
Ramp, which are having the value of the Const actor subtracted from them. Experiment with changing
the value of the Const actor and see how it changes the 5 numbers at the output.

Now for the real test: change the value of the Const actor back to "Hello World". When you exe-
cute the model, you should see an exception window, as shown in figure 2.17. Do not worry; excep-

FIGURE 2.16. Another example, used to explore data types in Ptolemy II.

Heterogeneous Concurrent Modeling and Design 57

Using Vergil

tions are a normal part of constructing (and debugging) models. In this case, the exception window is
telling you that you have tried to subtract a string value from an integer value, which doesn’t make
much sense at all (following Java, adding strings is allowed). This is an example of a type error.

Exceptions can be a very useful debugging tool, particularly if you are developing your own com-
ponents in Java. To illustrate how to use them, click on the Display Stack Trace button in the exception
window of figure 2.17. You should see the stack trace shown in figure 2.18. This window displays the
execution sequence that resulted in the exception. For example, the line

at ptolemy.data.IntToken.subtract(IntToken.java:547)

FIGURE 2.17. An example that triggers an exception when you attempt to execute it. Strings cannot be sub-
tracted from integers.

FIGURE 2.18. Stack trace for the exception shown in figure 2.17.

58 Ptolemy II

Using Vergil

indicates that the exception occurred within the subtract() method of the class ptolemy.data.IntToken,
at line 547 of the source file IntToken.java. Since Ptolemy II is distributed with source code (most
installation mechanisms at least offer the option of installing the source), this can be very useful infor-
mation. For type errors, you probably do not need to see the stack trace, but if you have extended the
system with your own Java code, or you encounter a subtle error that you do not understand, then look-
ing at the stack trace can be very illuminating.

To find the file IntToken.java referred to above, find the Ptolemy II installation directory. If that
directory is $PTII, then the location of this file is given by the full class name, but with the periods
replaced by slashes; in this case, it is at $PTII/ptolemy/data/IntToken.java (the slashes might be back-
slashes under Windows).

Let’s try a small change to the model to get something that does not trigger an exception. Discon-
nect the Const from the lower port of the AddSubtract actor and connect it instead to the upper port, as
shown in figure 2.19. You can do this by selecting the connection and deleting it (using the delete key),
then adding a new connection, or by selecting it and dragging one of its endpoints to the new location.
Notice that the upper port is an unfilled triangle; this indicates that it is a multiport, meaning that you
can make more than one connection to it. Now when you run the model you should see strings like
“0HelloWorld”, as shown in the figure.

There are two interesting things going on here. The first is that, as in Java, strings are added by
concatenating them. The second is that the integers from the Ramp are converted to strings and concat-
enated with the string “Hello World”. All the connections to a multiport must have the same type. In
this case, the multiport has a sequence of integers coming in (from the Ramp) and a sequence of strings
(from the Const).

Ptolemy II automatically converts the integers to strings when integers are provided to an actor
that requires strings. But in this case, why does the AddSubtract actor require strings? Because it
would not work to require integers; the string “Hello World” would have to be converted to an integer.
As a rough guideline, Ptolemy II will perform automatic type conversions when there is no loss of
information. An integer can be converted to a string, but not vice versa. An integer can be converted to
a double, but not vice versa. An integer can be converted to a long, but not vice versa. The details are
explained in the Data chapter of Volume 2, but many users will not need to understand the full sophis-
tication of the system. You should find that most of the time it will just do what you expect.

To further explore data types, try modifying the Ramp so that its parameters have different types.
For example, try making init and step strings.

FIGURE 2.19. Addition of a string to an integer.

Heterogeneous Concurrent Modeling and Design 59

Using Vergil

2.4 Hierarchy
Ptolemy II supports (and encourages) hierarchical models. These are models that contain compo-

nents that are themselves models. Such components are called composite actors. Consider a small sig-
nal processing problem, where we are interested in recovering a signal based only on noisy
measurements of it. We will create a composite actor modeling a communication channel that adds
noise, and then use that actor in a model.

2.4.1 Creating a Composite Actor
First open a new graph editor and drag in a CompositeActor from the Utilities library. This actor is

going to add noise to our measurements. First, using the context menu (obtained by right clicking1

over the composite actor), select “Customize Name”, and give the composite a better name, like
“Channel”, as shown in figure 2.20. Then, using the context menu again, select “Look Inside” on the
actor. You should get a blank graph editor, as shown in figure 2.21. The original graph editor is still
open. To see it, move the new graph editor window by dragging the title bar of the window.

2.4.2 Adding Ports to a Composite Actor
First we have to add some ports to the composite actor. There are several ways to do this, but click-

ing on the port buttons in the toolbar is probably the easiest. You can explore the ports in the toolbar by
lingering with the mouse over each button in the toolbar. A tool tip pops up that explains the button.
The buttons are summarized in figure 2.22. Create an input port and an output port and rename them
input and output right by clicking on the ports and selecting “Customize Name”. Note that, as shown in
figure 2.23, you can also right click2 on the background of the composite actor and select Configure
Ports to change whether a port is an input, an output, or a multiport. The resulting dialog also allows
you to set the type of the port, although much of the time you will not need to do this, since the type
inference mechanism in Ptolemy II will figure it out from the connections. You can also specify the
direction of a port (where it appears on the icon; by default inputs appear on the left, outputs on the
right, and ports that are both inputs and outputs appear on the bottom of the icon). You can also control

1. On a Macintosh, control-click.
2. On a Macintosh, control-click.

FIGURE 2.20. Changing the name of an actor.

60 Ptolemy II

Using Vergil

whether the name of the port is shown outside the icon (by default it is not), and even whether the port
is shown at all. The “Units” column will be discussed further below.

FIGURE 2.21. Looking inside a composite actor.

FIGURE 2.22. Summary of toolbar buttons for creating new ports.

New input port
New output port
New input/output port
New input multiport
New output multiport
New input/output multiport

FIGURE 2.23. Right clicking on the background brings up a dialog that can be used to configure ports.

Heterogeneous Concurrent Modeling and Design 61

Using Vergil

Then using these ports, create the diagram shown in figure 2.241. The Gaussian actor creates val-
ues from a Gaussian distributed random variable, and is found in the Random library. Now if you close
this editor and return to the previous one, you should be able to easily create the model shown in figure
2.25. The Sinewave actor is listed under sources, and the SequencePlotter actor is found in sinks.
Notice that the Sinewave actor is also a hierarchical model, as suggested by its red outline (try looking
inside). If you execute this model (you will probably want to set the iterations to something reasonable,
like 100), you should see something like figure 2.26.

