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Lecture 1: Introduction, Logistics
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The computer-controlled society
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Complex systems
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10    stars11
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Metabolic Pathway Maps

credits: expasy.ch/biomap/
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A simple program 

int x := input an integer number > 1;

while x > 1 {
if x is even

x := x / 2;
else

x := 3*x + 1;
}
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A simple program?

int x := input an integer number > 1;

while x > 1 {
if x is even

x := x / 2;
else

x := 3*x + 1;
}

Collatz conjecture: 
the program terminates for every input.

Open problem in mathematics.
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Safety-critical systems
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Safety-critical systems

o Smart cars, roads, buildings, power grid, cities, ...

...

EE 244, UC Berkeley: 10

Example of a “smart” system (or CPS): 
autonomous intersection

Tripakis 10

Courtesy AIM project,
CS Dept., UT Austin
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Autonomous intersection: “real-life” version

Tripakis 11
Courtesy http://www.fastcodesign.com
Thanks to Christos Cassandras for recommending this video

EE 244, UC Berkeley: 12

Motivation for this course: system design
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How to design such systems?

“By hand” is not an option…

Designers need tools!

Not just paper and pencil: computer automation.

=> computer-aided design

Goal of this course:
Teach you the fundamentals so that you become 

a good tool user, but also a tool maker.

EE 244, UC Berkeley: 14

Computer-Aided Design (CAD) for ICs / 
Electronic Design Automation (EDA)

731M transistors

CAD
Tools
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Approaches to system design (1)

● Trial-and-error approach:
– Build prototype

– Test it, find errors

– Fix errors

– Repeat

EE 244, UC Berkeley: 16

Design by trial-and-error

● Software!
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Design by trial-and-error
● Boeing 787 grounded

● “All-Nippon today 
announced it had canceled 
320 flights, including 51 
international flights, on 
787s affecting a total of 
46,800 passengers” [San 
Jose Mercury News, 
1/22/2013]

● FAA restriction finally lifted 
in April 2013.

As a result of an in-flight, Boeing 787 battery incident 
earlier today in Japan, the FAA will issue an emergency 
airworthiness directive (AD) to address a potential 
battery fire risk in the 787 and require operators to 
temporarily cease operations.  
Before further flight, operators of U.S.-registered, 
Boeing 787 aircraft must demonstrate to the 
Federal Aviation Administration (FAA) that the 
batteries are safe. 

EE 244, UC Berkeley: 18

Design by trial-and-error

● Toyota unintended acceleration 
incidents

● Millions of cars recalled

● Cost: $ billions

● U.S. National Highway Transportation 
Safety Administration’s (NHTSA) report 
concluded that electronic throttle control 
systems were not the cause.
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How to design safety-critical systems?

Trial and error
Un-scalable

Un-economic

Un-safe

 Yet common…

Tripakis 19

Tesla autopilot video 
(source: youtube)

“It was described as a beta release. The 
system will learn over time and get better 
and that’s exactly what it’s doing. It will 
start to feel quite refined within a couple 
of months.” – Elon Musk, Tesla CEO

Are the drivers supposed to debug the autopilot?

EE 244, UC Berkeley: 20

Accidents (will) happen… 
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Approaches to system design (2)

● Rigorous, “model-based” design:
– Build model (“executable specification”) of system

● Before building a prototype of the system itself

– Analyze the model, find errors

– Fix errors in the design (model)

– Repeat until the design seems OK

– Give models/specs to someone (or to a computer) to implement them

– Need to ensure properties are preserved during implementation

● Better for affordability:
– Catch design errors early => easier / less costly to fix

● Better for dependability:
– Sometimes can formally prove that design is correct

● Gaining acceptance in the industry

EE 244, UC Berkeley: 22

The Elements of Model-Based Design

Implementation,
Optimization

Modeling

Analysis

How to describe
what we want?

How to be sure that this
is what we want?

How to build it?
Automatically

Correct-by-construction
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From standard compilers ...

