Fundamental Algorithms for
System Modeling, Analysis,
and Optimization

Stavros Tripakis
UC Berkeley

EECS 244

Fall 2016

Copyright © 2010-date, E. A. Lee, J. Roychowdhury, S. A. Seshia,
S. Tripakis, All rights reserved

Lecture 1: Introduction, Logistics

The computer-controlled society

Tripakis = - = Ec 1_";4, UL DEIKBIBY. £

Complex systems

EE 244, UC Berkeley: 3

Metabolic Pathway Maps

credits: expasy.ch/biomap/

EE 244, UC Berkeley: 5

A simple program
Int X = 1Input an integer number > 1;

whife x > 1 {
1T X 1S even
X :=x [/ 2;
else
X = 3*X + 1;

EE 244, UC Berkeley: 6

A simple program?

INt X = 1nput an integer number > 1;

x>1{
X 1S even
X 1= x [/ 2;

X = 3*X + 1;

}

Run starting at 31: 31 94 47 142 71 214 107 322 161 484 242 121 364 182 91 274 137 412 206 103 310 155 466
233 700 350 175 526 263 790 395 1186 593 1780 890 445 1336 668 334 167 502 251 754 377 1132 566 283 850 425
1276 638 319 958 479 1438 719 2158 1079 3238 1619 4858 2429 7288 3644 1822 911 2734 1367 4102 2051 6154 3077
9232 4616 2308 1154 577 1732 866 433 1300 650 325 976 488 244 122 61 184 92 46 23 70 35 106 53 160 80 40 20
10 516 8 4 2

Collatz conjecture:
the program terminates for every input.
Open problem in mathematics.

Safety-critical systems

EE 244, UC Berkeley: 8

Safety-critical systems

o Smart cars, roads, buildings, power grid, cities, ...

A Smart Grid Needs Smart Buldings.

EE 244, UC Berkeley: 9

Example of a “smart” system (or CPS):
autonomous intersection

Courtesy AIM project,
CS Dept., UT Austin

Tripakis EE 24Q, UC Berkeley: 10

Autonomous intersection: “real-life” version

~ Courtesy http://www. fastcodesign.com
Tripakis Thanks to Christos Cassandras for recommending this video EE 244, UC Berkeley: 11

Motivation for this course: system design

|
o
[4
-

Throttle-by-wire

@
oy

Brake-by-wire

)

Steer-by-wire

EE 244, UC Berkeley: 12

How to design such systems?

“‘By hand” is not an option...
Designers need tools!
Not just paper and pencil: computer automation.

=> computer-aided design

Goal of this course:
Teach you the fundamentals so that you become
a good tool user, but also a tool maker.

L 294, UL uc.'keley: 13

Computer-Aided Design (CAD) for ICs /
Electronic Design Automation (EDA)

731M transistors

CAD
Tools

EE 244, UC Berkeley: 14

Approaches to system design (1)

. Trial-and-error approach:
Build prototype

Test it, find errors
Fix errors

Repeat

EE 244, UC Berkeley: 15

Design by trial-and-error

Software!
[E=E——
() B v ContialPanel + Al Contiol Panel Rems + Windows Update =15
Fie Edt View Tools Hep |
o

Control Panel Hame

Windows Update

ﬂ Install updates for your computer
= Limpor avalable 1 important update selected, 76.7 MB
e

Installed Updstes
B Windows Anytime Upgrade

EE 244, UC Berkeley: 16

Design by trial-and-error

Boeing 787 grounded

As a result of an in-flight, Boeing 787 battery incident

“AII-Nippon today earlier today in Japan, the FAA will issue an emergency
announced it had canceled gvorinessdreeive (10) o address 2 pteti

320 flights, including 51 temporarily cease operations.

internationa fights, on ceore s g operatesof 5 reitre.
787s affecting a total of Federal Aviation Administration (FAA) that the
46,800 passengers” [San batteries are safe.