1. Hint: to create a connection starting on one of the external ports, hold down the control key when dragging, or
on a Macintosh, the command key.

FIGURE 2.24. A simple channel model defined as a composite actor.

FIGURE 2.25. A simple signal processing example that adds noise to a sinusoidal signal.

FIGURE 2.26. The output of the simple signal processing model in figure 2.25.

62 Ptolemy II

Using Vergil

2.4.3 Setting the Types of Ports
In the above example, we never needed to define the types of any ports. The types were inferred

from the connections. Indeed, this is usually the case in Ptolemy II, but occasionally, you will need to
set the types of the ports. Notice in figure 2.23 that there is a column in the dialog box that configures
ports for specifying the type. Thus, to specify that a port has type boolean, you could enter boolean
into the dialog box. There are other commonly used types: complex, double, fixedpoint, general, int,
long, matrix, object, scalar, string, and unknown. Let’s take a more complicated case. How would you
specify that the type of a port is a double matrix? Easy:

[double]

This expression actually creates a 1 by 1 matrix containing a double (the value of which is irrelevant).
It thus serves as a prototype to specify a double matrix type. Similarly, we can specify an array of com-
plex numbers as

{complex}

In the Ptolemy II expression language, square braces are used for matrices, and curly braces are used
for arrays. What about a record containing a string named “name” and an integer named “address”?
Easy:

{name=string, address=int}

2.5 Annotations and Parameterization
In this section, we will enhance the model in figure 2.25 in a number of ways.

2.5.1 Parameters in Hierarchical Models
First, notice from figure 2.26 that the noise overwhelms the sinusoid, making it barely visible. A

useful channel model would have a parameter that sets the level of the noise. Look inside the channel
model, and add a parameter by dragging one in from the Utilities library, Parameters sublibrary, as
shown in figure 2.27. Right click1 on the parameter to change its name to “noisePower”. (In order to be
able to use this parameter in expressions, the name cannot have any spaces in it.) Also, right click or
double click on the parameter to change its default value to 0.1.

Now we can use this parameter. First, let’s use it to set the amount of noise. The Gaussian actor
has a parameter called standardDeviation. In this case, the power of the noise is equal to the variance
of the Gaussian, not the standard deviation. If you recall from basic statistics, the standard deviation is
equal to the square root of the variance. Change the standardDeviation parameter of the Gaussian
actor so its value is “sqrt(noisePower)”, as shown in figure 2.28. This is an expression that references
the noisePower parameter. We will explain the expression language in the next chapter. But first, let
check our improved model. Return to the top-level model, and edit the parameters of the Channel actor
(by either double clicking or right clicking and selecting “Configure”). Change the noise power from

1. On a Macintosh, control-click.

Heterogeneous Concurrent Modeling and Design 63

Using Vergil

the default 0.1 to 0.01. Run the model. You should now get a relatively clean sinusoid like that shown
in figure 2.29.

Note that you can also add parameters to a composite actor without dragging from the Utilities
library by clicking on the “Add” button in the edit parameters dialog for the Channel composite. This
dialog can be obtained by either double clicking on the Channel icon, or by right clicking and selecting

FIGURE 2.27. Adding a parameter to the channel model.

FIGURE 2.28. The standard deviation of the Gaussian actor is set to the square root of the noise power.

64 Ptolemy II

Using Vergil

“Configure”, or by right clicking on the background inside the composite and selecting “Edit Parame-
ters”. However, parameters that are added this way will not be visible in the diagram when you look
inside the Channel actor. Instead, you would have to right click on the background and select Config-
ure to see the parameter.

2.5.2 Decorative Elements
There are several other useful enhancements you could make to this model. Try dragging an Anno-

tation from the Utilities library, Decorative sublibrary, and creating a title on the diagram. A limited
number of other decorative elements like geometric shapes can also be added to the diagram from this
same library.

2.5.3 Creating Custom Icons
A (rather primitive) icon editor is also provided with Vergil. To create a custom icon, right click on

the icon and select “Edit Custom Icon,” as shown in figure 2.30. The box in the middle of the icon edi-
tor displays the size of the default icon, for reference. Try creating an icon like the one shown in figure
2.31. Hint: The fill color of the rectangle is set to “none” and the fill color of the trapezoid is first
selected using the color selector, then modified to have an alpha (transparency) of 0.5. Finally, since
the icon itself has the actor name in it, the Customize Name dialog is used to deselect “show name.”

2.6 Navigating Larger Models
Sometimes, a model gets large enough that it is not convenient to view it all at once. There are four

toolbar buttons, shown in figure 2.27 that help. These buttons permit zooming in and out. The “Zoom
reset” button restores the zoom factor to the “normal” one, and the “Zoom fit” calculates the zoom fac-
tor so that the entire model is visible in the editor window.

In addition, it is possible to pan over a model. Consider the window shown in figure 2.33. Here, we
have zoomed in so that icons are larger than the default. The pan window at the lower left shows the
entire model, with a red box showing the visible portion of the model. By clicking and dragging in the

FIGURE 2.29. The output of the simple signal processing model in figure 2.25 with noise power = 0.01

Heterogeneous Concurrent Modeling and Design 65

Using Vergil

pan window, it is easy to navigate around the entire model. Clicking on the “Zoom fit” button in the
toolbar results in the editor area showing the entire model, just as the pan window does.

FIGURE 2.30. Custom icon editor for the Channel actor.

FIGURE 2.32. Summary of toolbar buttons for zooming and fitting.

Zoom in
Zoom reset
Zoom fit
Zoom out
Full screen

66 Ptolemy II

Using Vergil

2.7 Classes and Inheritance
One of the major new capabilities introduced with version 4.0 of Ptolemy II is the ability to define

actor-oriented classes with instances and subclasses with inheritance. The key idea is that you can
specify that a component definition is a class, in which case all instances and subclasses inherit its
structure. This improves modularity in designs. We will illustrate this capability with an example.

2.7.1 Creating and Using Actor-Oriented Classes
Consider the model that we developed in section 2.4, shown for reference in figure 2.34. Suppose

that we wish to create multiple instances of the channel, as shown in figure 2.35. In that figure, the sin-
ewave signal passes through five distinct channels (note the use of a relation to broadcast the same sig-
nal to each of the five channels). The outputs of the channels are added together and plotted. The result
is a significantly cleaner sine wave than the one that results from one channel alone1. However, this is

1. In communication systems, this technique is known as diversity, where multiple channels with independent
noise are used to achieve more reliable communication.

FIGURE 2.31. Custom icon for the Channel actor.

