
1

Fundamental Algorithms for
System Modeling, Analysis,
and Optimization

Stavros Tripakis
UC Berkeley
EECS 244
Fall 2016

Copyright © 2010-date, E. A. Lee, J. Roychowdhury, S. A. Seshia,
S. Tripakis, All rights reserved

Lecture 1: Introduction, Logistics

EE 244, UC Berkeley: 2

The computer-controlled society

Tripakis 2

2

EE 244, UC Berkeley: 3

Complex systems

EE 244, UC Berkeley: 4

10 stars11

10 states100,000

3

EE 244, UC Berkeley: 5

Metabolic Pathway Maps

credits: expasy.ch/biomap/

EE 244, UC Berkeley: 6

A simple program

int x := input an integer number > 1;

while x > 1 {
if x is even

x := x / 2;
else

x := 3*x + 1;
}

4

EE 244, UC Berkeley: 7

A simple program?

int x := input an integer number > 1;

while x > 1 {
if x is even

x := x / 2;
else

x := 3*x + 1;
}

Collatz conjecture:
the program terminates for every input.

Open problem in mathematics.

Run starting at 31: 31 94 47 142 71 214 107 322 161 484 242 121 364 182 91 274 137 412 206 103 310 155 466
233 700 350 175 526 263 790 395 1186 593 1780 890 445 1336 668 334 167 502 251 754 377 1132 566 283 850 425
1276 638 319 958 479 1438 719 2158 1079 3238 1619 4858 2429 7288 3644 1822 911 2734 1367 4102 2051 6154 3077
9232 4616 2308 1154 577 1732 866 433 1300 650 325 976 488 244 122 61 184 92 46 23 70 35 106 53 160 80 40 20
10 5 16 8 4 2

EE 244, UC Berkeley: 8

Safety-critical systems

5

EE 244, UC Berkeley: 9

Safety-critical systems

o Smart cars, roads, buildings, power grid, cities, ...

...

EE 244, UC Berkeley: 10

Example of a “smart” system (or CPS):
autonomous intersection

Tripakis 10

Courtesy AIM project,
CS Dept., UT Austin

6

EE 244, UC Berkeley: 11

Autonomous intersection: “real-life” version

Tripakis 11
Courtesy http://www.fastcodesign.com
Thanks to Christos Cassandras for recommending this video

EE 244, UC Berkeley: 12

Motivation for this course: system design

7

EE 244, UC Berkeley: 13

How to design such systems?

“By hand” is not an option…

Designers need tools!

Not just paper and pencil: computer automation.

=> computer-aided design

Goal of this course:
Teach you the fundamentals so that you become

a good tool user, but also a tool maker.

EE 244, UC Berkeley: 14

Computer-Aided Design (CAD) for ICs /
Electronic Design Automation (EDA)

731M transistors

CAD
Tools

8

EE 244, UC Berkeley: 15

Approaches to system design (1)

● Trial-and-error approach:
– Build prototype

– Test it, find errors

– Fix errors

– Repeat

EE 244, UC Berkeley: 16

Design by trial-and-error

● Software!

9

EE 244, UC Berkeley: 17

17

Design by trial-and-error
● Boeing 787 grounded

● “All-Nippon today
announced it had canceled
320 flights, including 51
international flights, on
787s affecting a total of
46,800 passengers” [San
Jose Mercury News,
1/22/2013]

● FAA restriction finally lifted
in April 2013.

As a result of an in-flight, Boeing 787 battery incident
earlier today in Japan, the FAA will issue an emergency
airworthiness directive (AD) to address a potential
battery fire risk in the 787 and require operators to
temporarily cease operations.
Before further flight, operators of U.S.-registered,
Boeing 787 aircraft must demonstrate to the
Federal Aviation Administration (FAA) that the
batteries are safe.

EE 244, UC Berkeley: 18

Design by trial-and-error

● Toyota unintended acceleration
incidents

● Millions of cars recalled

● Cost: $ billions

● U.S. National Highway Transportation
Safety Administration’s (NHTSA) report
concluded that electronic throttle control
systems were not the cause.

10

EE 244, UC Berkeley: 19

How to design safety-critical systems?

Trial and error
Un-scalable

Un-economic

Un-safe

 Yet common…

Tripakis 19

Tesla autopilot video
(source: youtube)

“It was described as a beta release. The
system will learn over time and get better
and that’s exactly what it’s doing. It will
start to feel quite refined within a couple
of months.” – Elon Musk, Tesla CEO

Are the drivers supposed to debug the autopilot?