Jose Mercury News, I @m i m
1/22/2013] e ————
FAA restriction finally lifted | s

in April 2013. m—

For immediate Releass

Design by trial-and-error

Toyota unintended acceleration
incidents

Millions of cars recalled
Cost: $ billions - -

U.S. National Highway Transportation
Safety Administration’s (NHTSA) report &
concluded that electronic throttle control e Saly

systems were not the cause. Promise and Challenge
of Automotive Electronics

IMEGHTS FROM UNINTENDED ACCILERATION

EE 244, UC Berkeley: 18

How to design safety-critical systems?

Trial and error
Un-scalable
Un-economic
Un-safe
Yet common...

Tesla autopilot video
(source: youtube)

Tripakis

Are the drivers supposed to debug the autopilot?

“It was described as a beta release. The
system will learn over time and get better
and that’s exactly what it's doing. It will
start to feel quite refined within a couple
of months.” — Elon Musk, Tesla CEO

Accidents (will) happen...

Fea Tesla driver dies in first fatal crash while
using autopilot mode

The autopilot sensors on the Model S failed to distinguish a white tractor-trailer
crossing the highway against a bright sky

Danny Yadron and Dan
Tynan in San Francisco

Thursday 30 June 2016 19.14 EDT

0 ©00C

© This article is 2 menths old

< Shares

9,554

(i‘) Save for later
pa—

own, the firs

The first known death caused by a self-driving car was disclosed by Tesla Motors
on Thursday, a development that is sure to cause consumers to second-guess the

son to diein a self-driving car accident. Photegraph: Facebaok

EE 244, UC Berkeley: 20

10

Approaches to system design (2)

Rigorous, “model-based” design:
Build model (“executable specification”) of system

Before building a prototype of the system itself
Analyze the model, find errors
Fix errors in the design (model)
Repeat until the design seems OK
Give models/specs to someone (or to a computer) to implement them

Need to ensure properties are preserved during implementation

Better for affordability:
Catch design errors early => easier / less costly to fix

Better for dependability:
Sometimes can formally prove that design is correct

Gaining acceptance in the industry
EE 244, UC Berkeley: 21

The Elements of Model-Based Design

i How to describe
= || s @ what we want?
B E = -

AN Modeling

How to be sure that this

is what we want? EE.EE EE.E EE."E

Implementation,

e Analysis imizati
«.&5."%/ Optimization /- | iow to buid it
@ Automatically

Correct-by-construction

EE 244, UC Berkeley: 22

11

From standard compilers ...

class HelloWorldApp |
public static void
main(string[] args) |

System.out.printin(_— H _—
i compiler
|
1
source code l machine code

(C, Java, ...) *

type checking, debugging, static analysis, ...

EE 244, UC Berkeley: 23

. to system compilers

Vision: modeling/simulation languages of today will
become the system-programming languages
of tomorrow

system
compiler

Rich languages: l Complex
concurrency, time, execution platforms:
robustness, reliability, networked, distributed,
energy, security, ... multicore, ...

Powerful analyses:

model-checking, WCET analysis, schedulability,
performance analysis, reliability analysis, ...

EE 244, UC Berkeley: 24

12

Caveat

In real life, we need both MBD and trial-and-error methods.

Why?

1. We cannot trust our models 100%

2. All models are abstractions of reality. They make
assumptions that need not hold.
E.g., road condition, weather condition, ...
3. Analysis and optimization methods also have their

limitations.
As we will see in this course.

EE 244, UC Berkeley: 25

Model-based design seems fine, but ...

There are many systems, of different kinds
People have been designing these for decades

Can we pretend to find a single design method that
works for every kind of system?

Of course not

Thesis:
System design is a science

There is a body of knowledge (models, algorithms, ...)
which is fundamental to that science
This body of knowledge is applicable to many application
domains (circuits, SW, embedded systems, bio, ...)

