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Recall one of our goals: verification

We have designed a system.

We want to check that it is correct.

But what does “correct” mean?

We need to specify correctness ⇒ we need a specification language.
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Current practice

Specifications often written in natural language, e.g., English.
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Example: specification of the SpaceWire protocol
(European Space Agency standard)

From Standard ECSS-E-ST-50-12C, SpaceWire – Links, nodes, routers and networks, 31 July
2008.
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Temporal logic

a formal specification language
=

a way to state properties of our system mathematically
(precisely and unambiguously!)

(as opposed to natural language)

Becoming more and more widespread in the industry
(hardware, robotics, distributed systems, ...)
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Temporal logic

Amir Pnueli (1941 - 2009) won the ACM Turing Award in 1996,

For seminal work introducing temporal logic into computing
science and for outstanding contributions to program and system
verification.
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Temporal logics

Many variants: for linear-time, branching-time, real-time, ...,
properties

We will look at
I LTL (linear temporal logic) for linear-time properties.
I CTL (computation tree logic) for branching-time properties.
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LTL (Linear Temporal Logic) – Syntax

LTL1 formulas are defined by the following grammar:

φ ::= p | q | ..., where p, q, ... ∈ AP (atomic propositions)

| φ1 ∧ φ2 | ¬φ1
| Gφ1
| Fφ1
| Xφ1
| φ1Uφ2

φ1 ∧ φ2: φ1 and φ2 (logical conjunction)
¬φ1: not φ1 (logical negation)
Gφ: globally φ (always φ), also written 2φ.
Fφ: in the future φ (eventually φ), also written 3φ.
Xφ: next φ, also written ©φ.

φ1Uφ2: φ1 until φ2.

1This is propositional LTL (PLTL). There is also first-order LTL with quantifiers ∀, ∃.
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LTL – Syntax

We will also use

φ1 ∨ φ2: φ1 or φ2 (logical disjunction)
can be defined as ¬(¬φ1 ∧ ¬φ2)

φ1 → φ2: φ1 implies φ2 (logical implication)
can be defined as ¬φ1 ∨ φ2

φ1 ↔ φ2: φ1 iff φ2 (logical equivalence)
can be defined as φ1 → φ2 ∧ φ2 → φ1
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LTL – Syntax

Recall LTL syntax:

φ ::= p | q | ... | φ1 ∧ φ2 | ¬φ1 | Gφ1 | Fφ1 | Xφ1 | φ1Uφ2

Examples: let’s look at some syntactically correct (and some incorrect!)
LTL formulas.

p→ q p→ Gp GFp pG

G ∧ Fp G(p→ Fq) G(p→ F) pU (qU (p ∧ r))

pU (Gq) pU (U q) pXq p→ XXq
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LTL – Syntax

syntactically correct incorrect

p→ q p→
Gp pG
GFp G ∧ Fp

G(p→ Fq) G(p→ F)
pU (qU (p ∧ r)) pU (U q)

pU (Gq) pXq
p→ XXq
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LTL – Semantics

LTL formulas are evaluated over infinite sequences of sets of atomic
propositions (execution traces).

σ = P0, P1, P2, · · ·

where Pi ⊆ AP for all i.

For instance, let AP = {p, q}. Examples of traces:

σ1 = {p}, {q}, {p}, {q}, {p}, ...
σ2 = {p}, {p}, {p}, {p}, {p}, ...
σ3 = {p}, {q}, {p, q}, {}, {p, q}, ...
. . .

What do these traces mean? p holds at step i iff p ∈ Pi.
Where do these traces come from? From state machines or transition
systems (we’ll see later).
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LTL – Semantics: Intuition
Given LTL formula φ and infinite trace

σ = P0, P1, P2, · · ·

we say that σ satisfies φ, written

σ |= φ

when

formula meaning

p p holds now (at first step), i.e., p ∈ P0

φ1 ∧ φ2 σ satisfies both φ1 and φ2
¬φ1 σ does not satisfy φ1
Gφ1 every suffix Pi, Pi+1, · · · of σ satisfies φ1
Fφ1 some suffix of σ satisfies φ1
Xφ1 the suffix P1 P2 · · · satisfies φ1
φ1Uφ2 φ2 holds for the suffix starting at position i, for some i ≥ 0,

and φ1 holds for all suffixes prior to that
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LTL: examples

Let’s find some traces that satisfy (and some that violate!) these formulas:

Gp (1)

Fp (2)

Xp (3)

pU q (4)

GFp (5)

FGp (6)

G(p→ Fq) (7)

G(p→ XXq) (8)

pU (qU (p ∧ r)) (9)
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LTL – Semantics: Formally

We want to define formally the satisfaction relation: σ |= φ.
Let

σ = P0, P1, P2, · · ·

Notation (suffix): σ[i..] = Pi, Pi+1, Pi+2, · · · .