EE 244, UC Berkeley: 20

Accidents (will) happen…

11

EE 244, UC Berkeley: 21

Approaches to system design (2)

● Rigorous, “model-based” design:
– Build model (“executable specification”) of system

● Before building a prototype of the system itself

– Analyze the model, find errors

– Fix errors in the design (model)

– Repeat until the design seems OK

– Give models/specs to someone (or to a computer) to implement them

– Need to ensure properties are preserved during implementation

● Better for affordability:
– Catch design errors early => easier / less costly to fix

● Better for dependability:
– Sometimes can formally prove that design is correct

● Gaining acceptance in the industry

EE 244, UC Berkeley: 22

The Elements of Model-Based Design

Implementation,
Optimization

Modeling

Analysis

How to describe
what we want?

How to be sure that this
is what we want?

How to build it?
Automatically

Correct-by-construction

12

EE 244, UC Berkeley: 23

From standard compilers ...

EE 244, UC Berkeley: 24

… to system compilers

Vision: modeling/simulation languages of today will
become the system-programming languages
of tomorrow

system
compiler

Rich languages:
concurrency, time,

robustness, reliability,
energy, security, …

Powerful analyses:
model-checking, WCET analysis, schedulability,

performance analysis, reliability analysis, …

Complex
execution platforms:

networked, distributed,
multicore, …

13

EE 244, UC Berkeley: 25

Caveat

In real life, we need both MBD and trial-and-error methods.

Why?

1. We cannot trust our models 100%

2. All models are abstractions of reality. They make
assumptions that need not hold.
 E.g., road condition, weather condition, …

3. Analysis and optimization methods also have their
limitations.
 As we will see in this course.

EE 244, UC Berkeley: 26

Model-based design seems fine, but …

• There are many systems, of different kinds

• People have been designing these for decades

• Can we pretend to find a single design method that
works for every kind of system?

• Of course not

• Thesis:
• System design is a science

• There is a body of knowledge (models, algorithms, …)
which is fundamental to that science

• This body of knowledge is applicable to many application
domains (circuits, SW, embedded systems, bio, …)

14

EE 244, UC Berkeley: 27

Example of a successful model-based design flow

RTL synthesis flow

RTL
Synthesis

HDL

netlist

logic
optimization

netlist

Library/
module
generators

physical
design

layout

HDL
Simulation/
Verification

a

b

s

q
0

1

d

clk

a

b

s

q
0

1

d

clk

FSM,
Verilog,
VHDL

Boolean circuit/network

Boolean circuit/network

Graph / Rectangles

Boolean equations

K. Keutzer

CAD at Berkeley: History
 CAD research at Berkeley: design tools with an impact

late 60s and 70s

CANCER, SPICE (Rohrer, Nagel, Cohen, Pederson, ASV, Newton, etc.)

SPLICE (Newton)

80s

MAGIC (Ousterhout et. al.)

Espresso (Brayton, ASV, Rudell, Wang et. al.)

MIS (Brayton, ASV, et. al.)

90s

SIS, HSIS (Brayton, ASV et. al.)

VIS (Brayton, ASV, Somenzi et. al.)

Ptolemy (Lee et. al.)

2000‐date

MVSIS (Brayton, Mishchenko et. al.)

BALM (Mishchenko, Brayton et. al.)

ABC (Mishchenko, Brayton et. al.)

MetroPolis, Metro II, Clotho (ASV et. al.)

Ptolemy II, HyVisual (Lee et. al.)

UCLID, GameTime, Beaver (Seshia et. al.)

15

EE 244, UC Berkeley: 29

Lecture Outline

 Introduction to Stavros, and all of you

 Some of the topics covered in this course
Digital systems (circuits)

Cyber-Physical systems

Continuous-time systems

 Course logistics

EE 244, UC Berkeley: 30

Stavros Tripakis

Associate Professor, Aalto University (since 2012)

Adjunct Associate Professor, UC Berkeley (since 2009)

• Past:

 Research Scientist: Cadence Design Systems, Berkeley, 2006 -- 2008

 Postdoc: Berkeley, 1999 – 2001

 Research Scientist: CNRS, Verimag, France, 2001 – 2006

 PhD: Verimag Laboratory, Grenoble, France, 1998

 Undergrad: University of Crete, Greece, 1992

• Research interests

 System design, modeling, and analysis (DMA)

 Formal methods

 Computer-aided verification and synthesis

 Compositionality, contracts, interfaces

 Embedded and cyber-physical systems

16

EE 244, UC Berkeley: 31

The promise of rigorous, “formal” methods

Beyond simple simulation and testing: prove
correctness!

