
1

Fundamental Algorithms
for System Modeling,
Analysis, and Optimization

Stavros Tripakis
UC Berkeley
EECS 244
Fall 2016

Controller and Program Synthesis

EECS 144/244, UC Berkeley: 2

From verification to synthesis

Verification:

first write program (or model of a system), then specify
formal properties, then check correctness.

Synthesis:

first specify formal properties, then let synthesizer
automatically generate a correct program.

Put another way:

from imperative (how) to declarative (what) design;

“raising the level of abstraction”.

2

EECS 144/244, UC Berkeley: 3

What is synthesis?

Roughly:

Many different variants, depending on what is P, φ, and
how search is done.

Very old topic (Church, 1960s) recently rejuvenated.

∃ : ∀ : ,

EECS 144/244, UC Berkeley: 4

Program synthesis and proofs

From 2nd order formula

to 1st order formula

Synthesizing program P can be done by proving
constructively that the above formula is valid.

Deductive program synthesis.

∃ : ∀ : ,

∀ : ∃ : ,

3

EECS 144/244, UC Berkeley: 5

Concept Language
 Programs

• Straight-line programs

 Automata

 Queries

 Sequences

User Intent
 Logic, Natural Language

 Examples, Demonstrations/Traces

Search Technique
 SAT/SMT solvers (Formal Methods)

 A*-style goal-directed search (AI)

 Version space algebras (Machine Learning)

Dimensions in Synthesis (Gulwani)

PPDP 2010: “Dimensions in Program Synthesis”, Gulwani.

(Application)

(Ambiguity)

(Algorithm)

Also: logic synthesis

EECS 144/244, UC Berkeley: 6

Compilers vs. Synthesizers (Gulwani)

Dimension Compilers Synthesizers

Concept
Language

Executable Program Variety of concepts: Program,
Automata, Query, Sequence

User Intent Structured language Variety/mixed form of
constraints: logic, examples,
traces

Search
Technique

Syntax-directed
translation (No new
algorithmic insights)

Uses some kind of search
(Discovers new algorithmic
insights)

4

EECS 144/244, UC Berkeley: 7

MOTIVATING EXAMPLE

EECS 144/244, UC Berkeley: 8

Designing controllers can be tricky and time
consuming
Example: Electrical Power Generation and Distribution

System (EPS) of a modern aircraft

Thanks to:
Pierluigi Nuzzo
Antonio Iannopollo

5

EECS 144/244, UC Berkeley: 9

Designing controllers can be tricky and time
consuming
Example: EPS requirements (in English)

Assumptions:

Guarantees:

EECS 144/244, UC Berkeley: 10

Designing controllers can be tricky and time
consuming
Example: EPS requirements (in English) – zooming in

6

EECS 144/244, UC Berkeley: 11

Designing controllers can be tricky and time
consuming
Example: EPS “hand-written” controller

EECS 144/244, UC Berkeley: 12

Designing controllers can be tricky and time
consuming
Example: EPS “hand-written” controller – zooming in

7

EECS 144/244, UC Berkeley: 13

Designing controllers can be tricky and time
consuming
Example: EPS “hand-written” controller

Design time ~ 1 week [Nuzzo] (but have to verify also)

For a real controller, it could be months [e.g., robotic
controllers, Willow Garage]

Can design

time be

improved?

EECS 144/244, UC Berkeley: 14

Declarative specification of controllers

At the outset the controller is just a box with inputs and
outputs:

8

EECS 144/244, UC Berkeley: 15

Declarative specification of controllers

At the outset the controller is just a box with inputs and
outputs:

Example: EPS controller

EECS 144/244, UC Berkeley: 16

Declarative specification of controllers

At the outset the controller is just a box with inputs and
outputs:

We can specify the input-output behavior of the controller
in a high-level language, e.g., in temporal logic.