Satisfaction relation defined recursively on the syntax of a formula:

σ |= p iff p ∈ P0

σ |= φ1 ∧ φ2 iff σ |= φ1 and σ |= φ2
σ |= ¬φ iff σ 6|= φ
σ |= Gφ iff ∀i = 0, 1, ... : σ[i..] |= φ
σ |= Fφ iff ∃i = 0, 1, ... : σ[i..] |= φ
σ |= Xφ iff σ[1..] |= φ
σ |= φ1Uφ2 iff ∃i = 0, 1, ... : σ[i..] |= φ2 ∧

∀0 ≤ j < i : σ[j..] |= φ1
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LTL – Semantics: Formally

Let
σ = P0, P1, P2, · · ·

Satisfaction relation defined recursively on the syntax of a formula:

σ |= p iff p ∈ P0 p holds at the first (current) step
σ |= φ1 ∧ φ2 iff σ |= φ1 and σ |= φ2
σ |= ¬φ iff σ 6|= φ
σ |= Gφ iff ∀i = 0, 1, ... : σ[i..] |= φ φ holds for every suffix of σ
σ |= Fφ iff ∃i = 0, 1, ... : σ[i..] |= φ φ holds for some suffix of σ
σ |= Xφ iff σ[1..] |= φ φ holds for the suffix starting at the next step
σ |= φ1 Uφ2 iff ∃i = 0, 1, ... : σ[i..] |= φ2 ∧

∀0 ≤ j < i : σ[j..] |= φ1
φ2 holds for some suffix of σ and
φ1 holds for all previous suffixes
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Interesting facts about LTL

Can we express Gp using only F, p, and boolean operators?

Gp⇔ ¬F¬p

Vice versa, can we express F in terms of G?

Fφ⇔ ¬G¬φ

Can we express F in terms of U ?

Fφ⇔ trueUφ

What is “true” ? Can be defined as a primitive formula, or as p∨¬p.

Can we express X in terms of G, F, U ? No!
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LTL – more examples
Let’s try to express the following requirements in LTL:

1 No more than one processor (in a 2-processor system) shall have a
cache line in write mode.
Let AP = {p1, p2}, with pi meaning “processor i has the cache line in
write mode.”

G¬(p1 ∧ p2)
2 The grant signal must be asserted some time after the request signal

is asserted.
Let AP = {r, g}, with r meaning “request signal is asserted” and g
meaning “grant signal is asserted.”

G(r → Fg)

3 A request must receive an acknowledgement, and the request should
stay asserted until the acknowledgment is received.
Let AP = {r, a}, with r request and a acknowledgment.

G(r → (rU a))
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LTL in the industry

Several industrial standard languages based on LTL, e.g.,

PSL (Property Specification Language), an IEEE standard.

PSL/Sugar (IBM variant).

Example properties written in PSL/Sugar:

assert always req -> next (ack until grant);

G(r → X(aU g))

assert always req -> next[3] (grant);

G(r → XXXg)
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SAFETY and LIVENESS
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Safety and Liveness

Two important classes of properties.

Safety property: something “bad” does not happen.
I E.g., system never crashes, division by zero never happens, voltage

stays always ≤ K (never exceeds K), etc.
I Finite length error trace.

Liveness property: something “good” must happen.
I E.g., every request must eventually receive a response.
I Infinite length error trace.
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Safety and Liveness

Are these LTL properties safety, liveness, or something else?

Gp: safety.

Fp: liveness.

Xp: safety.

pU q: a “mix” of both!

GFp: liveness.

G(p→ Fq): liveness.

G(p→ Xq): safety.
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Safety and Liveness – Formally

Let AP be a set of atomic propositions.

2AP is the powerset (set of all subsets) of AP.

(2AP)∗ is the set of all finite sequences over AP.

(2AP)ω is the set of all infinite sequences (“traces”) over AP.

What is a property, formally?
A property L is a set of traces: L ⊆ (2AP)ω.

Examples:

L = (2AP)ω: L holds on all traces (every trace is in L, i.e., every
trace satisfies property L).

L = ∅: no trace satisfies L.

L = the set of all traces satisfying GFp.

L = the set of all traces such that p holds at every odd step in the
trace.
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Safety and Liveness – Formally
Let L be a property = set of (infinite) traces.