Formal verification (model checking): “exhaustive
simulation” (check all possible system behaviors)

Success story in the hardware industry: “verification
engineer” standard title in today’s EDA companies

“Testing shows the presence, not
the absence of bugs.” – Dijkstra

EE 244, UC Berkeley: 32

Formal methods: a theoretical computer science
sub-area

Tripakis 32

Handbook of Theoretical
Computer Science – 1990

Volume A: Algorithms and Complexity

Volume B: Formal Models and Semantics
Automata, Languages, Logics, Temporal Logic,

Semantics, Concurrency, …

17

EE 244, UC Berkeley: 33

Turing awards in the area

Tripakis 33

Robin Milner – 1991
Theorem proving, type

theory, concurrency

Clarke, Emerson, Sifakis – 2007
Model checking

Amir Pnueli – 1996
Temporal logic,

verification

Leslie Lamport – 2013
Distributed systems,
Safety and liveness

EE 244, UC Berkeley: 34

“Formal methods” in the software industry?

Tripakis 34

18

35

Round of introductions

Your name, research/professional interests,
grad/undergrad student, ...

36

Quiz

● Express the following in your favorite mathematical
formalism:

– You can fool some people sometimes

– You can fool some of the people all of the time

– You can fool some people sometimes but you can't
fool all the people all the time [Bob Marley]

– You can fool some of the people all of the time, and
all of the people some of the time, but you can not
fool all of the people all of the time [Abraham
Lincoln]

19

Course topics
Algorithms for Discrete Models

• Automata, state machines, transition systems, logic, temporal logic

• State‐space exploration, reachability analysis, model‐checking

• Boolean function representation and manipulation

• Synchronous and asynchronous composition

Algorithms for Continuous Models

• Solving non‐linear equations

Algorithms for Cyber-Physical Models

• Timed and discrete‐event systems

• Discrete‐event simulation

Cross-cutting Topics

• Timing analysis

• Controller and program synthesis

Course Logistics

20

Webpage, Books, etc.
The course webpage is the definitive source of
information

http://embedded.eecs.berkeley.edu/eecsx44/

We’ll also use bCourses (not bSpace)

No textbook. Readings will be posted / handed out for
each set of lectures.

Some references will be placed on reserve in
Engineering library.

Office hours: contact me by email.

Format of Lectures

Two 3 hour lectures per week (Tue-Thu 1 – 4 pm)

Room: 299 Cory

21

Grading
(tentative)

Participation: 10%

Homeworks: 40%

Exam: 50%

Digital Systems

22

Evolution of Digital IC
Design

Effort

(EDA tools effort)

Results

(Design Productivity)

a

b

s

q
0

1

d

clk









Transistor entry

Schematic Entry

RTL Synthesis

What’s next?

McKinsey S‐Curve

K. Keutzer

Evolution of the EDA
Industry

Effort

(EDA tools effort)

Results

(Design Productivity)

a

b

s

q
0

1

d

clk









Transistor entry ‐ Calma, Computervision

Schematic Entry ‐ Daisy, Mentor, Valid

Synthesis ‐ Cadence, Synopsys

What’s next?

McKinsey S‐Curve

K. Keutzer

23

Transistor Era

Key tools:

• Transistor‐level layout – e.g. Calma
workstation

• Transistor‐level simulation – e.g. Spice

• Bonus: transistor‐level compaction –
e.g. Cabbage

Size of circuits: 10’s of transistors to
few thousand

Key abstractions and technologies:

• Transistor‐level modeling, simulation

• Logical gates‐ NAND, NOR, FF and cell
libraries

• Layout compaction
K. Keutzer

Gate-level Schematic Era

Key tools:

• gate‐level layout editor – Daisy,
Mentor, valid workstation

• Gate‐level simulator

• Automated place and route

Size of circuits: 3,000 – 35,000
gates (12,000 to 140,000
transistors)

Key abstractions and technologies:

• Logic‐level simulation

• Cell‐based place and route

• Static‐timing analysis

a

b c_out

sum
Add_half_0_delay

a

b c_out

sum
Add_half_0_delay

 (a b) c_in

 (a + b) c_in + ab

(a b) c_in

a

b

c_in sum

c_out

ab

(ab)

Add_full_0_delay

w1

w2

w3

FAa
b

c_in

sum
c_out

K. Keutzer

24

RTL Synthesis Era
Key tools:

• Hardware‐description language
simulator – Verilog, VHDL

• Logic synthesis tool ‐ Synopsys

• Automated place and route – Cadence,
Avant!, Magma

Size of circuits: 35,000 gates to …?

