EE 244: Fundamental Algorithms for System Modeling, Analysis, and Optimization Fall 2016

A Logic Primer

Stavros Tripakis University of California, Berkeley

Stavros Tripakis (UC Berkeley)

EE 244, Fall 2016

Basic Concepts of Logic 1 / 34

Logic

The α and ω in science.

- Basis of mathematics.
- Also of engineering.
 - Particularly useful for verification (model-checking = checking a model against a logical formula).
 - But also used in other domains, e.g.: Prolog, Datalog, UML OCL (Object Constraint Language), ...

A myriad of logics:

- Propositional logic
- First-order logic
- Temporal logic
- ...

What is logic?

 $\mathsf{Logic} = \mathsf{Syntax} + \mathsf{Semantics} + \mathsf{Proofs}$

Proofs

- Manual, or
- Automated: Proofs = Computations

Example:

- Syntax: boolean formulas
- Semantics: boolean functions
- Proofs: is a formula satisfiable? valid (a tautology)?
 - E.g., for boolean logic: an NP-complete problem (a representative for many combinatorial problems).
 - Software tools (SAT solvers) routinely solve such problems today, even with tens of thousands of variables or more.

Stavros Tripakis (UC Berkeley)

EE 244, Fall 2016

Basic Concepts of Logic 3 / 34

BOOLEAN LOGIC

(a.k.a. Propositional Logic or Propositional Calculus)

Syntax

Symbols:

- \bullet Constants: "false" and "true", or 0,1, or \bot,\top
- Variable symbols (*atomic propositions*): p, q, ..., x, y, ...
- Boolean connectives: ∧ (and), ∨ (or), ¬ (not), → (implies), ≡ or ↔ (is equivalent to)
- Parentheses (): used to make syntax unambiguous

Expressions (formulas):

$$\phi ::= 0 | 1 | p | q | \dots | x | y | \dots$$
$$| \phi_1 \land \phi_2 | \phi_1 \lor \phi_2$$
$$| \neg \phi'$$
$$| \phi_1 \rightarrow \phi_2 | \phi_1 \equiv \phi_2$$

```
Stavros Tripakis (UC Berkeley)
```

EE 244, Fall 2016

Basic Concepts of Logic 5 / 34

Syntax

Examples:

$$x \lor \neg x$$

$$x \to y \to z \text{ (ambiguous)}$$

$$x \to (y \to z)$$

$$(x \to y) \to z$$

$$(p \to q) \leftrightarrow (0 \lor \neg p \lor q)$$

 \neg usually bings stronger, so $\neg p \lor q$ means $(\neg p) \lor q.$

Similarly, $p \land q \lor r$ usually means $(p \land q) \lor r$, $p \land q \to a \lor b$ usually means $(q \land q) \to (a \lor b)$, etc.

To be sure, better use parentheses!

Alternative syntax

- ⇒ instead of →, but in modern logic notation, ⇒ is used for semantical entailment, as in "formula φ entails formula φ', or φ ⇒ φ', meaning that φ' is true when φ is true"
- \Leftrightarrow instead of \leftrightarrow
- \bullet + instead of \lor
- \cdot instead of \wedge (often omitted altogether)
- \overline{x} instead of $\neg x$

E.g.,

 $xy + \overline{z}$

instead of

 $(x \land y) \lor (\neg z)$

Stavros Tripakis (UC Barkelov) EE 244 Eall 2016 Basis Concepts of Logic 7/3				
Stavios inpakis (OC Derkeley) EL 244, Tail 2010 Dasic Concepts of Edgic 77/3	Stavros Tripakis (UC Berkeley)	EE 244, Fall 2016	Basic Concepts of Logic	7 / 34

Semantics

The meaning of logical formulas.

- E.g., what is the semantics of a boolean formula such as $p \rightarrow q$?
- "If p, then q", of course.
- So, why do we even need to talk about semantics?

Semantics

What is the meaning of a boolean formula?

Different views (all equivalent):

- A "truth table".
- A boolean function.
- A set containing the "solutions" ("models") of the formula.

Why not consider the syntax itself to be the semantics?