9

EECS 144/244, UC Berkeley: 17

Declarative specification of controllers

Example: LTL specification for EPS

~40 lines
#Assumptions
(gl_healthy & gr_healthy & al_healthy & ar_healthy)
[](gl_healthy | gr_healthy | al_healthy | ar_healthy)
[](!gl_healthy -> X(!gl_healthy))
[](!gr_healthy -> X(!gr_healthy))
[](!al_healthy -> X(!al_healthy))
[](!ar_healthy -> X(!ar_healthy))

#Guarantees
(!c1 & !c2 & !c3 & !c4 & !c5 & !c6 & !c7 & !c8 & !c9 & !c10 & !c11 & !c12 & !c13)
[](X(c7) & X(c8) & X(c11) & X(c12) & X(c13))

[](!(c2 & c3))
[](!(c1 & c5 & (al_healthy | ar_healthy)))
[](!(c4 & c6 & (al_healthy | ar_healthy)))
[]((X(gl_healthy) & X(gr_healthy)) -> X(!c2) & X(!c3) & X(!c9) & X(!c10))
[]((X(!gl_healthy) & X(!gr_healthy)) -> X(c9) & X(c10))

[](X(!gl_healthy)-> X(!c1))
[](X(!gr_healthy)-> X(!c4))
[](X(!al_healthy)-> X(!c2))
[](X(!ar_healthy)-> X(!c3))

[](X(gl_healthy) -> X(c1))
[](X(gr_healthy) -> X(c4))

…

#Guarantees
…

[](!gl_healthy -> X(c5))
[](!gr_healthy -> X(c6))

[]((X(gl_healthy) & X(gr_healthy)) -> (X(!c5) & X(!c6)))

[]((X(!gl_healthy) & X(al_healthy) & X(gr_healthy)) -> (X(c2) & X(c3)))

[]((X(!gl_healthy) & X(!gr_healthy) & X(al_healthy) & !c3 & !c2) -> X(c2))

[]((X(al_healthy) & c2) -> X(c2))
[]((X(ar_healthy) & c3) -> X(c3))

[]((X(!gl_healthy) & X(!al_healthy) & X(ar_healthy) & !c2) -> X(c3))

[]((X(!gr_healthy) & X(!ar_healthy) & X(al_healthy) & !c3) -> X(c2))

[]((!gl_healthy & !al_healthy & !ar_healthy) -> X(c6))

[]((!gr_healthy & !ar_healthy & !al_healthy) -> X(c5))

EECS 144/244, UC Berkeley: 18

Declarative specification of controllers

Example: LTL specification for EPS

Close mapping from English to LTL:

[](gl_healthy | gr_healthy | al_healthy | ar_healthy)

10

EECS 144/244, UC Berkeley: 19

The controller synthesis problem

Given formula specification (e.g., in LTL) synthesize
controller (e.g., FSM) which implements the
specification (or state that such a controller does not
exist).

EECS 144/244, UC Berkeley: 20

Automatic controller synthesis from declarative
specifications
Example: controller for EPS synthesized from previous

LTL spec using Tulip (Caltech) ~3k lines of Matlab

11

EECS 144/244, UC Berkeley: 21

Automatic controller synthesis from declarative
specifications
Example: controller for EPS synthesized using Tulip

(Caltech), ~40 states – zooming in

EECS 144/244, UC Berkeley: 22

Synthesis in these two lectures

Part 1: Controller synthesis and game solving.

Part 2: Example-guided and syntax-guided synthesis.

12

EECS 144/244, UC Berkeley: 23

CONTROLLER SYNTHESIS

EECS 144/244, UC Berkeley: 24

Declarative specification of controllers

At the outset the controller is just a box with inputs and
outputs:

We can specify the input-output behavior of the controller
in a high-level language, e.g., in temporal logic.

13

EECS 144/244, UC Berkeley: 25

Controller synthesis (reactive synthesis)
[Pnueli-Rosner, POPL 1989]

Given interface of controller:

and given temporal logic formula φ over set of
input/output variables,

synthesize a controller (= state machine) M, such that all
behaviors of M (for any sequence of inputs) satisfy φ.

⋮ ⋮

Note: other notions of controller synthesis exist in the literature.
See “Bridging the gap” paper on the course web site for details.

EECS 144/244, UC Berkeley: 26

Examples

Consider controller interface:

and specifications

→

↔

↔

14

EECS 144/244, UC Berkeley: 27

Examples

Consider controller interface:

and specifications

→

↔

↔ No solution: controller cannot
foresee the future!

̅

̅

EECS 144/244, UC Berkeley: 28

Satisfiability vs. realizability

Satisfiability: exists some behavior that satisfies the
specification. (In this behavior, we may choose both
inputs and outputs as we wish.)

Realizability: exists controller that implements the
specification. Must work for all input sequences, since
inputs are uncontrollable.