EE 244, UC Berkeley: 26

13

Example of a successful model-based design flow

. FSM
RTL synthesis flow Verilog
HDL '
@ﬁ Simulation/ VHDL
| Verification
RTL)
Boolean equations
\l/ Ml
netlist E* &uﬂ Boolean circuit/network

Library/
module

generators optimization

physical
design

K. Keutzer

EE 244, UC Berkeley: 27

CAD at Berkeley: History

o CAD research at Berkeley: design tools with an impact

late 60s and 70s
CANCER, SPICE (Rohrer, Nagel, Cohen, Pederson, ASV, Newton, etc.)
SPLICE (Newton)
80s
MAGIC (Ousterhout et. al.)
Espresso (Brayton, ASV, Rudell, Wang et. al.)
MIS (Brayton, ASV, et. al.)
90s
SIS, HSIS (Brayton, ASV et. al.)
VIS (Brayton, ASV, Somenzi et. al.)
Ptolemy (Lee et. al.)
2000-date
MVSIS (Brayton, Mishchenko et. al.)
BALM (Mishchenko, Brayton et. al.)
ABC (Mishchenko, Brayton et. al.)
MetroPolis, Metro Il, Clotho (ASV et. al.)
Ptolemy II, HyVisual (Lee et. al.)
UCLID, GameTime, Beaver (Seshia et. al.)

14

Lecture Outline

a Introduction to Stavros, and all of you

0 Some of the topics covered in this course
Digital systems (circuits)
Cyber-Physical systems
Continuous-time systems

a Course logistics

EE 244, UC Berkeley: 29

Stavros Tripakis

Associate Professor, Aalto University (since 2012)
Adjunct Associate Professor, UC Berkeley (since 2009)
Past:
Research Scientist: Cadence Design Systems, Berkeley, 2006 -- 2008
Postdoc: Berkeley, 1999 — 2001
Research Scientist: CNRS, Verimag, France, 2001 — 2006
PhD: Verimag Laboratory, Grenoble, France, 1998
Undergrad: University of Crete, Greece, 1992

Research interests
System design, modeling, and analysis (DMA)
Formal methods
Computer-aided verification and synthesis
Compositionality, contracts, interfaces
Embedded and cyber-physical systems

EE 244, UC Berkeley: 30

15

The promise of rigorous, “formal” methods

Beyond simple simulation and testing: prove
correctness!

“Testing shows the presence, not
the absence of bugs.” — Dijkstra

Formal verification (model checking): “exhaustive
simulation” (check all possible system behaviors)

Success story in the hardware industry: “verification
engineer” standard title in today’s EDA companies

EE 244, UC Berkeley: 31

Formal methods: a theoretical computer science
sub-area

Handbook of Theoretical Volume B: Formal Models and Semantics
Computer Science — 1990 Automata, Languages, Logics, Temporal Logic,
Volume A: Algorithms and Complexity Semantics, Concurrency, ...
Tripakis 32

EE 244, UC Berkeley: 32

16

Turing awards in the area

E. Alben Emarson Joseph Sitakis

Clarke, Emerson, Sifakis — 2007
Model checking

Edenund M, Clarke

Robin Milner — 1991

Theorem proving, type Amir Pnueli — 1996
theory, concurrency Temporal logic

verification

Leslie Lamport — 2013
Tripakis Distrib@ged systems,
Safety BRd4iereBerkeley: 33

“Formal methods” in the software industry?

COMMUNICATIONS searen »

o

ACM "

HOME CURRENTISSUE NEWS BLOGS OPINION RESEARCH PRACTICE CAREERS ARCHIVE VIDEOS

Home | Magazine Archive | April 2015 (Vol. 58, No. 4) / How Amazon Web Services Uses Formal Methods | Full Teot

CONTRIBUTED ARTICLES

How Amazon Web Services Uses Formal Methods

By Chris Newcambe, Tim Rath, Fan Zhang, Bogdan Munteanu, Marc Brooker, Michael Deardeuff
Communications of the ACM, Vol. 58 No. 4. Pages 66-T3

e Key Insights

Comments (1}

vewss 8 0 @ B ED| e @ B @ v E B Formal methods find bugs in system

designs that cannot be found through
any other technigue we know of.