For a trace σ = α1α2α3 · · · , and length k ∈ N, we denote by σ[1..k] the
finite prefix α1 · · ·αk of σ. When k = 0 we get the empty prefix.

L is a safety property if

∀σ 6∈ L : ∃k ∈ N : ∀ρ ∈ (2AP)ω : σ[1..k] · ρ 6∈ L

i.e., for any σ violating the safety property, there exists a bad prefix
σ[1..k], such that no matter how we extend this prefix we can no
longer satisfy the safety property.

L is a liveness property if

∀σ ∈ (2AP)∗ : ∃ρ ∈ (2AP)ω : σ · ρ ∈ L

i.e., every finite trace can be extended, by appending a good suffix,
into an infinite trace which satisfies the liveness property.
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Safety and Liveness – Formally

Theorem ([Alpern and Schneider, 1985])

Every property is the intersection of a safety property and a liveness
property.
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THE MODEL-CHECKING PROBLEM
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The verification problem

Specification (the “what”) = the property that we want the system to
have

Implementation (the “how”) = the system that we want to verify

The verification problem: does the implementation satisfy the
specification?
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The verification problem for LTL: LTL model checking

Implementation: state machine or transition system

Specification: LTL formula

The LTL model checking problem: does a given system M satisfy a
given LTL formula φ?

Every execution trace of M must satisfy φ.

We write this as:
M |= φ

(read “M satisfies φ”).
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Transition Systems

An even more basic model than automata and state machines:

transition system = states + transitions (+ labels)

Possibly infinite sets of states/transitions.

Transitions typically non-deterministic.

Can describe infinite-state systems (e.g., programs with integer or real
variables).

Can also be used in non-discrete systems (e.g., timed automata, as
we will see later).

Form the basis for the semantics of temporal logics and other
equivalences between systems (e.g., bisimulation).

Many variants: Labeled Transition Systems, Kripke Structures, ...
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Labeled Transition Systems

An LTS is a tuple:
(Σ, S, S0, R)

Σ: set of labels (modeling events, actions, ...)

S: set of states (perhaps infinite)

S0 ⊆ S: set of initial states

R: transition relation

R ⊆ S × (Σ ∪ {ε})× S

ε (sometimes τ): internal, unobservable action (used in composition,
simulation/bisimulation equivalences, ...).
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Example: LTS

In a LTS the labels are on the transitions.
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Kripke Structures

A Kripke structure is a tuple:

(AP, S, S0, L,R)

AP: set of atomic propositions (modeling state properties)

S: set of states (perhaps infinite)

S0 ⊆ S: set of initial states

L: labeling function on states

L : S → 2AP

2AP: the powerset (set of all subsets) of AP.
For p ∈ AP and s ∈ S: “s has property p” iff p ∈ L(s).

R: transition relation
R ⊆ S × S
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Example: Kripke Structure

In a KS the labels are on the states. Each state is labeled with a set of
atomic propositions (those that hold on that state).
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LTS vs. Kripke structures

In LTS, the labels are on the transitions.

In Kripke structures, the labels are on the states.
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Homework

1 Can we translate a Moore machine to an “equivalent” Mealy
machine? (and what does equivalent mean?) And vice-versa?

2 Can we translate a KS to an “equivalent” LTS? (and what does
equivalent mean?) And vice-versa?
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Traces of a transition system

An infinite path in a Kripke structure (AP, S, S0, L,R) is an infinite
sequence of states:

s0, s1, s2, · · ·

such that s0 ∈ S0 and ∀i : (si, si+1) ∈ R.

The corresponding observable trace σ is the corresponding infinite
sequence of sets of atomic propositions:

σ = L(s0), L(s1), L(s2), · · ·
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Example

List some of the traces of the following transition system:

How many traces are there in total?

Stavros Tripakis (UC Berkeley) EE 244, Fall 2016 Temporal Logic 37 / 54

Execution traces of a state machine

Recall: an infinite run of a Mealy machine (I,O, S, s0, δ, λ) is an infinite
sequence of states / transitions:

s0
x0/y0−→ s1

x1/y1−→ s2
x2/y2−→ s3 · · ·

such that ∀i : xi ∈ I, yi ∈ O, ∀i : si+1 = δ(si, xi), and ∀i : yi = λ(si, xi).

The observable I/O behavior (trace) corresponding to the above run is

σ = {x0, y0}, {x1, y1}, {x2, y2}, · · ·

where we assume AP = I ∪O and interpret xi as the proposition “the
value of the input is xi” and yi similarly.