Heterogeneous Concurrent Modeling and Design 67

Using Vergil

FIGURE 2.33. The pan window at the lower left has a red box representing the visible are of the model in
the main editor window. This red box can be moved around to view different parts of the model.

FIGURE 2.34. Hierarchical model that we will modify to use classes.

68 Ptolemy II

Using Vergil

a poor design, for two reasons. First, the number of channels is hardwired into the diagram. We will
deal with that problem in the next section. Second, each of the channels is a copy of the composite
actor in figure 2.34. This results in a far less maintainable or scalable model than we would like. Con-
sider, for example, what it would take to change the design of the channel. Each of the five copies
would have to be changed individually.

A better solution is to define a channel class. To do this, begin with the design in figure 2.34, and
remove the connections to the channel, as shown in figure 2.36. Then right click and select “Convert to
Class.” (Note that if you fail to first remove the connections, you will get an error message when you
try to convert to class. A class is not permitted to have connections.) The actor icon acquires a blue
halo, which serves as a visual indication that it is a class, rather than an ordinary actor (which is an
instance). Classes play no role in the execution of the model, and merely serve as definitions of com-
ponents that must then be instantiated. By convention, we put classes at the top of the model, near the
director, since they function as declarations.

Once you have a class, you can create an instance by right clicking and selecting “Create Instance”
or typing Control-N. Do this five times to create five instances of the class, as shown in figure 2.36.
Although this looks similar to the design in figure 2.35, it is, in fact, a much better design. To verify
this, try making a change to the class, for example by creating a custom icon for it, as shown in figure
2.37. Note that the changes propagate to each of the instances of the class. A more subtle advantage is
that the XML file representation of the model is much smaller, since the design of the class is given
only once rather than five times.

If you look inside any of the instances (or the class) in figure 2.37, you will see the same channel
model. In fact, you will see the class definition. Any change you make inside this hierarchical model
will be automatically propagated to all the instances. Try changing the value of the noisePower param-
eter, for example.

2.7.2 Overriding Parameter Values in Instances
By default, all instances of Channel in figure 2.37 have the same icon and the same parameter val-

ues. However, each instance can be customized by overriding these values. In figure 2.38, for example,

FIGURE 2.35. A poor design of a diversity communication system, which has multiple copies of the chan-
nel as defined in figure 2.34.

Heterogeneous Concurrent Modeling and Design 69

Using Vergil

we have modified the custom icons so that each has a different color, and the fifth one has an extra
graphical element. To do this, just right click on the icon of the instance and select “Edit Custom Icon.”

2.7.3 Subclassing and Inheritance
Suppose now that we wish to modify some of the channels to add interference in the form of

another sinewave. A good way to do this is to create a subclass of the Channel class, as shown in figure
2.39. A subclass is created by right clicking on the class icon and selecting “Create Subclass.” The

FIGURE 2.36. Creating and using a channel class.

Model with
connections
removed.

Model after channel is converted to class.

Model after class is moved to the top.

Model after instance is created from class.

Model with
multiple instances
of the same class.

70 Ptolemy II

Using Vergil

resulting icon for the subclass appears right on top of the icon for the class, so it needs to be moved
over, as shown in the figure.

Looking inside the subclass reveals that it contains all the elements of the class, but with their
icons now surrounded by a dashed pink outline. These elements are inherited. They cannot be removed
from the subclass (try to do so, and you will get an error message). You can, however, change their
parameter values and add additional elements. Consider the design shown in figure 2.40, which adds
an additional pair of parameters named “interferenceAmplitude” and “interferenceFrequency” and an
additional pair of actors implementing the interference. A model that replaces the last channel with an
instance of the subclass is shown in figure 2.41, along with a plot where you can see the sinusoidal
interference.

An instance of a class may be created anywhere in a hierarchical model that is either in the same
composite as the class or in a composite contained by that composite. To put an instance into a sub-

FIGURE 2.37. The model from figure 2.36 with the icon changed for the class. Note that changes to the
base class propagate to the instances.

FIGURE 2.38. The model from figure 2.37 with the icons of the instance changed to override parameter
values in the class.

Heterogeneous Concurrent Modeling and Design 71

Using Vergil

model, simply copy (or cut) an instance from the composite where the class is, and then paste that
instance into the composite.

2.7.4 Sharing Classes Across Models
A class may be shared across multiple models by saving the class definition in its own file. We will

illustrate how to do that with the Channel class. First, look inside the Channel class, and then select
Save As from the File menu. The dialog that appears is shown in figure 2.42. The checkbox at the
right, labeled “Save submodel only” is by default unchecked, and if left unchecked, what will be saved
will be the entire model. In our case, we wish to save the Channel submodel only, so we must check the
box.

FIGURE 2.39. The model from figure 2.38 with a subclass of the Channel with no overrides (yet).

Move subclass

FIGURE 2.40. The subclass from figure 2.39 with overrides that add sinusoidal interference.

72 Ptolemy II

Using Vergil

FIGURE 2.41. A model using the subclass from figure 2.40 and a plot of an execution.

FIGURE 2.42. A class can be saved in a separate file to then be shared among multiple models.

Check here
to save the
Channel class
to a file.

Heterogeneous Concurrent Modeling and Design 73

Using Vergil

A key issue is to decide where to save the file. As always with files, there is an issue that models
that use a class defined in an external file have to be able to find that file. In general Ptolemy II
searches for class definitions relative to the classpath, which is given by an environment variable
called CLASSPATH. In principle, you can set this environment variable to include any particular
directory that you would like searched. In practice, changing the CLASSPATH variable often causes
problems with programs, so we recommend, when possible, simply storing the file in a directory
within the Ptolemy II installation directory.1

In figure 2.42, the Channel class is saved to a file called Channel.xml in the directory $PTII/myAc-
tors, where $PTII is the location of the Ptolemy II installation. This class definition can now be used in
any model as follows. Open the model, and select “Instantiate Entity” in the Graph menu, as shown in
figure 2.43. Simply enter the fully qualified class name relative to the $PTII entry in the classpath,
which in this case is “myActors.Channel”.

Once you have an instance of the Channel class that is defined in its own file, you can add it to the
UserLibrary that appears in the library browser to the left in Vergil windows, as shown in figure 2.44.
To do this, right click on the instance and select “Save Actor in Library.” As shown in the figure, this
causes another window to open, which is actually the user library. The user library is a Ptolemy II
model like any other, stored in an XML file. If you now save that library model, then the class instance
will be available in the UserLibrary henceforth in any Vergil window.

One subtle point is that it would not accomplish the same objective if the class definition itself (vs.
an instance of the class) were to be saved in the user library. If you were to do that, then the user library
would provide a new class definition rather than an instance of the class when you drag from it.