Inherently different problems, also w.r.t. complexity:

LTL satisfiability: PSPACE

LTL realizability: 2EXPTIME

15

EECS 144/244, UC Berkeley: 29

Controller synthesis algorithms: computing
strategies in games

Solving safety games

Solving reachability games

Solving deterministic Büchi games (liveness)

Remarks on the general LTL synthesis problem

EECS 144/244, UC Berkeley: 30

Controller synthesis algorithms

Solving safety games

Solving reachability games

Solving deterministic Büchi games (liveness)

Remarks on the general LTL synthesis problem

16

EECS 144/244, UC Berkeley: 31

Safety automata

In some fortunate cases, the LTL specification can be
translated to a safety automaton.

Example:

Automaton:

→

̅

“bad” state

EECS 144/244, UC Berkeley: 32

“Spreading” a safety automaton to a game
[Ehlers PhD thesis, 2013]

We need to separate the input moves from the output
moves:

Automaton:

Game:

̅

•

•
̅

17

EECS 144/244, UC Berkeley: 33

Safety games

Input (environment) states:

Output (controller) states:

Bad state:

Goal: find winning strategy = avoiding bad state

•

•

•
̅

“them”

“us”

if we reach this
state we lose

EECS 144/244, UC Berkeley: 34

Solving safety games

1. Compute set of losing states, starting with Losing := { };

2. If initial state in Losing, no strategy exists.

3. Otherwise, all remaining states are winning. Extract
strategy from them by choosing outputs that avoid the
losing states.

•

•
̅

18

EECS 144/244, UC Berkeley: 35

Solving safety games

1. Compute set of losing states, starting with Losing := { };
 repeat

• UncontrollablyLosing := { s | s has uncontrollable succ in Losing };

• ControllablyLosing := { s | all controllable succs of s are in Losing};

• Losing := Losing U UncontrollablyLosing U ControllablyLosing ;

 until Losing does not change;

•

•
̅

EECS 144/244, UC Berkeley: 36

Solving safety games

1. Compute set of losing states, starting with Losing := { };
 repeat

• UncontrollablyLosing := { s | s has uncontrollable succ in Losing };

• ControllablyLosing := { s | all controllable succs of s are in Losing};

• Losing := Losing U UncontrollablyLosing U ControllablyLosing ;

 until Losing does not change;

Losing•
•

UncontrollablyLosing

ControllablyLosing •

in1

in2

out1
out2

out3

19

EECS 144/244, UC Berkeley: 37

Solving safety games

• Extracting the strategy: “cut” controllable transitions in
order to avoid losing states.

• Strategy is state-based (also called “positional”, or
“memoryless”).

Losing•ControllablyWinning
out2

out1

EECS 144/244, UC Berkeley: 38

Controller synthesis algorithms

Solving safety games

Solving reachability games

Solving deterministic Büchi games (liveness)

Remarks on the general LTL synthesis problem

20

EECS 144/244, UC Berkeley: 39

Reachability games: dual of safety games

Reachability game: trying to reach a target state.

Observation: what is Losing for the safety player is
Winning for the reachability player (and vice versa).

•

•
̅

EECS 144/244, UC Berkeley: 40

Solving reachability games: direct algorithm

1. Compute set of Winning states;
 Winning := { };

 repeat
• Winning := Winning U ForceNext(Winning);

 until Winning does not change;

• ForceNext(S) := { s | all uncontrollable succs of s are in S }
U { s | s has controllable succ in S }

Winning

•
•UncontrollablyWinning

ControllablyWinning •

in1

in2

out1

out2

21

EECS 144/244, UC Berkeley: 41

How to extract strategies in reachability games?

Similarly as for safety games:

Is strategy state-based?

Yes!

Extract strategy from ForceNext(S): ensure you choose the
right controllable transition that leads in winning state.

Winning

•
•UncontrollablyWinning

ControllablyWinning •

in1

in2

out1

out2

EECS 144/244, UC Berkeley: 42

How to extract strategies in reachability games?

Similarly as for safety games: BUT, a subtlety:

Need to fix successor the first time state is added in
Winning.

•

•

22

EECS 144/244, UC Berkeley: 43

Controller synthesis algorithms

Solving safety games

Solving reachability games

Beyond safety and reachability games

Remarks on the general LTL synthesis problem

EECS 144/244, UC Berkeley: 44

What about other types of properties?

Bounded response specifications can be translated to
safety automata/games:

Automaton:

→ 	 	 	 	

̅

23

EECS 144/244, UC Berkeley: 45

What about liveness properties?

What about unbounded response?

More interesting example:

→

→ 	&	 → 	
&	 	&	

EECS 144/244, UC Berkeley: 46

Synthesis for general LTL specifications

Given LTL specification φ:

If φ can be translated to a deterministic Büchi automaton,
then can extend the previous ideas to solving Büchi
games.