(Here we assume that only I/O are observable. We could also define traces that
expose the internal state of the machine. E.g., we may want to state the
requirement that a certain register never has a certain value.)
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Back to LTL: examples

Let’s find transition systems satisfying or violating the following LTL
formulas:

Gp

Fp

GFp

G(p→ Fq)

pU q
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BRANCHING-TIME PROPERTIES
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Linear-Time vs. Branching-Time Properties

So far we have been talking about properties of linear behaviors
(sequences, traces).

But some properties are not linear, e.g.:

“it is possible to recover from any fault”

or

“there exists a way to get back to the initial state from any
reachable state”
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Linear-Time vs. Branching-Time Properties

“it is possible to recover from any fault”

Based on one (linear) behavior alone,2 we cannot conclude whether our
system satisfies the property.

E.g., the following system satisfies the property, although it contains a
behavior that stays forever in state s1:

s0 s1

fault

recovery

2if we had all linear behaviors of a system, we could in principle reconstruct its
branching behavior as well
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Linear-Time vs. Branching-Time Temporal Logics

Linear-time: the “solutions” (models) of a temporal logic formula are
infinite sequences (traces).

Branching-time: the “solutions” (models) of a temporal logic formula are
infinite trees.

Hence the name “Computation Tree Logic” for CTL.
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Branching-Time Temporal Logic: CTL

We will simplify and define the semantics of CTL directly on states of a
transition system (Kripke structure).
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CTL (Computation Tree Logic) – Syntax

CTL formulas are defined by the following grammar:

φ ::= p | q | ..., where p, q, ... ∈ AP

| φ1 ∧ φ2 | ¬φ1
| EGφ1 | AGφ1

| EFφ1 | AFφ1

| EXφ1 | AXφ1

| E(φ1Uφ2) | A(φ1Uφ2)

E (“there exists a path”) and A (“for all paths”) are called path
quantifiers.
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CTL (Computation Tree Logic) – Syntax

Examples of CTL formulas:

AGp

EFq

AGEF(p→ q)

Syntactically incorrect CTL formulas:

Gp, AGFp, (AGp) ∧ Fq, AEGp, Ap

Alternative notation: ∀2p, ∃3q, ∀(pU q), etc.
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CTL – Semantics: Intuition

Let s be a state of the Kripke structure.

Then s satisfies the CTL formula EGφ, written

s |= EGφ

iff there exists a trace σ starting from s and satisfying Gφ.
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CTL – Semantics: Intuition

s |= AGφ

iff every trace σ starting from s satisfies Gφ.
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Examples

Let’s construct transition systems (Kripke structures) satisfying or
violating the following CTL formulas:

AGp

AFp

EGp

EFp
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Facts about CTL

Quiz: do we need EFφ? Can we express it in terms of other CTL
modalities?
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CTL – Formal Semantics

Let (AP, S, S0, L,R) be a Kripke structure and let s ∈ S.

A trace starting from s is an infinite sequence σ = σ0, σ1, · · · , such that there is
an infinite path s = s0, s1, · · · starting from s, and σi = L(si) for all i.

Satisfaction relation for CTL:

s |= p iff p ∈ L(s)
s |= φ1 ∧ φ2 iff s |= φ1 and s |= φ2
s |= ¬φ iff s 6|= φ
s |= EGφ iff ∃trace σ starting from s : σ |=LTL Gφ
s |= AGφ iff ∀traces σ starting from s : σ |=LTL Gφ
s |= EXφ iff ∃trace σ starting from s : σ |=LTL Xφ
s |= E(φ1 Uφ2) iff ∃trace σ starting from s : σ |=LTL φ1 Uφ2
...

(Here σ |=LTL Gφ means that the trace σ satisfies Gφ in the LTL sense. However,
strictly speaking |=LTL is not the LTL satisfaction relation, because φ is not an LTL
formula.)
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The verification problem for CTL: CTL model checking

The CTL model checking problem: does a given transition system
(Kripke structure) M satisfy a given CTL formula φ?

Let M = (AP, S, S0, L,R).
S0 is a set, so M generally has many initial states.

We want every initial state of M to satisfy φ:

∀s ∈ S0 : s |= φ

We write this as:
M |= φ

(same notation as in LTL model-checking, but here φ is a CTL formula).
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CTL – Examples

How to express these properties in CTL?

“p holds at all reachable states” AGp

“there exists a way to get back to the initial state from any
reachable state” AG EF init

“p is inevitable” AF p

“p is possible” EF p

How would you express the last two in LTL?
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