1. If you don’t know where Ptolemy II is installed on your system, you can find out by invoking File, New, Expres-
sion Evaluator and typing PTII followed by Enter.

FIGURE 2.43. An instance of a class defined in a file can be created using Instantiate Entity in the Graph
menu.

74 Ptolemy II

Using Vergil

2.8 Higher-Order Components
Ptolemy II includes a number of higher-order components, which are actors that operate on the

structure of the model rather than on data. This notion of higher-order components appeared in
Ptolemy Classic and is described in [81], but the realization in Ptolemy II is more flexible than that in
Ptolemy Classic. These higher-order components help significantly in building large designs where the
model structure does not depend on the scale of the problem. In this section, we describe a few of these
components, all of which are found in the HigherOrderActors library. The ModalModel actor is
described below in section 2.10, after explaining some of the domains that can make effective use of it.

2.8.1 MultiInstance Composite
Consider model in figure 2.37, which has five instances of the Channel class wired in parallel. This

model has the unfortunate feature that the number of instances is hardwired into the diagram. It is awk-
ward, therefore, to change this number, and particularly awkward to create a larger number of

FIGURE 2.44. Instances of a class that is defined in its own file can be made available in the UserLibrary.

Heterogeneous Concurrent Modeling and Design 75

Using Vergil

instances. This problem is solved by the MultiInstanceComposite actor1. A model equivalent to that of
figure 2.37 but using the MultiInstanceComposite actor is shown in figure 2.45. The MultiInstance-
Composite is a composite actor into which we have inserted a single instance of the Channel (this is
inserted by creating an instance of the of Channel, then copying and pasting it into the composite).

The MultiInstanceComposite actor has two parameters, nInstances and instance, shown in figure
2.46. The first of these specifies the number of instances to create. At run time, this actor replicates
itself this number of times, connecting the inputs and outputs to the same sources and destinations as
the first (prototype) instance. In figure 2.45, notice that the input of the MultiInstanceComposite is
connected to a relation (the black diamond), and the output is connected directly to a multiport input of
the AddSubtract actor. As a consequence, the multiple instances will be wired in a manner similar to
figure 2.37, where the same input value is broadcast to all instances, but distinct output values are sup-
plied to the AddSubtract actor.

The model of figure 2.45 is better than that of figure 2.37 because now we can change the number
of instances by changing one parameter value. The instances can also be customized on a per-instance
basis by expressing their parameter values in terms of the instance parameter of the MultiInstance-
Composite. Try, for example, making the noisePower parameter of the InstanceOfChannel actor in fig-

1. The MultiInstanceComposite actor was contributed to the Ptolemy II code base by Zoltan Kemenczy and Sean
Simmons, of Research In Motion Limited.

FIGURE 2.45. A model that is equivalent to that of figure 2.37, but using a MultiInstanceComposite, which
permits the number of instances of the channel to change by simply changing one parameter value.

FIGURE 2.46. The first parameter of the MultiInstanceComposite specifies the number of instances. The
second parameter is available to the model builder to identify individual instances.

76 Ptolemy II

Using Vergil

ure 2.45 depend on instance. E.g., set it to “instance * 0.1” and then set nInstances to 1. You will
see a clean sine wave when you run the model.

2.8.2 IterateOverArray
The implementation of the Channel class, which is shown in figure 2.42, happens to not have any

state, meaning that an invocation of the Channel model does not depend on data calculated in a previ-
ous invocation. As a consequence, it is not really necessary to use n distinct instances of the Channel
class to realize a diversity communication system. A single instance could be invoked n times on n
copies of the data. We can do this using the IterateOverArray higher-order actor.

The IterateOverArray actor can be used in a manner similar to how we used the MultiInstance-
Composite in the previous section. That is, we can populate it with an instance of the Channel class,
similar to figure 2.45. Just like the MultiInstanceComposite, the IterateOverArray actor requires a
director inside. An implementation is shown in figure 2.47. Notice that in the top-level model, instead
of using a relation to broadcast the input to multiple instances of the channel, we create an array with
multiple copies of the channel input. This is done using a combination of the Repeat actor (found in the
FlowControl library, SequenceControl sublibrary) and the SequenceToArray actor (found in the Array
library). The Repeat actor has a single parameter, numberOfTimes, which in figure 2.47 we have set
equal to the value of the diversity parameter that we have added to the model. The SequenceToArray
actor has a parameter arrayLength that we have also set equal to diversity (this parameter, interest-
ingly, can also be set via the arrayLength port, which is filled in gray to indicate that it is both parame-
ter and a port). The output is sent to an ArrayAverage actor, also found in the Array library.

The execution of the model in figure 2.47 is similar to that of the model in figure 2.45, except that
the scale of the output is different, reflecting the fact that the output is an average rather than a sum.

The IterateOverArray actor also supports dropping into it an actor by dropping the actor onto its
icon. The actor can be either an atomic library actor or a composite actor (although if it is composite
actor, it is required to have a director). This mechanism is illustrated in figure 2.48. When an actor is
dragged from the library, when it is dragged over the IterateOverArray actor, the icon acquires a white
halo, suggesting that if the actor is dropped, it will be dropped into the actor under the cursor, rather

FIGURE 2.47. The IterateOverArray actor can be used to accomplish the same diversity channel model as
in figure 2.45, but without creating multiple instances of the channel model. This works because the channel
model has no state.

Heterogeneous Concurrent Modeling and Design 77

Using Vergil

than onto the model containing that actor. When you look inside the IterateOverArray actor after doing
this, you will see the class definition. Add an SDFDirector to it before executing it.

2.8.3 Mobile Code
A pair of (still experimental) actors in Ptolemy II support mobile code in two forms. The Mobile-

Function actor accepts a function in the expression language (see the Expression Language chapter) at
one input port and applies that function to data that arrives at the other input port. The MobileModel
actor accepts a MoML description of a Ptolemy II model at an input port and then executes that model,
streaming data from the other input port through it.

A use of the MobileFunction actor is shown in figure 2.49. In that model, two functions are pro-
vided to the MobileFunction in an alternating fashion, one that computes and the other that com-
putes . These two functions are provided by two instances of the Const actor, found in Sources,
GenericSources. The functions are interleaved by the Commutator actor, from FlowControl, Aggrega-
tors.