Otherwise, solution involves more advanced topics, such
as tree automata. Will not be covered in this course.

Note: LTL cannot always be translated to deterministic
Büchi automata.

24

EECS 144/244, UC Berkeley: 47

Büchi automata

Syntactically same as finite state automata:

But Büchi automata accept infinite words.

A run must visit an accepting state infinitely often.

Σ, , , ,

accepting
states:
⊆

alphabet

states
initial
state

transition
function

EECS 144/244, UC Berkeley: 48

From LTL to Büchi automata

Consider unbounded response property:

Büchi automaton:

→

̅

accepting state

25

EECS 144/244, UC Berkeley: 49

From LTL to Büchi automata

Consider LTL formula:

Büchi automaton? (s.t. there exists an accepting run)

Is there a deterministic Büchi automaton for this spec?

No!

EECS 144/244, UC Berkeley: 50

Controller synthesis algorithms

Solving safety games

Solving reachability games

Solving deterministic Büchi games (liveness)

Remarks on the general LTL synthesis problem

26

EECS 144/244, UC Berkeley: 51

Spreading Büchi automata to Büchi games

Büchi automaton:

Büchi game:

̅

•

̅ •

•

EECS 144/244, UC Berkeley: 52

Solving deterministic Büchi games

1. Compute set of RecurrentAccepting states = accepting
states from which controller can force returning to an
accepting state infinitely often.

2. Solve reachability game with target = RecurrentAccepting.

•

̅ •

•

27

EECS 144/244, UC Berkeley: 53

Solving deterministic Büchi games

1. Compute set of RecurrentAccepting states = accepting
states from which controller can force returning to an
accepting state infinitely often.
 RecAcc := set of all accepting states;

 repeat
• Revisit := { };

• repeat
Revisit := Revisit U ForceNext(Revisit U RecAcc);

• until Revisit does not change;

• RecAcc := RecAcc ∩ Revisit;

 until set RecAcc does not change;

EECS 144/244, UC Berkeley: 54

Recall

ForceNext(S) := { s | all uncontrollable succs of s are in S }
U { s | s has controllable succ in S }

S

•
•UncontrollablyWinning

ControllablyWinning •

in1

in2

out1

out2

28

EECS 144/244, UC Berkeley: 55

Solving deterministic Büchi games –
Example

 RecAcc := set of all accepting states;

 repeat
• Revisit := { };

• repeat
Revisit := Revisit U ForceNext(Revisit U RecAcc);

• until Revisit does not change;

• RecAcc := RecAcc ∩ Revisit;

 until set RecAcc does not change;

•

̅ •

•1

2

3
4

5

EECS 144/244, UC Berkeley: 56

Computing recurrent accepting states: a subtle
relation with reachability games

1. Compute set of RecurrentAccepting states = accepting
states from which controller can force returning to an
accepting state infinitely often.
 RecAcc := set of all accepting states;

 repeat
• Revisit := { };

• repeat
Revisit := Revisit U ForceNext(Revisit U RecAcc);

• until Revisit does not change;

• RecAcc := RecAcc ∩ Revisit;

 until set RecAcc does not change;

(almost) a
reachability
game iteration

29

EECS 144/244, UC Berkeley: 57

Solving reachability games vs. computing Revisit

1. Compute set of Winning states:
 Winning := { };

 repeat
• Winning := Winning U ForceNext(Winning);

 until Winning does not change;

2. Compute Revisit:
• Revisit := { };

• repeat
Revisit := Revisit U ForceNext(Revisit U RecAcc);

• until Revisit does not change;

What is the difference?
Does it matter?

EECS 144/244, UC Berkeley: 58

Solving deterministic Büchi games –
modified example

 RecAcc := set of all accepting states;

 repeat
• Revisit := { };

• repeat
Revisit := Revisit U ForceNext(Revisit U RecAcc);

• until Revisit does not change;

• RecAcc := RecAcc ∩ Revisit;

 until set RecAcc does not change;

•

̅ •

•1

2

3
4

56

30

EECS 144/244, UC Berkeley: 59

How to extract strategies in deterministic Büchi
games?

Similarly as for reachability games:

Careful to choose the transition the first time state is
added to S.

Is strategy state-based?

Yes!

Extract strategy from ForceNext(S): ensure you choose the
right controllable transition that leads in winning state.