Stavros Tripakis (UC Berkeley) EE 244, Fall 2016 Basic Concepts of Logic 9 /				
	Stavros Tripakis (UC Berkeley)	EE 244, Fall 2016	Basic Concepts of Logic	9 / 34

Semantics

Formula:

$$x \land (y \lor z)$$

Truth table:

x	y	z	result
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

An equivalent formula (different syntax, same semantics):

 $(x \wedge y) \vee (x \wedge z)$

EE 244, Fall 2010

Semantics

Boolean function: a function $f : \mathbb{B}^n \to \mathbb{B}^m$, where $\mathbb{B} = \{0, 1\}$. Formula:

 $x \land (y \lor z)$

defines¹ the boolean function: $f : \mathbb{B}^3 \to \mathbb{B}$ such that:

```
f(0, 0, 0) = 0
f(0, 0, 1) = 0
```

¹assuming an order on the variables: (1) x, (2) y, (3) z. Stavros Tripakis (UC Berkeley) EE 244, Fall 2016 Ba

Basic Concepts of Logic 11 / 34

Semantics

A formula $\phi : x \land (y \lor z)$ defines² a subset $\llbracket \phi \rrbracket \subseteq \mathbb{B}^3$:

 $[\![\phi]\!]=\{(1,0,1),(1,1,0),(1,1,1)\}$

This is the set of "solutions": all assignments to x, y, z which make the formula true.

To be independent from an implicit order on variables, we can also view $\llbracket \phi \rrbracket$ as a set of *minterms*:

$$\llbracket \phi \rrbracket = \{ x \overline{y} z, x y \overline{z}, x y z \}$$

We can also view $\llbracket \phi \rrbracket$ as a set of *sets of atomic propositions*:

$$[\![\phi]\!] = \{\{x,z\},\{x,y\},\{x,y,z\}\}$$

What is the type of $\llbracket \phi \rrbracket$ in this last case?

 $\llbracket \phi \rrbracket \subseteq \mathbb{B}^P = 2^P$ where P is the set of atomic propositions (= formula variables).

²assuming an order on the variables: (1) x, (2) y, (3) z.

EE 244, Fall 20<u>16</u>_____

Semantics: satisfaction relation

Semantics: satisfiability, validity

A formula ϕ is *satisfiable* if $\llbracket \phi \rrbracket$ is non-empty, i.e., if there exists $a \models \phi$.

A formula ϕ is valid (a tautology) if for all $a, a \models \phi$, i.e., if $\llbracket \phi \rrbracket = 2^{P}$.

PREDICATE LOGIC

Stavros Tripakis (UC Berkeley)

EE 244, Fall 2016

Basic Concepts of Logic 15 / 34

Limitations of propositional logic

All humans are mortal.

How to write it in propositional logic?

We can associate one proposition p_i for every human i, with the meaning "human i is mortal", and then state:

 $p_1 \wedge p_2 \wedge \cdots \wedge p_{7000000000}$

But even this is not enough, since we also want to talk about future generations.

Expressing this in (first-order) predicate logic

$$\forall x: H(x) \to M(x)$$

x: variable

- H, M: predicates (functions that return "true" or "false")
- H(x): "x is human".
- M(x): "x is mortal".
- \forall : "for all" quantifier.

Stavros Tripakis (UC Berkeley)

EE 244, Fall 2016

Basic Concepts of Logic 17 / 34

First-Order Predicate Logic (FOL) – Syntax

Terms:

$$t ::= x | c | f(t_1, ..., t_n)$$

where x is any variable symbol, c is any constant symbol,³ and f is any function symbol of some arity n.

Formulas:

Stavros Tripakis (UC Berkeley)

$$\phi ::= P(t_1, ..., t_n)$$

$$| (\phi \land \phi) | (\phi \lor \phi) | (\neg \phi) | \cdots$$

$$| (\forall x : \phi) | (\exists x : \phi)$$

where P is any predicate symbol of some arity n, and t_i are terms.