2.8.4 Lifecycle Management Actors
A few actors in the HigherOrderActors library provide in a single firing the entire execution of

another Ptolemy II model. The RunCompositeActor actor executes the contained model. The Model-
Reference actor executes a model that is defined elsewhere in its own file or URL. The VisualModel-
Reference actor opens a Vergil view of a referenced model when it executes a referenced model. These
actors generally associate ports (that the user of the actor creates) with parameters of the referenced or
contained model. They can be used, for example, to create models that repeatedly run other models
with varying parameter values. See the documentation of the actors and the demonstrations in the
quick tour for more details.

FIGURE 2.48. The IterateOverArray actor supports dropping an actor onto it. When you do this, it trans-
forms to mimic the icon of the actor you dropped onto it, as shown. Here we are using the Channel class that
we saved to the UserLibrary as shown in figure 2.44.

x2

2x

78 Ptolemy II

Using Vergil

2.9 Domains
A key innovation in Ptolemy II is that, unlike other design and modeling environments, there are

several available models of computation that define the meaning of a diagram. In the above examples,
we directed you to drag in an SDF Director without justifying why. A director in Ptolemy II gives
meaning (semantics) to a diagram. It specifies what a connection means, and how the diagram should
be executed. In Ptolemy II terminology, the director realizes a domain. Thus, when you construct a
model with an SDF director, you have constructed a model “in the SDF domain.”

The SDF director is fairly easy to understand. “SDF” stands for “synchronous dataflow.” In data-
flow models, actors are invoked (fired) when their input data is available. SDF is particularly simple
case of dataflow where the order of invocation of the actors can be determined statically from the
model. It does not depend on the data that is processed (the tokens that are passed between actors).

But there are other models of computation available in Ptolemy II. And the system is extensible.
You can invent your own. This richness has a downside, however. It can be difficult to determine
which one to use without having experience with several. Moreover, you will find that although most
actors in the library do something in any domain in which you use them, they do not always do some-
thing useful. It is important to understand the domain you are working with and the actors you are
using. Here, we give a very brief introduction to some of the domains. We begin first by explaining
some of the subtleties in SDF.

2.9.1 SDF and Multirate Systems
So far we have been dealing with relatively simple systems. They are simple in the sense that each

actor produces and consumes one token from each port at a time. In this case, the SDF director simply

FIGURE 2.49. The MobileFunction actor accepts a function definition at one port and applies it to data that
arrives at the other port.

Heterogeneous Concurrent Modeling and Design 79

Using Vergil

ensures that an actor fires after the actors whose output values it depends on. The total number of out-
put values that are created by each actor is determined by the number of iterations, but in this simple
case only one token would be produced per iteration.

It turns out that the SDF scheduler is actually much more sophisticated. It is capable of scheduling
the execution of actors with arbitrary prespecified data rates. Not all actors produce and consume just a
single sample each time they are fired. Some require several input token before they can be fired, and
produce several tokens when they are fired.

One such actor is a spectral estimation actor. Figure 2.50 shows a system that computes the spec-
trum of the same noisy sine wave that we constructed in figure 2.25. The Spectrum actor has a single
parameter, which gives the order of the FFT used to calculate the spectrum. Figure 2.51 shows the out-
put of the model with order set to 8 and the number of iterations set to 1. Note that there are 256 out-
put samples output from the Spectrum actor. This is because the Spectrum actor requires 2^8, or 256
input samples to fire, and produces 2^8, or 256 output samples when it fires. Thus, one iteration of the
model produces 256 samples. The Spectrum actor makes this a multirate model, because the firing
rates of the actors are not all identical.

It is common in SDF to construct models that require exactly one iteration to produce a useful
result. In some multirate models, it can be complicated to determine how many firings of each actor
occur per iteration of the model. See the SDF chapter in volume 3 for details.

FIGURE 2.50. A multirate SDF model. The Spectrum actor requires 256 tokens to fire, so one iteration of
this model results in 256 firings of Sinewave, Channel, and SequencePlotter, and one firing of Spectrum.

FIGURE 2.51. A single iteration of the SDF model in figure 2.50 produces 256 output tokens.

80 Ptolemy II

Using Vergil

A second subtlety with SDF models is that if there is a feedback loop, as in figure 2.52, then the
loop must have at least one instance of the SampleDelay actor in it (found in the FlowControl library,
SequenceControl sublibrary). Without this actor, the loop will deadlock. The SampleDelay actor pro-
duces initial tokens on its output, before the model begins firing. The initial tokens produced are given
by a the initialOutputs parameter, which specifies an array of tokens. These initial tokens enable down-
stream actors and break the circular dependencies that would result otherwise from a feedback loop.

A final issue to consider with the SDF domain is time. Notice that in all the examples above we
have suggested using the SequencePlotter actor, not the TimedPlotter actor, which is in Sinks library,
TimedSinks sublibrary. This is because the SDF domain does not include in its semantics a notion of
time. Time does not advance as an SDF model executes, so the TimedPlotter actor would produce very
uninteresting results, where the horizontal axis value would always be zero. The SequencePlotter actor
uses the index in the sequence for the horizontal axis. The first token received is plotted at horizontal
position 0, the second at 1, the third at 2, etc. The next domain we consider, DE, includes much stron-
ger notion of time, and it is almost always more appropriate in the DE domain to use the TimedPlotter
actor.

2.9.2 Data-Dependent Rates
Several domains generalize SDF to support data-dependent rates. The most mature of these is the

process networks domain (PN), which associates with each actor its own thread of control. PSDF
(parameterized SDF) and HDF (heterochronous dataflow) are more experimental, but are possibly
more efficient and formally analyzable than PN. See volume 3 for details about domains.

2.9.3 Discrete-Event Systems
In discrete-event (DE) systems, the connections between actors carry signals that consist of events

placed on a time line. Each event has both a value and a time stamp, where its time stamp is a double-
precision floating-point number. This is different from dataflow, where a signal consists of a sequence
of tokens, and there is no time significance in the signal.

A DE model executes chronologically, processing the oldest events first. Time advances as events
are processed. There is potential confusion, however, between model time, the time that evolves in the
model, and real time, the time that elapses in the real world while the model executes (also called wall-
clock time). Model time may advance more rapidly than real time or more slowly. The DE director has
a parameter, synchronizeToRealTime, that, when set to true, attempts to synchronize the two notions of
time. It does this by delaying execution of the model, if necessary, allowing real time to catch up with
model time.

FIGURE 2.52. An SDF model with a feedback loop must have at least one instance of the SampleDelay
actor in it.