S

•
•UncontrollablyWinning

ControllablyWinning •

in1

in2

out1

out2

EECS 144/244, UC Berkeley: 60

What about non-deterministic Büchi games?
Does same algorithm work?

Not quite:

algorithm sound

but incomplete.

[Ruediger Ehlers,
PhD thesis, 2013]

Non-deterministic
Büchi game

Non-deterministic automaton for

∧ ∨ ∧

	: input
: output

31

EECS 144/244, UC Berkeley: 61

Controller synthesis algorithms

Solving safety games

Solving reachability games

Solving deterministic Büchi games (liveness)

Remarks on the general LTL synthesis problem

EECS 144/244, UC Berkeley: 62

Controller synthesis: EE vs. CS ?

CS: synthesize outputs to implement :

EE: synthesize inputs to stabilize a physical
process/plant:

Not different: plant inputs = controller ouputs (and vice
versa).

???
in out

32

EECS 144/244, UC Berkeley: 63

Can we capture plants in the CS synthesis
problem?

CS: given plant P (say, a FSM), synthesize controller C,

so that closed-loop system satisfies :

Can we reduce this problem to the standard LTL
synthesis problem?

C
???

in out

P

EECS 144/244, UC Berkeley: 64

Remarks, assessment

Despite some (mostly isolated) success stories, controller
synthesis hasn’t really caught on yet in practice.

Why is that?
• Normal: things like that take time (c.f. model-checking)

• 2EXPTIME is a horrible (worst-case) complexity (remember: even
linear is too expensive because of state explosion!)

• Tools still impractical

• Synthesis of real, complex systems from complete specs impractical
(imagine full synthesis of complete Intel microchip from LTL specs …)

• Lack of good debugging (e.g., counter-examples)

• Need: better tools, better methods (incremental, interactive, …)

• Great opportunities for research!

33

EECS 144/244, UC Berkeley: 65

References

1. Pnueli, A., Rosner R., On the Synthesis of a Reactive Module, POPL 1989.

2. Ehlers, R., Symmetric and Efficient Synthesis, PhD thesis, 2013.

3. Jobstmann, B., Reachability and Buchi Games, slides available online, 2010.

4. Ehlers et al, Bridging the Gap between Supervisory Control and Reactive
Synthesis: Case of Full Observation and Centralized Control, WODES 2014.

5. Wang et al, The Theory of Deadlock Avoidance via Discrete Control, POPL
2009. (“Success story” of supervisor synthesis applied to deadlock removal in
concurrent software.)

EECS 144/244, UC Berkeley: 66

PROGRAM SYNTHESIS

34

EECS 144/244, UC Berkeley: 67

The “modern” approach to program synthesis

• Interactive:
• computer-aided programming

• programmer solves key problems (e.g., provides
program skeleton), synthesizer fills in (boring or tedious)
details (e.g., missing guards/assignments)

• Search-for-patterns based:
• synthesis = search among set of user-defined patterns

• Solver based:
• heavily uses verifiers like SAT and SMT solvers

• often in a counter-example guided loop

EECS 144/244, UC Berkeley: 68

Example: programming by sketching
[Solar-Lezama, Bodik, et al.]

35

EECS 144/244, UC Berkeley: 69

Using SAT and SMT solvers for synthesis

Recall: what is synthesis?

Usually re-written as:

i.e., if input satisfies precondition, then output will satisfy
postcondition.

∃ : ∀ : ,

∃ : ∀ : → ,

EECS 144/244, UC Berkeley: 70

Using SAT and SMT solvers for synthesis

Example of pre(), post():

i.e., the spec for max(x1,x2).

1, 2 : 		 1 ∧ 2

1, 2, : 		 1 ∧ 2 ∧ 1 	∨	 2)

∃ : ∀ : → ,

36

EECS 144/244, UC Berkeley: 71

First: using SAT and SMT solvers for verification

Suppose we already have a program P.

Then instead of checking whether P is correct

we can check whether P is wrong

i.e., we can check satisfiability of the formula

∃ : ∧ ,

∀ : → ,

∧ ,

EECS 144/244, UC Berkeley: 72

Hold on: are programs formulas?

Consider a simple loop-free program:

Formula:

function P(int x) returns (real y)
{

int tmp := 0;
if (x >= 0) then {

tmp++;
y := tmp*x;

}
else

y := -x;
return y;

}

, 0 ∧ ∨ 0 ∧

37

EECS 144/244, UC Berkeley: 73

Hold on: are programs formulas?

What about real programs?