Since 2011, engineers at Amazon Web Sendees (AW
formal specification and model checking to help sol
design problems in critical systems. Here, we deser .. .
motivation and experience, what has worked wells | @ Formial methods are surprisingly feasible

domain, and what has not. When discussing person for mainstream software deve lopment

we refer to the authors by their initials. - .
and give good return on investment.
At AWS we strive to build services that are simple §

to use. External simplicity is built on a hidden subs m At Amazon. formal methods are r'nutinely
comnlex distributed svstems. Such comulex interna = o h

applied to the design of complex
realworld software, including public
Tripakis cloud services.,

17

Round of introductions

Your name, research/professional interests,
grad/undergrad student, ...

35

Quiz

. Express the following in your favorite mathematical
formalism:

- You can fool some people sometimes
- You can fool some of the people all of the time

- You can fool some people sometimes but you can't
fool all the people all the time [Bob Marley]

- You can fool some of the people all of the time, and
all of the people some of the time, but you can not
fool all of the people all of the time [Abraham
Lincoln]

36

18

Course topics

Algorithms for Discrete Models

* Automata, state machines, transition systems, logic, temporal logic
* State-space exploration, reachability analysis, model-checking

* Boolean function representation and manipulation

¢ Synchronous and asynchronous composition

Ao for Conti Mod
Solvi . .
Algorithms for Cyber-Physical Models

¢ Timed and discrete-event systems
* Discrete-event simulation

Cross-cutting Topics

¢ Timing analysis
¢ Controller and program synthesis

Course Logistics

19

Webpage, Books, etc.

The course webpage is the definitive source of
information

http://embedded.eecs.berkeley.edu/eecsx44/

We’'ll also use bCourses (not bSpace)

No textbook. Readings will be posted / handed out for
each set of lectures.

Some references will be placed on reserve in
Engineering library.

Office hours: contact me by email.

Format of Lectures

Two 3 hour lectures per week (Tue-Thu 1 — 4 pm)

Room: 299 Cory

20

Grading

(tentative)
Participation: 10%
Homeworks: 40%

Exam: 50%

Digital Systems

21

Evolution of Digital IC
Design

Results

O~ What'’s next?
QO

PEEET

(Design Productivity)

1985 RTL Synthesis
. Schematic Entry
1978
_
- Transistor entry
McKinsey S-Curve
Effort
K. Keutzer (EDA tools effort)

Evolution of the EDA
Industry

Results

O What’s next?
QO

PEEHT

(Design Productivity)

Synthesis - Cadence, Synopsys

Schematic Entry - Daisy, Mentor, Valid

1978
_
_L' Transistor entry - Calma, Computervision
McKinsey S-Curve
Effort
K. Keutzer (EDA tools effort)

22

Transistor Era

Key tools:

* Transistor-level layout — e.g. Calma
workstation

* Transistor-level simulation — e.g. Spice

* Bonus: transistor-level compaction —
e.g. Cabbage

Size of circuits: 10’s of transistors to
few thousand

Key abstractions and technologies:

* Transistor-level modeling, simulation
* Logical gates- NAND, NOR, FF and cell

libraries
* Layout compaction
K. Keutzer
Gate-level Schematic Era
Key tools:
* gate-level layout editor — Daisy, I . __esboc
Mentor, valid workstation e RETI fad ae
Add_half_0_delay|| X = o
* Gate-level simulator vt ot @rorcinea gt
* Automated place and route
Size of circuits: 3,000 — 35,000 a sum
FA
gates (12,000 to 140,000 b— — ¢ out

transistors) cin

Key abstractions and technologies:

* Logic-level simulation
* Cell-based place and route
* Static-timing analysis

K. Keutzer

23

RTL Synthesis Era

module Half_adder (Sum, C_out, A, B);