EE 244, Fall 2016

FOL – Syntax

Example:

$$\forall x : x > 0 \to x + 1 > 0$$

or, more pedantically:

$$\forall x : >(x,0) \rightarrow >(+(x,1),0)$$

• 0,1: constants

- *x*: variable symbol
- +: function symbol of arity 2
- >: predicate symbol of arity 2

Stavros Tripakis (UC Berkeley)	EE 244, Fall 2016	Basic Concepts of Logic	19 / 34

FOL – Syntax

Note:

• This is also a syntactically well-formed formula:

$$x > 0 \to x + 1 > 0$$

• so is this:

$$\forall x : x > y$$

• or this:

$$\forall x : 2z > f(y)$$

Parse Tree of Formula

Formula: $\forall x : x > 0 \rightarrow x + 1 > 0$

Stavros Tripakis (UC Berkeley)EE 244, Fall 2016Basic Concepts of Logic21 / 34

Free and Bound Variables

Formula: $\forall x : x > y$

y is *free* in the formula: no ancestor of the leaf node y is a node of the form $\forall y$ or $\exists y$.

x is *bound* in the formula: has ancestor $\forall x$.

Scope of Variables

Formula: $(\forall x : x = x \land \exists x : P(x)) \land x > 0$

Renaming

Formula: $(\forall x : x = x \land \exists x : P(x)) \land x > 0 \rightsquigarrow (\forall y : y = y \land \exists z : P(z)) \land x > 0$

In propositional logic, a "solution" (model) of a formula was simply an assignment of truth values to the propositional variables. E.g.,

$$\underbrace{(p:=1,q:=0)}_{\textit{model}} \models \underbrace{p \lor q}_{\textit{formula}}$$

What are the "solutions" (models) of predicate logic formulas?

$$\underbrace{???}_{\textit{model}} \models \underbrace{\forall x: P(x) \rightarrow \exists y: Q(x, y)}_{\textit{formula}}$$

Cannot give meaning to the formula without first giving meaning to P, Q.

EE 244, Fall 2016

Basic Concepts of Logic 25 / 34

FOL – Semantics

Let \mathcal{P} and \mathcal{F} be the sets of predicate and function symbols (for simplicity \mathcal{F} also includes the constants).

A model \mathcal{M} for the pair $(\mathcal{P}, \mathcal{F})$ consists of the following:

- A non-empty set \mathcal{U} , the *universe* of concrete values.
- For each 0-arity symbol $c \in \mathcal{F}$, a concrete value $c_{\mathcal{M}} \in \mathcal{U}$.
- For each $f \in \mathcal{F}$ with arity n, a function $f_{\mathcal{M}} : \mathcal{U}^n \to \mathcal{U}$.
- For each $P \in \mathcal{P}$ with arity n, a set $P_{\mathcal{M}} \subseteq \mathcal{U}^n$.

Note:

- c, f, P are just symbols (syntactic objects).
- $c_{\mathcal{M}}, f_{\mathcal{M}}, P_{\mathcal{M}}$ are semantical objects (values, functions, sets).

Example:

$$\forall x : P(x) \to \exists y : Q(x, y)$$

Let ${\mathcal M}$ be such that

- $\mathcal{U} = \mathbb{N}$: the set of naturals.
- $P_{\mathcal{M}} = \{0, 2, ...\}$: the set of even naturals.
- $Q_{\mathcal{M}} = \{(0,1), (1,2), (2,3), ...\}$: the set of pairs (n, n+1), for $n \in \mathbb{N}$.

Then the statement above is true.

Of course, it could have been written "more clearly" (for a human):

$$\forall x: Even(x) \to \exists y: y = x + 1$$

... but a computer (or a person who does not speak English) is equally clueless as to what P or *Even* means ...

 Stavros Tripakis (UC Berkeley)
 EE 244, Fall 2016
 Basic Concepts of Logic
 27 / 34

FOL – Semantics

Example:

$$\forall x : P(x) \to \exists y : Q(x, y)$$

Let \mathcal{M}^\prime be another model such that

- $\mathcal{U} = \mathbb{N}$: the set of naturals.
- $P_{\mathcal{M}'} = \{0, 2, ...\}$: the set of even naturals.
- $Q_{\mathcal{M}'} = \{(1,0), (3,1), (5,2), ...\}$: the set of pairs (2n+1, n), for $n \in \mathbb{N}$.