Heterogeneous Concurrent Modeling and Design 81

Using Vergil

Consider the DE model shown in figure 2.53. This model includes a PoissonClock actor, a Cur-
rentTime actor, and a WallClockTime actor, all found in the Sources library, TimedSources sublibrary.
The PoissonClock actor generates a sequence of events with random times, where the time between
events is exponentially distributed. Such an event sequence is known as a Poisson process. The value
of the events produced by the PoissonClock actor is a constant, but the value of that constant is ignored
in this model. Instead, these events trigger the CurrentTime and WallClockTime actors. The Current-
Time actor outputs an event with the same time stamp as the input, but whose value is the current
model time (equal to the time stamp of the input). The WallClockTime actor produces an event with the
same time stamp as the input, but whose value is the current real time, in seconds since initialization of
the model.

The plot in figure 2.53 shows an execution. Note that model time has advanced approximately 10
seconds, but real time has advanced almost not at all. In this model, model time advances much more
rapidly than real time. If you build this model, and set the synchronizeToRealTime parameter of the
director to true, then you will find that the two plots coincide almost perfectly.

A significant subtlety in using the DE domain is in how simultaneous events are handled. Simulta-
neous events are simply events with the same time stamp. We have stated that events are processed in
chronological order, but if two events have the same time stamp, then there is some ambiguity. Which
one should be processed first? If the two events are on the same signal, then the answer is simple: pro-
cess first the one that was produced first. However, if the two events are on different signals, then the
answer is not so clear.

Consider the model shown in figure 2.54, which produces a histogram of the interarrival times of
events from the PoissonClock actor. In this model, we calculate the difference between the current
event time and the previous event time, resulting in the plot that is shown in the figure. The Previous
actor is a zero-delay actor, meaning that it produces an output with the same time stamp as the input

FIGURE 2.53. Model time vs. real time (wall clock time).

82 Ptolemy II

Using Vergil

(except on the first firing, where in this case it produces no output). Thus, when the PoissonClock actor
produces an output, there will be two simultaneous events, one at the input to the plus port of the
AddSubtract actor, and one at the input of the Previous actor. Should the director fire the AddSubtract
actor or the Previous actor? Either seems OK if it is to respect chronological order, but it seems intui-
tive that the Previous actor should be fired first.

It is helpful to know how the AddSubtract actor works. When it fires, it adds at most one token
from each channel of the plus port, and subtracts at most one token from each channel of the minus
port. If the AddSubtract actor fires before the Previous actor, then the only available token will be the
one on the plus port, and the expected subtraction will not occur. Intuitively, we would expect the
director to invoke the Previous actor before the AddSubtract actor so that the subtraction occurs.

How does the director deliver on the intuition that the Previous actor should be fired first? Before
executing the model, the DE director constructs a topological sort of the model. A topological sort is
simply a list of the actors in data-precedence order. For the model in figure 2.54, there is only one
allowable topological sort:
• PoissonClock, CurrentTime, Previous, AddSubtract, HistogramPlotter
In this list, AddSubtract is after Previous. So the when they have simultaneous events, the DE director
fires Previous first.

Thus, the DE director, by analyzing the structure of the model, usually delivers the intuitive behav-
ior, where actors that produce data are fired before actors that consume their results, even in the pres-
ence of simultaneous events.

There remains one key subtlety. If the model has a directed loop, then a topological sort is not pos-
sible. In the DE domain, every feedback loop is required to have at least one actor in it that introduces
a time delay, such as the TimedDelay actor, which can be found in the DomainSpecific library under
DiscreteEvent (this library is shown on the left in figure 2.55). Consider for example the model shown
in figure 2.55. That model has a Clock actor, which is set to produce events every 1.0 time units. Those

FIGURE 2.54. Histogram of interarrival times, illustrating handling of simultaneous events.

Heterogeneous Concurrent Modeling and Design 83

Using Vergil

events trigger the Ramp actor, which produces outputs that start at 0 and increase by 1 on each firing.
In this model, the output of the Ramp goes into an AddSubtract actor, which subtracts from the Ramp
output its own prior output delayed by one time unit. The result is shown in the plot in the figure.

Occasionally, you will need to put a TimedDelay actor in a feedback loop with a delay of 0.0. This
is particularly true if you are building complex models that mix domains, and there is a delay inside a
composite actor that the DE director cannot recognize as a delay. The TimedDelay actor with a delay of
0.0 can be thought of as a way to let the director know that there is a time delay in the preceding actor,
without specifying the amount of the time delay.

2.9.4 Wireless and Sensor Network Systems
The wireless domain builds on the discrete event domain to support modeling of wireless and sen-

sor network systems. In the wireless domain, channel models mediate communication between actors,
and the visual syntax does not require wiring between components. See [10] and [11] for details.

2.9.5 Continuous-Time Systems
The continuous-time domain (CT) is another relatively mature domain with semantics consider-

ably different from either DE or SDF. In CT, the signals sent along connections between actors are usu-

FIGURE 2.55. Discrete-event model with feedback, which requires a delay actor such as TimedDelay.
Notice the library of domain-specific actors at the left.

84 Ptolemy II

Using Vergil

ally continuous-time signals. A CT example is described above in section 2.2.3.
The CT domain can also handle discrete events. These events are usually related to a continuous-

time signal, for example representing a zero-crossing of the continuous-time signal. The CT director is
quite sophisticated in its handling of such mixed signal systems.

2.10 Hybrid Systems and Modal Models
Hybrid systems are models that combine continuous dynamics with discrete mode changes. They

are created in Ptolemy II by creating a ModalModel, found in the HigherOrderActors library. We start
by examining a pre-built modal model, and conclude by illustrating how to construct one. Modal mod-
els can be constructed with other domains besides CT, but this section will concentrate on CT. Feel free
to examine other examples of modal models given in the quick tour, figure 2.3.

2.10.1 Examining a Pre-Built Model
Consider the bouncing ball example, which can be found under “Bouncing Ball” in figure 2.3 (in

the “Hybrid Systems” entry). The top-level contents of this model is shown in figure 2.56. It contains a
Ball Model, a TimedPlotter, and PeriodicSampler, and an Animate Ball composite actor. The Ball
Model is an instance of the ModalModel found in the HigherOrderActors library, but renamed. If you
execute the model, you should see a plot like that in the figure and a 3-D animation that is constructed
using the GR (graphics) domain. The continuous dynamics correspond to the times when the ball is in
the air, and the discrete events correspond to the times when the ball hits the surface and bounces.

If you look inside the Ball Model, you will see something like figure 2.57. Figure 2.57 shows a
state-machine editor, which has a slightly different toolbar and a significantly different library at the
left. The circles in figure 2.57 are states, and the arcs between circles are transitions between states. A

FIGURE 2.56. Top level of the
bouncing ball example.