Key tOOIS output Sum, C_out;

input A, B;
. I-!ardware-description language xor M1(sum, A B);
simulator — Verilog, VHDL and M2 (C_out, A B);

h | endmodule

* Logic synthesis tool - Synopsys

g y y p y module Full_Adder (sum, c_out, a, b, c_in);
* Automated place and route — Cadence, output sum, c_out;

Avant!, Magma i/?/i[?'l;t \?vlbmfilr:le
Size of circuits: 35,000 gates to ...? o V2 o s i
or M3 (c_out, w2, w3);

Key abstractions and technologies: _¢mme

module Full_Adder_4 (sum, c_out, a, b, c_in);

* HDL simulation output [3:0]sum;
putput CTDUI;)
* Logic synthesis I
. e .o it
* Cell-based place and route FUlladder ML (sumfo], c. 2, a[ol, b[o], ¢_in):
. . . . Full_adder M2 (sum[1], c_in3, a[1], b[1], c_in2);
* Static-timing analysis Full_adder M3 (sum[2], ¢_ind, a[2], b2], c_in3);
Full_adder M4 (sum[3], c_out, a[3], b[3], c_in4);
* Automatic-test pattern generation endmodule
* Equivalence checking / verification Important modern tool:
SAT solver
K. Keutzer

RTL Synthesis Flow

module Full_Adder_4 (sum, c_out, a, b, c_in);

output [3:0]sum;
HDL output c_out;
. . input [3:0] &, b;
simulation input cin;
wire c_in2, c_in3, c_in4;
RTL Full_adder M1 (sum[0], c_in2, a[0], b[0], c_in);

. Full_adder M2 (sum[1], c_in3, a[1], b[1], c_in2);
Synthe5|s Full_adder M3 (sum[2], c_in4, a[2], b[2], c_in3);

Full_adder M4 (sum[3], c_out, a[3], b[3], c_in4);

endmodule

netlist
Library/

module logic
generators optimization

netlist

physical
design

| e e e
| AT ke £

K. Keutzer

24

Cyber-Physical Systems

Cyber-Physical Systems (CPS):
Orchestrating networked computational

resources with physical systems
Building Systems
] &

Automotive =

Telecommunications

Transportation
(Air traffic
control at SFO)

Avionics

Courtesy of Kuka Robotics Corp.

25

Embedded, Cyber-Physical
Systems

o Computers (HW+SW) “embedded” in a physical
world

o Cyber = computers (literally “to govern”)
o Physical = the rest

o Typically in a closed-loop (feedback) control
configuration (often there are many distributed
controllers)

é controller
“plant” e 51

CPS Example — Printing Press

* High-speed, high precision
* Speed: 1inch/ms
* Precision: 0.01 inch
_ ->Time accuracy: 10us
g *° Open standards (Ethernet)
* Synchronous, Time-Triggered
* |EEE 1588 time-sync protocol

Application aspects
* local (control)
+ distributed (coordination)

Bosch-Rexroth
* global (modes)

Edward A. Lee

26

Another Example of a CPS
Application

Modeling:

*Flight dynamics

*Modes of operation
*Transitions between modes
*Composition of behaviors
*Multi-vehicle interaction

Design:

*Processors

*Memory system
*Sensor interfacing
*Concurrent software
*Real-time scheduling

Analysis

*Specifying safe behavior
'] "~ eAchieving safe behavior

STARMAC quadrotor aircraft (Tomlin, et al.) +Verifying safe behavior

*Guaranteeing timeliness

2 S

Example of a CPS: autonomous
intersection management

Courtesy AIM project,
CS Dept., UT Austin

http://www.cs.utexas.edu/~aim/ 54

Continuous-Time Systems

Only a few words here. Prof. Jaijeet Roychowdhury
is the specialist on this topic.