Then the statement above is false.

What is the meaning of $\forall x : x > y$?

Undefined if we know nothing about the value of y.

We need one more thing: *environments* (or "look-up tables" for variables).

Environment:

```
l: \mathsf{VariableSymbols} \to \mathcal{U}
```

assigns a concrete value to every variable symbol.

Notation:

 $l[x \rightsquigarrow a]$

is a new environment l' such that l'(x)=a and l'(y)=l(y) for any other variable y.

```
Stavros Tripakis (UC Berkeley)
```

EE 244, Fall 2016

Basic Concepts of Logic 29 / 34

FOL – Semantics: Giving concrete values to terms

Once we have $\mathcal M$ and l, every term evaluates to a concrete value in $\mathcal U.$

Example:

 $\begin{aligned} \mathcal{M}: \quad \mathcal{U} = \mathbb{N}, \ "0" = 0, \ "1" = 1, \ \dots, + = \text{addition function}, \\ \dots \\ l: \quad x \rightsquigarrow 2, \ y \rightsquigarrow 1 \\ \hline \hline \frac{\text{term } t \quad \text{value } \mathcal{M}_l(t)}{x + 1 \qquad 3} \\ x \cdot y \qquad 2 \\ \dots \end{aligned}$

For a term t, we denote this value by $\mathcal{M}_l(t)$.

Finally we can define the satisfaction relation for first-order predicate logic (\mathcal{M} : model, l: environment, ϕ : formula):

$$\mathcal{M}, l \models \phi$$

$\mathcal{M}, l \models P(t_1,, t_n)$	iff	$\left(\mathcal{M}_{l}(t_{1}),,\mathcal{M}_{l}(t_{n})\right)\in P_{\mathcal{M}}$
$\mathcal{M}, l \models \phi_1 \land \phi_2$	iff	$\mathcal{M}, l \models \phi_1$ and $\mathcal{M}, l \models \phi_2$
$\mathcal{M}, l \models \neg \phi$	iff	$\mathcal{M}, l \not\models \phi$
$\mathcal{M}, l \models \forall x : \phi$	iff	for all $a \in \mathcal{U} : \mathcal{M}, l[x \rightsquigarrow a] \models \phi$ holds
$\mathcal{M}, l \models \exists x : \phi$	iff	for some $a \in \mathcal{U} : \mathcal{M}, l[x \rightsquigarrow a] \models \phi$ holds

EE 244, Fall 2016

Basic Concepts of Logic 31 / 34

FOL – Semantics: Satisfiability, Validity

A FOL formula ϕ is *satisfiable* if there exist \mathcal{M}, l such that $\mathcal{M}, l \models \phi$ holds.

A formula ϕ is valid (a tautology) if for all \mathcal{M}, l , it holds $\mathcal{M}, l \models \phi$.

FOL – Semantics: Satisfiability, Validity

Examples:

1

2

$$\forall x: P(x) \to P(x)$$

Valid.

$$x \ge 0 \land f(x) \ge 0 \land y \ge 0 \land f(y) \ge 0 \land x \ne y$$

Satisfiable.

Example model: $\mathcal{U} = \mathbb{N}$, $x \mapsto 0$, $y \mapsto 1$, $f(_{-}) \mapsto 0$, \neq is the "not equal to" relation on \mathbb{N} : $\neq \mapsto \{(0,1), (0,2), ..., (1,0), (1,2), ...\}$.

Satisfiable with a non-standard interpretation of +, - or read, write.

Unsatisfiable with the standard interpretation of those symbols (theories of arithmetic and arrays). Why?

```
Stavros Tripakis (UC Berkeley)
```

EE 244, Fall 2016

Basic Concepts of Logic 33 / 34

Bibliography

Biere, A., Heule, M., Van Maaren, H., and Walsh, T. (2009). *Handbook of Satisfiability*. IOS Press.

Huth, M. and Ryan, M. (2004). Logic in Computer Science: Modelling and Reasoning about Systems. Cambridge University Press.

Tourlakis, G. (2008). *Mathematical Logic*. Wiley.