Heterogeneous Concurrent Modeling and Design 85

Using Vergil

modal model is one that has modes, which represent regimes of operation. Each mode in a modal
model is represented by a state in a finite-state machine.

The state machine in figure 2.57 has three states, named init, free, and stop. The init state is the ini-
tial state, which is set as shown in figure 2.58. The free state represents the mode of operation where
the ball is in free fall, and the stop state represents the mode where the ball has stopped bouncing.

FIGURE 2.57. Inside the Ball Model of figure 2.56.

FIGURE 2.58. The initial state of a state machine is set by right clicking on the background and specifying the
state name.

86 Ptolemy II

Using Vergil

At any time during the execution of the model, the modal model is in one of these three states.
When the model begins executing, it is in the init state. During the time a modal model is in a state, the
behavior of the modal model is specified by the refinement of the state. The refinement can be exam-
ined by looking inside the state. As shown in figure 2.59, the init state has no refinement.

Consider the transition from init to free. It is labeled as follows:

true
free.initialPosition = initialPosition; free.initialVelocity = 0.0

The first line is a guard, which is predicate that determines when the transition is enabled. In this case,
the transition is always enabled, since the predicate has value true. Thus, the first thing this model will
do is take this transition and change modes to free. The second line specifies a sequence of actions,
which in this case set parameters of the destination mode free.

If you look inside the free state, you will see the refinement shown in figure 2.60. This model rep-
resents the laws of gravity, which state that an object of any mass will have an acceleration of roughly

 meters/second2 (roughly). The acceleration is integrated to get the velocity. which is, in turn, inte-
grated to get the vertical position.

In figure 2.60, a ZeroCrossingDetector actor is used to detect when the vertical position of the ball
is zero. This results in production of an event on the (discrete) output bump. Examining figure 2.57,
you can see that this event triggers a state transition back to the same free state, but where the initialVe-
locity parameter is changed to reverse the sign and attenuate it by the elasticity. This results in the ball
bouncing, and losing energy, as shown by the plot in figure 2.56.

As you can see from figure 2.57, when the position and velocity of the ball drop below a specified
threshold, the state machine transitions to the state stop, which has no refinement. This results in the
model producing no further output.

FIGURE 2.59. A state may or may not have a refinement, which specified the behavior of the model while the
model is in that state. In this case, init has no refinement.

FIGURE 2.60. The refinement of the free state, shown here, is a continuous-model representing the laws of
gravity.

10–

Heterogeneous Concurrent Modeling and Design 87

Using Vergil

2.10.2 Numerical Precision and Zeno Conditions
The bouncing ball model of figures 2.56 and 2.57 illustrates an interesting property of hybrid sys-

tem modeling. The stop state, it turns out, is essential. Without it, the time between bounces keeps
decreasing, as does the magnitude of each bounce. At some point, these numbers get smaller than the
representable precision, and large errors start to occur. If you remove the stop state from the FSM, and
re-run the model, you get the result shown in figure 2.61. The ball, in effect, falls through the surface
on which it is bouncing and then goes into a free-fall in the space below.

The error that occurs here illustrates some fundamental pitfalls with hybrid system modeling. The
event detected by the ZeroCrossingDetector actor can be missed by the simulator. This actor works
with the solver to attempt to identify the precise point in time when the event occurs. It ensures that the
simulation includes a sample time at that time. However, when the numbers get small enough, numeri-
cal errors take over, and the event is missed.

A related phenomenon is called the Zeno phenomenon. In the case of the bouncing ball, the time
between bounces gets smaller as the simulation progresses. Since the simulator is attempting to capture
every bounce event with a time step, we could encounter the problem where the number of time steps
becomes infinite over a finite time interval. This makes it impossible for time to advance. In fact, in
theory, the bouncing ball example exhibits this Zeno phenomenon. However, numerical precision
errors take over, since the simulator cannot possibly keep decreasing the magnitude of the time incre-
ments.

The lesson is that some caution needs to be exercised when relying on the results of a simulation of
a hybrid system. Use your judgement.

2.10.3 Constructing Modal Models
A modal model is a component in a larger continuous-time (or other kind of) model. You can cre-

ate a modal model by dragging one in from the HigherOrderActors library. By default, it has no ports.
To make it useful, you will need to add ports. The mechanism for doing that is identical to adding ports
to a composite model, and is explained in section 2.4.2. Figure 2.56 shows a top-level continuous-time
model with a single modal model that has been renamed Ball Model. Three output ports have been
added to that modal model, but only the top one is used. It gives the vertical distance of the ball from
the surface on which it bounces.

FIGURE 2.61. Result of running the bouncing ball model without the stop state.

88 Ptolemy II

Using Vergil

If you create a new modal model by dragging it in from the HigherOrderActors library, create an
output port and name it output, and then look inside, you will get an FSM editor like that shown in fig-
ure 2.62. Note that the output port is (regrettably) located at the upper left, and is only partially visible.
The annotation text suggests that you delete it once you no longer need it. You may want to move the
port to a more reasonable location (where it is visible).

The output port that you created is in fact indicated in the state machine as being both an output
and input port. The reason for this is that guards in the state machine can refer to output values that are
produced on this port by refinements. In addition, the output actions of a transition can assign an out-
put value to this port. Hence, the port is, in fact, both an output and input for the state machine.

To create a finite-state machine like that in figure 2.57, drag in states (white circles), or click on the
state icon in the toolbar. You can rename these states by right clicking on them and selecting “Custom-
ize Name”. Choose names that are pertinent to your application. In figure 2.57, there is an init state for
initialization, a free state for when the ball is in the air, and a stop state for when the ball is no longer
bouncing. You must specify the initial state of the FSM by right clicking on the background of the
FSM Editor, selecting “Edit Parameters”, and specifying an initial state name, as shown in figure 2.58.
In that figure, the initial state is named init.

Creating Transitions. To create transitions, you must hold the control button1 on the keyboard while
clicking and dragging from one state to the next (a transition can also go back to the same state). The
handles on the transition can be used to customize its curvature and orientation. Double clicking on the
transition (or right clicking and selecting “Configure”) allows you to configure the transition. The dia-
log for the transition from init to free is shown in figure 2.63. In that dialog, we see the following:
• The guard expression is true, so this transition is always enabled. The transition will be taken as

1. Or the command button on a Macintosh computer.

FIGURE 2.62. Inside of a new modal model that has had a single output port added.

output port

Heterogeneous Concurrent Modeling and Design 89

Using Vergil

soon as the model begins executing. A guard expression can be any boolean-valued expression
that depends on the inputs, parameters, or even the outputs of any refinement of the current state
(see below). Thus, this transition is used to initialize the model.