Analog circuits

_ Bluetooth crgip (Cambridge Silicon)

Courtesy of J. Roychowdhury, UC Berkeley

56

28

Diode-Capacitor (Nonlinear) Example

D

th1

Un I

Ub3

» 1 KCL eqn. at node 1: ip1 + ip2 + ip3 = 0

e 3 KVL equations: Upl = Vb2 = Ub3 = €1

e 3BCRs: iy =1I(t); iy = —diode(—vp2;Is,V;); vz =C
* 7 unks, 7 eqgns (incl. 1 differential, 1 nonlinear)

e eliminate by hand: ODEs I(t) — diode(—e1: 15, Vi) + €25 —

> (ODEs not always possible) dt
> analytical soln not available! _ |de _ 1, I¢)
= | — = —diode(—e1; s, Vi) — —~
- numerical methods needed a __C e

J. Roychowdhury, University of California at Berkeley Slide 9

de; 3
dt

Control systems: plant + controller

(periodic controller)

=l x
Fle Edt View Go Favorites Desking Window Help
o= & |4 o G- Engine Tening Madel with Closed Loop Contral -
sidemo_enginewc.mdl Open this model =
mo_enginew: =101x]
s @ foed oot e gt vew Smiston Fomat Todk heb
i DG B LR (eS¢ |y aff e AReDSr REES® "
<) #39 Image Proce: ms" dema).
% & Irstrument € Engine Timing Model with Closed-Loop Control piity and |
to regulate
Bect. This is
]
]
needed to
p— [ompensates
Discrete-time:
Synchronous interaction

3000
- Continuous-time:
- Numerical integration
o E
Drsot| M S C M [et B ~meschnat...| | fowes | - adobens. ||| 8 wbox-sa.. | € swwostr.. | (5 vovetems... | (5 rovetens.. | Mwetws . | BN |[2 (g O[T masem
BE B aduenpr..| duma 700, e I.IW [B sidemo_eoq— B | & |5 | i 20013

29

Biochemical Systems

Reactions governing conversion of glucose to ATP

(energy) and back

CARBOHYDRATE =
METABOLISM ‘:::E:?\,.E_
=1

LivEr Shcogen

1 ‘ GLYCOLYSIS / GLUCONEOGENESIS

D-Glucose
O fxmaceihisg

il

=

—/

diagrams
mean?

—¢
Oxeloacene

What do these ..
-

319

(5515} [a—
|:T:|zn n

FD-Ghucose © O
-D-Glucose-6P
o
MUSCLE i 02T LEH O
(camchiui O—{ZTIE >0

DGl

fD-Frocuse-1 5Pz

[z

—

Gyeeione-

Cinme
B

metabolic

o2i0 wOd

network

00010111409
) Kaxahia Lioraories

O Etanal

Pathway: Chain of Reactions

Enzyme (protein)

- glucose-6-phosphatase
. catalyzes reaction

Compound

- alpha-D-Glucose
Reaction

. alpha-D-glucose 6-phos

/

At
g

P
T P e
e I

%=

5422

D-Glucase-1P

Connections|
to other
Pathways

Glose

Pentose
Phasphae
petrvay

Ilh REACTION. P1TEN
-
— Weiin
. |aLpha O-Glucose §-phasprate proishofleirolase
B ind thom al 0-Glucose &-phosphate + #00 < alpha D Glucsse + 1
qum'-‘mc 3 2 "l CHZOH
Emaation |5 et HedOH Q.
HO—p=H L= T S A0 G A —
\ HLom
HOCH;——+ o oM EEREN]
.. | JT—
I e
e £,
i el
e friitg
: - e
- 5
Pty Ayeolysls / Glisnsogenesis leferentlal
Galactess metabolise H
Sharin ind sucrose metabelisa Equations
Exzyme.
Orthalogy 84 glucese- A - phosphatane [EC:3.1.5.5)
LiskDE o
i -

30

Metabolic Pathway Maps

credits: expasy.ch/biomap/

This course: foundations of system
design

We will study fundamental notions that apply to all kinds
of systems.

We will study analysis methods that apply to many kinds
of systems (primarily discrete and timed systems, but
sometimes also continuous systems).