EE 244, UC Berkeley: 24

… to system compilers

Vision: modeling/simulation languages of today will 
become the system-programming languages 
of tomorrow

system
compiler

Rich languages:
concurrency, time, 

robustness, reliability, 
energy,  security, …

Powerful analyses:
model-checking, WCET analysis, schedulability,

performance analysis, reliability analysis, …

Complex
execution platforms:

networked, distributed, 
multicore, …



13

EE 244, UC Berkeley: 25

Caveat

In real life, we need both MBD and trial-and-error methods.

Why?

1. We cannot trust our models 100%

2. All models are abstractions of reality. They make 
assumptions that need not hold.
 E.g., road condition, weather condition, …

3. Analysis and optimization methods also have their 
limitations.
 As we will see in this course.

EE 244, UC Berkeley: 26

Model-based design seems fine, but …

• There are many systems, of different kinds

• People have been designing these for decades

• Can we pretend to find a single design method that 
works for every kind of system?

• Of course not

• Thesis: 
• System design is a science

• There is a body of knowledge (models, algorithms, …) 
which is fundamental to that science

• This body of knowledge is applicable to many application 
domains (circuits, SW, embedded systems, bio, …)
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Example of a successful model-based design flow

RTL synthesis flow

RTL
Synthesis

HDL

netlist

logic
optimization

netlist

Library/
module
generators

physical
design

layout

HDL
Simulation/ 
Verification

a

b

s

q
0

1

d

clk

a

b

s

q
0

1

d

clk

FSM,
Verilog,
VHDL

Boolean circuit/network

Boolean circuit/network

Graph / Rectangles

Boolean equations

K. Keutzer

CAD at Berkeley: History
 CAD research at Berkeley: design tools with an impact

late 60s and 70s

CANCER, SPICE (Rohrer, Nagel, Cohen, Pederson, ASV, Newton, etc.)

SPLICE (Newton)

80s

MAGIC (Ousterhout et. al.)

Espresso (Brayton, ASV, Rudell, Wang et. al.)

MIS (Brayton, ASV, et. al.)

90s

SIS, HSIS (Brayton, ASV et. al.)

VIS (Brayton, ASV, Somenzi et. al.)

Ptolemy (Lee et. al.)

2000‐date

MVSIS (Brayton, Mishchenko et. al.)

BALM (Mishchenko, Brayton et. al.)

ABC (Mishchenko, Brayton et. al.)

MetroPolis, Metro II, Clotho (ASV et. al.)

Ptolemy II, HyVisual (Lee et. al.)

UCLID, GameTime, Beaver (Seshia et. al.)
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Lecture Outline

 Introduction to Stavros, and all of you

 Some of the topics covered in this course
Digital systems (circuits)

Cyber-Physical systems

Continuous-time systems

 Course logistics

EE 244, UC Berkeley: 30

Stavros Tripakis

Associate Professor, Aalto University (since 2012)

Adjunct Associate Professor, UC Berkeley (since 2009)

• Past:

 Research Scientist: Cadence Design Systems, Berkeley, 2006 -- 2008

 Postdoc: Berkeley, 1999 – 2001

 Research Scientist: CNRS, Verimag, France, 2001 – 2006

 PhD: Verimag Laboratory, Grenoble, France, 1998

 Undergrad: University of Crete, Greece, 1992

• Research interests

 System design, modeling, and analysis (DMA)

 Formal methods

 Computer-aided verification and synthesis

 Compositionality, contracts, interfaces

 Embedded and cyber-physical systems
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The promise of rigorous, “formal” methods

Beyond simple simulation and testing: prove 
correctness!

Formal verification (model checking): “exhaustive 
simulation” (check all possible system behaviors)

Success story in the hardware industry: “verification 
engineer” standard title in today’s EDA companies

“Testing shows the presence, not 
the absence of bugs.” – Dijkstra

EE 244, UC Berkeley: 32

Formal methods: a theoretical computer science 
sub-area

Tripakis 32

Handbook of Theoretical 
Computer Science – 1990

Volume A: Algorithms and Complexity

Volume B: Formal Models and Semantics
Automata, Languages, Logics, Temporal Logic,

Semantics, Concurrency, …
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Turing awards in the area

Tripakis 33

Robin Milner – 1991
Theorem proving, type

theory, concurrency

Clarke, Emerson, Sifakis – 2007
Model checking

Amir Pnueli – 1996
Temporal logic,

verification

Leslie Lamport – 2013
Distributed systems,
Safety and liveness

EE 244, UC Berkeley: 34

“Formal methods” in the software industry?