• The output actions are empty, meaning that when this transition is taken, no output is specified.
This parameter can have a list of assignments of values to output ports, separated by semicolons.
Those values will be assigned to output ports when the transition is taken.

• The set actions field contains the following statements:

free.initialPosition = initialPosition; free.initialVelocity = 0.0

The “free” in these expressions refers to the mode refinement in the free state. Thus, free.initialPo-
sition is a parameter of that mode refinement. Here, its value is assigned to the value of the param-
eter initialPosition. The parameter free.initialVelocity is set to zero.

• The reset parameter is set to true, meaning that the destination mode refinement will be initialized
when the transition is taken.

• The preemptive parameter is set to false. In this case, it makes no difference, since the init state has
no refinement. Normally, if a transition out of a state is enabled and preemptive is true, then the
transition will be taken without first executing the refinement. Thus, the refinement will not affect
the outputs of the modal model.

A state may have several outgoing transitions. However, it is up to the model builder to ensure that at
no time does more than one guard on these transitions evaluate to true. In other words, Ptolemy II does
not allow nondeterministic state machines, and will throw an exception if it encounters one.

Creating Refinements. Both states and transitions can have refinements. To create a refinement, right
click1 on the state or transition, and select “Add Refinement.” You will see a dialog like that in figure
2.64. As shown in the figure, you will be offered the alternatives of a “Default Refinement” or a “State
Machine Refinement.” The first of these provides a block diagram model as the refinement. The sec-
ond provides another finite state machine as the refinement. In the former case (the default), a blank
refinement model will open, as shown in the figure. As before, the output port will appear in an incon-
venient location. You will almost certainly want to move it to a more convenient location. You will
have to create a director in the refinement. The modal model will not operate without a director in the
refinement.

1. On a Macintosh, control-click.

FIGURE 2.63. Transition dialog for the transition from init to free in figure 2.57.

90 Ptolemy II

Using Vergil

You can also create refinements for transitions, but these have somewhat different behavior. They
will execute exactly once when the transition is taken. For this reason, only certain directors make
sense in such refinements. The most commonly useful is the SDF director. Such refinements are typi-
cally used to perform arithmetic computations that are too elaborate to be conveniently specified as an
action on the transition.

Once you have created a refinement, you can look inside a state or transition. For the bouncing ball
example, the refinement of the free state is shown in figure 2.60. This model exhibits certain key prop-
erties of refinements:
• Refinements must contain directors. In this case, the CTEmbeddedDirector is used. When a con-

tinuous-time model is used inside a mode, this director must be used instead of the default CTDi-
rector (see the CT domain documentation for details).

• The refinement has the same ports as the modal model, and can read input value and specify output
values. When the state machine is in the state of which this is the refinement, this model will be
executed to read the inputs and produce the outputs.

2.10.4 Execution Semantics
The behavior of a refinement is simple. When the modal model is executed, the following

sequence of events occurs:
• For any transitions out of the current state for which preemptive is true, the guard is evaluated. If

exactly one such guard evaluates to true, then that transition is chosen. The output actions of the
transition are executed, and the refinements of the transition (if any) are executed, followed by the
set actions.

• If no preemptive transition evaluated to true, then the refinement of the current state, if there is
one, is evaluated at the current time step.

• Once the refinement has been evaluated (and it has possibly updated its output values), the guard
expressions on all the outgoing transitions of the current state are evaluated. If none is true, the
execution is complete. If one is true, then that transition is taken. If more than one is true, then an
exception is thrown (the state machine is nondeterministic). What it means for the transition to be

FIGURE 2.64. Adding a refinement to a state.

output port

Heterogeneous Concurrent Modeling and Design 91

Using Vergil

“taken” is that its output actions are executed, its refinements (if any) are executed, and its set
actions are executed.

• If reset is true on a transition that is taken, then the refinement of the destination mode (if there is
one) is initialized.

There is a subtle distinction between the output actions and the set actions. The intent of these two
fields on the transition is that output actions are used to define the values of output ports, while set
actions are used to define state variables in the refinements of the destination modes. The reason that
these two actions are separated is that while solving a continuous-time system of equations, the solver
may speculatively execute models at certain time steps before it is sure what the next time step will be.
The output actions make no permanent changes to the state of the system, and hence can be executed
during this speculative phase. The set actions, however, make permanent changes to the state variables
of the destination refinements, and hence are not executed during the speculative phase.

2.11 Using the Plotter
Several of the plots shown above have flaws that can be fixed using the features of the plotter. For

instance, the plot shown in figure 2.51 has the default (uninformative) title, the axes are not labeled,
and the horizontal axis ranges from 0 to 2551, because in one iteration, the Spectrum actor produces
256 output tokens. These outputs represent frequency bins that range between and radians per
second.

The SequencePlotter actor has some pertinent parameters, shown in figure 2.65. The xInit parame-
ter specifies the value to use on the horizontal axis for the first token. The xUnit parameter specifies the
value to increment this by for each subsequent token. Setting these to “-PI” and “PI/128” respectively
results in the plot shown in figure 2.66.

This plot is better, but still missing useful information. To control more precisely the visual appear-
ance of the plot, click on the second button from the right in the row of buttons at the top right of the
plot. This button brings up a format control window. It is shown in figure 2.67, filled in with values
that result in the plot shown in figure 2.68. Most of these are self-explanatory, but the following point-
ers may be useful:
• The grid is turned off to reduce clutter.
• Titles and axis labels have been added.
• The X range and Y range are determined by the fill button at the upper right of the plot.
• Stem plots can be had by clicking on “Stems”
• Individual tokens can be shown by clicking on “dots”
• Connecting lines can be eliminated by deselecting “connect”

1. Hint: Notice the “x102” at the bottom right, which indicates that the label “2.5” stands for “250”.

π– π

FIGURE 2.65. Dialog for creating a refinement of a state.

92 Ptolemy II

Using Vergil

• The X axis label has been changed to symbolically indicate multiples of PI/2. This is done by

FIGURE 2.66. Better labeled plot, where the horizontal axis now properly represents the frequency values.

FIGURE 2.67. Format control window for a plot.

FIGURE 2.68. Still better labeled plot.

Heterogeneous Concurrent Modeling and Design 93

Using Vergil

entering the following in the X Ticks field:

-PI -3.14159, -PI/2 -1.570795, 0 0.0, PI/2 1.570795, PI 3.14159

The syntax in general is:

label value, label value, ...

where the label is any string (enclosed in quotation marks if it includes spaces), and the value is a
number.

94 Ptolemy II

Using Vergil