31

SYSTEMS

63

What is a “system” ?

64

32

System: definition

. Something that has:
- State

—Dynamics: rules that govern the evolution of
the state in time

65

System: definition

. Something that has:
- State

—Dynamics: rules that govern the evolution of
the state in time

. It may also have:
—Inputs: they influence how system evolves
—Outputs: this is what we observe

66

33

Example: digital circuits

. Digital circuit:
- State: ?7?7?
—Dynamics: ??7?

67

Example: digital circuits

. Digital circuit:

- State: value of every
register, memory element

—Dynamics:

. Defined by the
combinational part
(logical gates)

. Time: discrete, or
“logical” (ticks of the
clock)

68

34

Example

. Systems vs. models

\

[
clock

System
(the “real” circuit)

. digital circuits

pclio

Model
(a finite-state machine)

To reason about systems (analyze, make predictions,

prove things, ...), we

need mathematical models 69

Example: digital circuits

. Systems vs. models

\

[
clock

System
(the “real” circuit)

el

node Circuit O

returns (Output: bool);
let

tel

Different models
(finite-state machines)

Different representations (languages, syntaxes)
of the same underlying mathematical model

70

Output = false -> not pre Output;

35

Example: digital circuits

. Digital circuit as a system:

- State: value of every register,
memory element

- Dynamics:

. Defined by the combinational part
(logical gates)

. Time: discrete, or “logical” (ticks of
the clock)

- Or:

- State: all currents and voltages at
all transistors at a given time t

— Dynamics: physics of electronic Different levels of abstraction
circuits (differential algebraic 7
equations)

Multi-paradigm modeling

o Different representations (languages, syntaxes) of
the same underlying formalism.

o Different modeling formalisms often needed to
describe the same system, e.g., at different levels of
abstraction.

o Different modeling formalisms often needed to
describe different parts of the system (subsystems).

72

36

Example: plant + controller

=l x}
Fie Edt Vew Go Favorites Desiop Window reb e
WWIS«@-M] _enginewc. Open this model g
T DR
7 @ Francal Too [TR
< €@ ructort T ple EAt vew Smisten fomst Tods eb
i Ty 1
T DEAS LR (e [0 o e dRuDSn BRAES)
ms” dema).
Engine Timing Model with Closed-Loop Contral pility and |
to regulate
Sect. This is
]
Discrete-time
+
Continuous-time
models
neodud to
ompensates
pn-loop
st M O C W [-mesthal.. B ~meschnal...| | fowes | - adobe s || € wbox s | € swwos . |§1wnum 5 1vstems.... | 88 wndows .. f.N A A0 s o
AECH 2tucrete pif .| 4\ MATLAB 7.9.0...| G4 vebp LIW ey | |& L 43 2013

Classes of systems/models
surveyed in this course

» Discrete: state machines, transition systems, ...
» Dataflow: process networks, SDF, ...
» Timed: discrete-event systems, timed automata, ...

= Probabilistic: Markov chains, ...

37

Back to the definition of “system”

. Many kinds of systems:

- Software = many classes, objects, threads, ...

— Car = chassis + engine + computer + software + ...
— Human body = heart + lungs + ... = many cells = ...
- Weather

— Stock market

— Internet

. How to describe each of these as states + dynamics?

Difficult (impossible) to describe some systems
using our current definition 5

System: monolithic definition

. Something that has:
- State

—Dynamics: rules that govern the evolution of
the state in time

. It may also have:
—Inputs: they influence how system evolves
—Outputs: this is what we observe

76

38

System: compositional definition

. A collection of subsystems that interact
. S0, we must describe:

—Each subsystem (recursive definition)
- The interaction (or composition) rules

7

Example: digital circuits

. Subsystems: latches, gates, ...
. All governed by the same clock

. Synchronous interaction

78

39

Asynchronous
interaction
(interleaving)

. Multi-thread Java program:

Example: concurrent software

public class Deadlock {

static class Friend {
private final String name;
public Friend(String name) {
this.name = name;