Loops, data structures, libraries, pointers, threads, …

Translation to formulas much harder, but verification tools
are available that do this, constantly making progress.

We will assume we have a formula P(x,y) representing
the program P: “y is the output of P for input x”.

EECS 144/244, UC Berkeley: 74

Back to using SAT and SMT solvers for verification

We can check satisfiability of the formula

or, writing P as predicate on both input and output
variables:

Satisfiable => P is wrong: we get a counter-example (x,y)

Unsatisfiable => P is correct (for all x)

∧ , ∧ ,

∧ ,

38

EECS 144/244, UC Berkeley: 75

Using SAT and SMT solvers for synthesis

What can be done when we don’t have the program P ?

Hint: what if we have a finite/small number of candidate
programs?

Iterate and search!

∧ , ∧ ,

EECS 144/244, UC Berkeley: 76

Programs with “holes”

Almost-complete programs:

39

EECS 144/244, UC Berkeley: 77

Programs with “holes”

What should we replace “??” with?

Patterns:

integer constants

linear expressions of the form where ,
are variables in the program

…

Even with these restrictions, infinite set of candidates …

Search may take a long time or never terminate.

Can we do better?

EECS 144/244, UC Berkeley: 78

Asking the solver to find the program

Suppose our program has 1 hole, to be filled with an
integer variable.

Then, the formula characterizing the program becomes

Can we use the solver to find the right 	?

Check satisfiability of

, ,

∀ , : ∧ , , → ,

Free variable: solver
must find right value

40

EECS 144/244, UC Berkeley: 79

Problem: universal quantification …

Today’s solvers check satisfiability of quantifier-free
formulas (mostly).

What can we do about that?

Hint: what if we have a finite number of positive
examples? i.e., I/O pairs , satisfying ∧

, .

∀ , : ∧ , , → ,

EECS 144/244, UC Berkeley: 80

Example-guided synthesis

Suppose we have a finite number of positive examples,
say 2: , , , .

That is: we know that these hold:

So it suffices to check satisfiability of

, , ∧ , ,

, , , , ,

41

EECS 144/244, UC Berkeley: 81

Example-guided synthesis

In general, for n positive examples and k hole variables:

We turned universal quantification into finite conjunction!

, , … , , ,

EECS 144/244, UC Berkeley: 82

Example-guided synthesis

What if solver finds this formula unsatisfiable ?

Unsatisfiable => no program exists!

This is sound: if no program exists that works even in this
finite set of examples, we cannot hope to find a program
that works for all examples.

, , … , , ,

42

EECS 144/244, UC Berkeley: 83

Example-guided synthesis

What if solver finds this formula satisfiable ?

Satisfiable => , , … ,) is only a candidate.

It still needs to be verified for all I/O pairs.

We can again use the solver for that!

, , … , , ,

EECS 144/244, UC Berkeley: 84

Example-guided synthesis

Satisfiable => , , … ,) is only a candidate.

Verify it by checking satisfiability of

If formula is unsatisfiable then we are done!

What if formula is satisfiable?

Our candidate is wrong. We get a counter-example:

What then?

, , … , , ,

∧ , , … , , , ∧ ,
These are now fixed

∗, ∗

43

EECS 144/244, UC Berkeley: 85

Adding negative examples to the synthesizer’s
inputs

In general, for n positive examples, m negative
examples, and k hole variables:

Alternative: the user could provide the correct output for
the counter-example input, or we could use a
reference (correct and deterministic) program.

, , … , , , ∧ , , … , , ∗, ∗

EECS 144/244, UC Berkeley: 86

Counter-example guided synthesis

Synthesizer
(may also use solver internally)

Verifier
(e.g., SMT solver)

candidate program,
e.g., formula , , … ,)

spec,
e.g., pre, post

OK

found correct
program!

Not OK
counter-example

∗, ∗)

fail succeed

no program
exists!

program skeleton,
initial set of
examples

44

EECS 144/244, UC Berkeley: 87

References

1. Solar-Lezama. Program sketching. STTT Vol 15, Issue 5-6, Oct 2013.

2. Alur, Bodik, et al. Syntax-Guided Synthesis. FMCAD 2013.

3. International Journal on Software Tools for Technology Transfer, Special
Issue on Synthesis, Volume 15, Issue 5-6, October 2013.

4. Course by Ras Bodik and Emina Torlak. CS294 – Program Synthesis for
Everyone. http://www.cs.berkeley.edu/~bodik/cs294fa12