Key abstractions and technologies:

• HDL simulation

• Logic synthesis

• Cell‐based place and route

• Static‐timing analysis

• Automatic‐test pattern generation

• Equivalence checking / verification

module Half_adder (Sum, C_out, A, B);
output Sum, C_out;
input A, B;

xor M1 (Sum, A, B);
and M2 (C_out, A, B);

endmodule

module Full_Adder (sum, c_out, a, b, c_in);
output sum, c_out;
input a, b, c_in;
wire w1, w2, w3;
Half_adder M1 (w1, w2, a, b);
Half_adder M2 (sum, w3, w2, c_in);
or M3 (c_out, w2, w3);

endmodule

module Full_Adder_4 (sum, c_out, a, b, c_in);
output [3:0]sum;
output c_out;
input [3:0] a, b;
input c_in;
wire c_in2, c_in3, c_in4;
Full_adder M1 (sum[0], c_in2, a[0], b[0], c_in);
Full_adder M2 (sum[1], c_in3, a[1], b[1], c_in2);
Full_adder M3 (sum[2], c_in4, a[2], b[2], c_in3);
Full_adder M4 (sum[3], c_out, a[3], b[3], c_in4);

endmodule

K. Keutzer

Important modern tool:
SAT solver

RTL Synthesis Flow

RTL
Synthesis

HDL

netlist

logic
optimization

netlist

Library/
module
generators

physical
design

layout

HDL
simulation

module Full_Adder_4 (sum, c_out, a, b, c_in);
output [3:0]sum;
output c_out;
input [3:0] a, b;
input c_in;
wire c_in2, c_in3, c_in4;
Full_adder M1 (sum[0], c_in2, a[0], b[0], c_in);
Full_adder M2 (sum[1], c_in3, a[1], b[1], c_in2);
Full_adder M3 (sum[2], c_in4, a[2], b[2], c_in3);
Full_adder M4 (sum[3], c_out, a[3], b[3], c_in4);

endmodule

K. Keutzer

25

Cyber-Physical Systems

Courtesy of Kuka Robotics Corp.

Cyber-Physical Systems (CPS):
Orchestrating networked computational

resources with physical systems

Courtesy of Doug Schmidt

Power
generation and
distribution

Courtesy of
General Electric

Military systems:

E-Corner, Siemens

Transportation
(Air traffic
control at SFO)

Avionics

Telecommunications

Factory automation

Instrumentation
(Soleil Synchrotron)

Daimler-Chrysler

Automotive

Building Systems

26

Embedded, Cyber-Physical
Systems

o Computers (HW+SW) “embedded” in a physical
world

o Cyber = computers (literally “to govern”)

o Physical = the rest

o Typically in a closed-loop (feedback) control
configuration (often there are many distributed
controllers)

51

controller

“plant”

CPS Example – Printing Press

• High‐speed, high precision
• Speed: 1 inch/ms

• Precision: 0.01 inch

‐> Time accuracy: 10us

• Open standards (Ethernet)
• Synchronous, Time‐Triggered

• IEEE 1588 time‐sync protocol

• Application aspects
• local (control)

• distributed (coordination)

• global (modes)
Bosch‐Rexroth

Edward A. Lee

27

Another Example of a CPS
Application

STARMAC quadrotor aircraft (Tomlin, et al.)

Modeling:
•Flight dynamics
•Modes of operation
•Transitions between modes
•Composition of behaviors
•Multi-vehicle interaction

Design:
•Processors
•Memory system
•Sensor interfacing
•Concurrent software
•Real-time scheduling

Analysis
•Specifying safe behavior
•Achieving safe behavior
•Verifying safe behavior
•Guaranteeing timeliness

Example of a CPS: autonomous
intersection management

54

Courtesy AIM project,
CS Dept., UT Austin

http://www.cs.utexas.edu/~aim/

28

Continuous-Time Systems

Only a few words here. Prof. Jaijeet Roychowdhury
is the specialist on this topic.

56

Analog circuits

Bluetooth chip (Cambridge Silicon)

Courtesy of J. Roychowdhury, UC Berkeley

29

57

58

Control systems: plant + controller

Discrete-time:
Synchronous interaction

(periodic controller)

Continuous-time:
Numerical integration

30

Biochemical Systems
Reactions governing conversion of glucose to ATP
(energy) and back

metabolic
network

What do these
diagrams
mean?