Tripakis 34
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Round of introductions

Your name, research/professional interests, 
grad/undergrad student, ...

36

Quiz

● Express the following in your favorite mathematical 
formalism:

– You can fool some people sometimes

– You can fool some of the people all of the time

– You can fool some people sometimes but you can't 
fool all the people all the time [Bob Marley]

– You can fool some of the people all of the time, and 
all of the people some of the time, but you can not 
fool all of the people all of the time [Abraham 
Lincoln]



19

Course topics
Algorithms for Discrete Models 

• Automata, state machines, transition systems, logic, temporal logic

• State‐space exploration, reachability analysis, model‐checking

• Boolean function representation and manipulation

• Synchronous and asynchronous composition

Algorithms for Continuous Models 

• Solving non‐linear equations

Algorithms for Cyber-Physical Models 

• Timed and discrete‐event systems

• Discrete‐event simulation

Cross-cutting Topics

• Timing analysis

• Controller and program synthesis

Course Logistics



20

Webpage, Books, etc.
The course webpage is the definitive source of 
information

http://embedded.eecs.berkeley.edu/eecsx44/

We’ll also use bCourses (not bSpace)

No textbook. Readings will be posted / handed out for 
each set of lectures.

Some references will be placed on reserve in 
Engineering library.

Office hours: contact me by email.

Format of Lectures

Two 3 hour lectures per week (Tue-Thu 1 – 4 pm)

Room: 299 Cory
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Grading 
(tentative)

Participation: 10%

Homeworks: 40%

Exam: 50%

Digital Systems
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Evolution of Digital IC 
Design

Effort

(EDA tools effort)

Results

(Design Productivity)

a

b

s

q
0

1

d

clk









Transistor entry

Schematic Entry

RTL Synthesis

What’s next?

McKinsey S‐Curve

K. Keutzer

Evolution of the EDA 
Industry

Effort

(EDA tools effort)

Results

(Design Productivity)

a

b

s

q
0

1

d

clk









Transistor entry ‐ Calma, Computervision

Schematic Entry ‐ Daisy, Mentor, Valid

Synthesis ‐ Cadence, Synopsys

What’s next?

McKinsey S‐Curve

K. Keutzer
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Transistor Era

Key tools:

• Transistor‐level layout – e.g. Calma 
workstation

• Transistor‐level simulation – e.g. Spice

• Bonus: transistor‐level compaction –
e.g. Cabbage

Size of circuits: 10’s of transistors to 
few thousand

Key abstractions and technologies:

• Transistor‐level modeling, simulation

• Logical gates‐ NAND, NOR, FF and cell 
libraries

• Layout compaction
K. Keutzer

Gate-level Schematic Era

Key tools:

• gate‐level layout editor – Daisy, 
Mentor, valid workstation

• Gate‐level simulator

• Automated place and route

Size of circuits: 3,000 – 35,000 
gates (12,000 to 140,000 
transistors)

Key abstractions and technologies:

• Logic‐level simulation

• Cell‐based place and route

• Static‐timing analysis

a

b c_out

sum
Add_half_0_delay

a

b c_out

sum
Add_half_0_delay

 (a b)  c_in

 (a + b) c_in + ab

(a   b) c_in

a

b

c_in sum

c_out

ab

(ab)

Add_full_0_delay

w1

w2

w3

FAa
b

c_in

sum
c_out

K. Keutzer
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RTL Synthesis Era
Key tools:

• Hardware‐description language 
simulator – Verilog, VHDL

• Logic synthesis tool ‐ Synopsys 

• Automated place and route – Cadence, 
Avant!, Magma

Size of circuits: 35,000 gates  to …? 