}
public String getName() {
return this.name;

}
public synchronized void bow(Friend bower) {
System.out.format("%s: %s"
+ " has bowed to me!sn",
this.name, bower.getName());
bower.bowBack(this);

}
public synchronized void bowBack(Frlend bower) {
System.out.format("%s: %s"
+ " has bowed back to me!%n",
this.name, bower.getName());

}

public static void main(String[] args) {
final Friend alphonse =
new Friend("Alphonse");
final Friend gaston =
new Friend("Gaston");
new Thread(new Runnable() {
public void run(} { alphonse.bow(gaston); }
}).start();
new Thread(new Runnable() {
public void run() { gaston.bow(alphonse); }
}).start();

Fle Edt Vew Go Favorites Deskiop Window Help

Example: plant + controller

sidemo_enginewc.mdl

P roedbortl fle Edt View Smuston Fomst Toos Mep

D - & |#8 #b i3 | Engne Tenng Madel with Closed Loop Control -|

PO NS R@| LR et oo afi s DRuDOs REE®)
ms” dema).
D Engine Timing Model with Closed-Loop Contral piity and)|
Spasa to regulate
Sat [ect. This is
m |
L
poscit b |;
Theoeme g |1
% & Asbust Cons Eanwmlle
=i Sonal Proces [ErgiraSeend
=1 9 Slne Tookx:
4 & Soreadshert
=i Stanencs Tod needed to
- ggwdﬂ Mat fr— jompensates
- e Discrete-time:
o Sk . .
> b oo Conytan 1D 2008 The Memens e Synchronous interaction
phin | B (periodic controller)
¥ Examgies a Sindion Inputs
H = . .
b Continuous-time:
2 vosarer 908 Numerical integration i
000
st ™ & C faachngl...|[E ~meschnal...| | fowes | - adobe s ||| €3 wbox-st... | € swwostr.. | (5 vevetems.... | 5 vevetens.... EN [& B A sem
BE B aduenpr..| duma 700, e Luw [® stdomo_eoq— (8] | 5 = |; P) 20013

40

Example: analog/mixed-signal circuits

-Subsystems: ADC, DAC, microprocessor, ..., wires
.Interaction rules (partial list):
- Kirchoff's laws:

. At every node of the circuit: sum(all currents) = 0

i : Bluetootp chip (?am?ridge Silicon)

i T !
P9 6z 3 -y i iy
o o
o~] VRED " [
Fogy S 7T Fd o | A Comrormsiz
- R) S et e [reh
‘ [LS S
| =

P
B ey s

- iy 30a
) r - i e

oy

81

Courtesy of J. Roychowdhury, UC Berkeley

Biochemical Systems

A B c D E F G H I _credlts: ex;-J‘asyAch/blonlap/

41

Systems: structure + behavior

Structure:
= What the system is made of, its parts, sub-systems, ...

= Some modeling languages focus on structure: e.g., UML
class diagrams

Behavior:

ﬁ‘ balance flogt=0
1 idisuing

= What the system does

¢ oetBaiane:fioat

& gatld):Srng
¢ collectAecountinfotin 1Bankc AR hoolean
Th t 1 t rt FHEWSDA PPN S Bl H | S-PIPN P 1120 1P
e (wo are Intertwmea. - crnon-monontnic-aernittion
ThlS Cour-\ Ne AN AhAaviAr CreditCardAccount
\WJ) CTTTAV Ishdiysaccount
gl
P — gl ! @ intersstRate OnBalancefloat
N @" minimumBalance:float=10000 " interestRate On Cashidvance float
O collectFecountinfoin BankAP | boclean ki
p SavingsAccourt) CredtCardéccount
{ nethnterestRate()float ¢ oetCreditlimitosfloat
O eollesticoountinfain Bk AP bockan | | @y getineretRacs Onalancer ilomt 83
< gethinimumBalance flot) oetiterestRate On Cash fduanced float

O collecticcountingain Bk AR boolean