Pathway: Chain of Reactions
Enzyme (protein)

– glucose‐6‐phosphatase
• catalyzes reaction

Compound

– alpha‐D‐Glucose

Reaction

• alpha‐D‐glucose 6‐phosphate
phosphohydrolase

Differential
Equations

Connections
to other

Pathways

31

Metabolic Pathway Maps
credits: expasy.ch/biomap/

This course: foundations of system
design

We will study fundamental notions that apply to all kinds
of systems.

We will study analysis methods that apply to many kinds
of systems (primarily discrete and timed systems, but
sometimes also continuous systems).

32

63

SYSTEMS

64

What is a “system” ?

33

65

System: definition

● Something that has:

– State

– Dynamics: rules that govern the evolution of
the state in time

66

System: definition

● Something that has:

– State

– Dynamics: rules that govern the evolution of
the state in time

● It may also have:

– Inputs: they influence how system evolves

– Outputs: this is what we observe

34

67

Example: digital circuits

● Digital circuit:

– State: ???

– Dynamics: ???

68

Example: digital circuits

● Digital circuit:

– State: value of every
register, memory element

– Dynamics:

● Defined by the
combinational part
(logical gates)

● Time: discrete, or
“logical” (ticks of the
clock)

35

69

Example: digital circuits

● Systems vs. models

clock

Model
(a finite-state machine)

System
(the “real” circuit)

To reason about systems (analyze, make predictions,
prove things, ...), we need mathematical models

70

Example: digital circuits

● Systems vs. models

clock

Different models
(finite-state machines)

System
(the “real” circuit)

Different representations (languages, syntaxes)
of the same underlying mathematical model

node Circuit ()
returns (Output: bool);
let
Output = false -> not pre Output;

tel

36

71

Example: digital circuits

● Digital circuit as a system:

– State: value of every register,
memory element

– Dynamics:

● Defined by the combinational part
(logical gates)

● Time: discrete, or “logical” (ticks of
the clock)

– Or:

– State: all currents and voltages at
all transistors at a given time t

– Dynamics: physics of electronic
circuits (differential algebraic
equations)

Different levels of abstraction

72

Multi-paradigm modeling

o Different representations (languages, syntaxes) of
the same underlying formalism.

o Different modeling formalisms often needed to
describe the same system, e.g., at different levels of
abstraction.

o Different modeling formalisms often needed to
describe different parts of the system (subsystems).

37

73

Example: plant + controller

Discrete-time
+

Continuous-time
models

Classes of systems/models
surveyed in this course

 Discrete: state machines, transition systems, …

 Dataflow: process networks, SDF, …

 Timed: discrete-event systems, timed automata, …

 Continuous: differential equations, …

 Probabilistic: Markov chains, …

38

75

Back to the definition of “system”

● Many kinds of systems:

– Software = many classes, objects, threads, …

– Car = chassis + engine + computer + software + ...

– Human body = heart + lungs + … = many cells = ...

– Weather

– Stock market

– Internet

● How to describe each of these as states + dynamics?

Difficult (impossible) to describe some systems
using our current definition

76

System: monolithic definition

● Something that has:

– State

– Dynamics: rules that govern the evolution of
the state in time

● It may also have:

– Inputs: they influence how system evolves

– Outputs: this is what we observe

39

77

System: compositional definition

● A collection of subsystems that interact

● So, we must describe:

– Each subsystem (recursive definition)

– The interaction (or composition) rules

78

Example: digital circuits

● Subsystems: latches, gates, …

● All governed by the same clock

● Synchronous interaction

40

79

Example: concurrent software

● Multi-thread Java program:

Asynchronous
interaction

(interleaving)

80

Example: plant + controller

Discrete-time:
Synchronous interaction

(periodic controller)

Continuous-time:
Numerical integration

41

81

Example: analog/mixed-signal circuits
●Subsystems: ADC, DAC, microprocessor, …, wires

●Interaction rules (partial list):

– Kirchoff's laws:

● At every node of the circuit: sum(all currents) = 0

Bluetooth chip (Cambridge Silicon)

Courtesy of J. Roychowdhury, UC Berkeley

Biochemical Systems
credits: expasy.ch/biomap/

42

83

Systems: structure + behavior

o Structure:

 What the system is made of, its parts, sub-systems, …

 Some modeling languages focus on structure: e.g., UML
class diagrams

o Behavior:

 What the system does

o The two are intertwined: cf non-monolithic definition

o This course focuses on behavior