Key abstractions and technologies:

• HDL simulation

• Logic synthesis

• Cell‐based place and route

• Static‐timing analysis

• Automatic‐test pattern generation

• Equivalence checking / verification

module Half_adder (Sum, C_out, A, B);
output Sum, C_out;
input A, B;

xor M1 (Sum, A, B);  
and M2 (C_out, A, B);

endmodule

module Full_Adder (sum, c_out, a, b, c_in);
output sum, c_out;
input a, b, c_in;
wire w1, w2, w3;
Half_adder M1 (w1, w2, a, b);
Half_adder M2 (sum, w3, w2, c_in);
or M3 (c_out, w2, w3);

endmodule

module Full_Adder_4 (sum, c_out, a, b, c_in);
output [3:0]sum;
output c_out;
input [3:0] a, b;
input         c_in;
wire c_in2, c_in3, c_in4;
Full_adder M1 (sum[0], c_in2, a[0], b[0], c_in);
Full_adder M2 (sum[1], c_in3, a[1], b[1], c_in2);
Full_adder M3 (sum[2], c_in4, a[2], b[2], c_in3);
Full_adder M4 (sum[3], c_out, a[3], b[3], c_in4);

endmodule

K. Keutzer

Important modern tool:
SAT solver

RTL Synthesis Flow

RTL
Synthesis

HDL

netlist

logic
optimization

netlist

Library/
module
generators

physical
design

layout

HDL
simulation

module Full_Adder_4 (sum, c_out, a, b, c_in);
output [3:0]sum;
output c_out;
input [3:0] a, b;
input         c_in;
wire c_in2, c_in3, c_in4;
Full_adder M1 (sum[0], c_in2, a[0], b[0], c_in);
Full_adder M2 (sum[1], c_in3, a[1], b[1], c_in2);
Full_adder M3 (sum[2], c_in4, a[2], b[2], c_in3);
Full_adder M4 (sum[3], c_out, a[3], b[3], c_in4);

endmodule

K. Keutzer
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Cyber-Physical Systems

Courtesy of Kuka Robotics Corp.

Cyber-Physical Systems (CPS):
Orchestrating networked computational 

resources with physical systems

Courtesy of Doug Schmidt

Power 
generation and 
distribution

Courtesy of 
General Electric

Military systems:

E-Corner, Siemens

Transportation
(Air traffic 
control at SFO)

Avionics

Telecommunications

Factory automation

Instrumentation
(Soleil Synchrotron)

Daimler-Chrysler

Automotive

Building Systems
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Embedded, Cyber-Physical 
Systems

o Computers (HW+SW) “embedded” in a physical 
world

o Cyber = computers (literally “to govern”)

o Physical = the rest

o Typically in a closed-loop (feedback) control 
configuration (often there are many distributed 
controllers)

51

controller

“plant”

CPS Example – Printing Press 

• High‐speed, high precision
• Speed: 1 inch/ms

• Precision: 0.01 inch

‐> Time accuracy: 10us

• Open standards (Ethernet)
• Synchronous, Time‐Triggered

• IEEE 1588  time‐sync protocol

• Application aspects
• local (control)

• distributed (coordination)

• global (modes)
Bosch‐Rexroth

Edward A. Lee
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Another Example of a CPS 
Application

STARMAC quadrotor aircraft (Tomlin, et al.)

Modeling:
•Flight dynamics 
•Modes of operation
•Transitions between modes
•Composition of behaviors
•Multi-vehicle interaction

Design:
•Processors
•Memory system
•Sensor interfacing
•Concurrent software
•Real-time scheduling

Analysis
•Specifying safe behavior
•Achieving safe behavior
•Verifying safe behavior
•Guaranteeing timeliness

Example of a CPS: autonomous 
intersection management

54

Courtesy AIM project,
CS Dept., UT Austin

http://www.cs.utexas.edu/~aim/
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Continuous-Time Systems

Only a few words here. Prof. Jaijeet Roychowdhury
is the specialist on this topic.

56

Analog circuits

Bluetooth chip (Cambridge Silicon)

Courtesy of J. Roychowdhury,  UC Berkeley
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58

Control systems: plant + controller

Discrete-time:
Synchronous interaction

(periodic controller)

Continuous-time:
Numerical integration
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Biochemical Systems
Reactions governing conversion of glucose to ATP 
(energy) and back

metabolic
network

What do these 
diagrams
mean?

Pathway: Chain of Reactions
Enzyme (protein)

– glucose‐6‐phosphatase
• catalyzes reaction

Compound

– alpha‐D‐Glucose

Reaction

• alpha‐D‐glucose 6‐phosphate 
phosphohydrolase

Differential
Equations

Connections
to other

Pathways
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Metabolic Pathway Maps
credits: expasy.ch/biomap/

This course: foundations of system 
design

We will study fundamental notions that apply to all kinds 
of systems.

We will study analysis methods that apply to many kinds 
of systems (primarily discrete and timed systems, but 
sometimes also continuous systems).
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SYSTEMS

64

What is a “system” ?
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System: definition

● Something that has:

– State

– Dynamics: rules that govern the evolution of 
the state in time

66

System: definition

● Something that has:

– State

– Dynamics: rules that govern the evolution of 
the state in time

● It may also have:

– Inputs: they influence how system evolves

– Outputs: this is what we observe
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Example: digital circuits

● Digital circuit:

– State: ???

– Dynamics: ???

68

Example: digital circuits

● Digital circuit:

– State: value of every 
register, memory element

– Dynamics:

● Defined by the 
combinational part 
(logical gates)

● Time: discrete, or 
“logical” (ticks of the 
clock)
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Example: digital circuits

● Systems vs. models

clock

Model
(a finite-state machine)

System
(the “real” circuit)

To reason about systems (analyze, make predictions,
prove things, ...),  we need mathematical models

70

Example: digital circuits

● Systems vs. models

clock

Different models
(finite-state machines)

System
(the “real” circuit)

Different representations (languages, syntaxes)
of the same underlying mathematical model

node Circuit ()
returns (Output: bool);
let
Output = false -> not pre Output;

tel
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Example: digital circuits

● Digital circuit as a system:

– State: value of every register, 
memory element

– Dynamics:

● Defined by the combinational part 
(logical gates)

● Time: discrete, or “logical” (ticks of 
the clock)

– Or:

– State: all currents and voltages at 
all transistors at a given time t

– Dynamics: physics of electronic 
circuits (differential algebraic 
equations)

Different levels of abstraction

72

Multi-paradigm modeling

o Different representations (languages, syntaxes) of 
the same underlying formalism.

o Different modeling formalisms often needed to 
describe the same system, e.g., at different levels of 
abstraction.

o Different modeling formalisms often needed to 
describe different parts of the system (subsystems).
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Example: plant + controller

Discrete-time
+

Continuous-time
models

Classes of systems/models 
surveyed in this course

 Discrete: state machines, transition systems, …

 Dataflow: process networks, SDF, …

 Timed: discrete-event systems, timed automata, …

 Continuous: differential equations, …

 Probabilistic: Markov chains, …
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Back to the definition of “system”

● Many kinds of systems:

– Software = many classes, objects, threads, …

– Car = chassis + engine + computer + software + ...

– Human body = heart + lungs + … = many cells = ...

– Weather

– Stock market

– Internet

● How to describe each of these as states + dynamics?

Difficult (impossible) to describe some systems
using our current definition

76

System: monolithic definition

● Something that has:

– State

– Dynamics: rules that govern the evolution of 
the state in time

● It may also have:

– Inputs: they influence how system evolves

– Outputs: this is what we observe
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System: compositional definition

● A collection of subsystems that interact

● So, we must describe:

– Each subsystem (recursive definition)

– The interaction (or composition) rules

78

Example: digital circuits

● Subsystems: latches, gates, …

● All governed by the same clock

● Synchronous interaction
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Example: concurrent software

● Multi-thread Java program:

Asynchronous
interaction

(interleaving)

80

Example: plant + controller

Discrete-time:
Synchronous interaction

(periodic controller)

Continuous-time:
Numerical integration
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Example: analog/mixed-signal circuits
●Subsystems: ADC, DAC, microprocessor, …, wires

●Interaction rules (partial list):

– Kirchoff's laws:

● At every node of the circuit: sum(all currents) = 0

Bluetooth chip (Cambridge Silicon)

Courtesy of J. Roychowdhury,  UC Berkeley

Biochemical Systems
credits: expasy.ch/biomap/
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Systems: structure + behavior

o Structure:

 What the system is made of, its parts, sub-systems, …

 Some modeling languages focus on structure: e.g., UML 
class diagrams

o Behavior:

 What the system does

o The two are intertwined: cf non-monolithic definition

o This course focuses on behavior


