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From verification to synthesis

Verification:

first write program (or model of a system), then specify 
formal properties, then check correctness.

Synthesis:

first specify formal properties, then let synthesizer 
automatically generate a correct program.

Put another way:

from imperative (how) to declarative (what) design;

“raising the level of abstraction”.
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What is synthesis?

Roughly:

Many different variants, depending on what is P, φ, and 
how search is done.

Very old topic (Church, 1960s) recently rejuvenated.

∃ܲ: :ݔ∀ ߮ሺݔ, ܲ ݔ ሻ
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Program synthesis and proofs

From 2nd order formula

to 1st order formula

Synthesizing program P can be done by proving 
constructively that the above formula is valid.

Deductive program synthesis.

∃ܲ: :ݔ∀ ߮ሺݔ, ܲ ݔ ሻ

:ݔ∀ :ݕ∃ ߮ሺݔ, ሻݕ
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Concept Language
 Programs

• Straight-line programs

 Automata

 Queries

 Sequences

User Intent
 Logic, Natural Language

 Examples, Demonstrations/Traces

Search Technique
 SAT/SMT solvers (Formal Methods)

 A*-style goal-directed search  (AI)

 Version space algebras (Machine Learning)

Dimensions in Synthesis (Gulwani)

PPDP 2010: “Dimensions in Program Synthesis”, Gulwani.

(Application)

(Ambiguity)

(Algorithm)

Also: logic synthesis
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Compilers vs. Synthesizers (Gulwani)

Dimension Compilers Synthesizers

Concept 
Language

Executable Program Variety of concepts: Program,
Automata, Query, Sequence

User Intent Structured language Variety/mixed form of 
constraints: logic, examples, 
traces

Search 
Technique

Syntax-directed
translation (No new 
algorithmic insights)

Uses some kind of search 
(Discovers new algorithmic 
insights)
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MOTIVATING EXAMPLE

EECS 144/244, UC Berkeley: 8

Designing controllers can be tricky and time 
consuming
Example: Electrical Power Generation and Distribution 

System (EPS) of a modern aircraft

Thanks to:
Pierluigi Nuzzo
Antonio Iannopollo
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Designing controllers can be tricky and time 
consuming
Example: EPS requirements (in English)

Assumptions:

Guarantees:

EECS 144/244, UC Berkeley: 10

Designing controllers can be tricky and time 
consuming
Example: EPS requirements (in English) – zooming in
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Designing controllers can be tricky and time 
consuming
Example: EPS “hand-written” controller
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Designing controllers can be tricky and time 
consuming
Example: EPS “hand-written” controller – zooming in
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Designing controllers can be tricky and time 
consuming
Example: EPS “hand-written” controller

Design time ~ 1 week [Nuzzo]  (but have to verify also)

For a real controller, it could be months [e.g., robotic 
controllers, Willow Garage]

Can design

time be

improved?

EECS 144/244, UC Berkeley: 14

Declarative specification of controllers

At the outset the controller is just a box with inputs and 
outputs:
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Declarative specification of controllers

At the outset the controller is just a box with inputs and 
outputs:

Example: EPS controller

EECS 144/244, UC Berkeley: 16

Declarative specification of controllers

At the outset the controller is just a box with inputs and 
outputs:

We can specify the input-output behavior of the controller 
in a high-level language, e.g., in temporal logic.
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Declarative specification of controllers

Example: LTL specification for EPS

~40 lines
#Assumptions
(gl_healthy & gr_healthy & al_healthy & ar_healthy)
[](gl_healthy | gr_healthy | al_healthy | ar_healthy)
[](!gl_healthy -> X(!gl_healthy) )
[](!gr_healthy -> X(!gr_healthy) )
[](!al_healthy -> X(!al_healthy) )
[](!ar_healthy -> X(!ar_healthy) )

#Guarantees
(!c1 & !c2 & !c3 & !c4 & !c5 & !c6 & !c7 & !c8 & !c9 & !c10 & !c11 & !c12 & !c13)
[](X(c7) & X(c8) & X(c11) & X(c12) & X(c13))

[](!(c2 & c3))
[](!(c1 & c5 & (al_healthy | ar_healthy)))
[](!(c4 & c6 & (al_healthy | ar_healthy)))
[]((X(gl_healthy) & X(gr_healthy) ) -> X(!c2) & X(!c3) & X(!c9) & X(!c10))
[]((X(!gl_healthy) & X(!gr_healthy) ) -> X(c9) & X(c10))

[](X(!gl_healthy)-> X(!c1) )
[](X(!gr_healthy)-> X(!c4) )
[](X(!al_healthy)-> X(!c2) )
[](X(!ar_healthy)-> X(!c3) )

[](X(gl_healthy) -> X(c1) )
[](X(gr_healthy) -> X(c4) )

…

#Guarantees
…

[](!gl_healthy -> X(c5))
[](!gr_healthy -> X(c6))

[]((X(gl_healthy)  & X(gr_healthy) ) -> (X(!c5) & X(!c6) ))

[]((X(!gl_healthy) & X(al_healthy)  & X(gr_healthy) ) -> ( X(c2) & X(c3)) )

[]((X(!gl_healthy)  & X(!gr_healthy)  & X(al_healthy)  & !c3 & !c2) -> X(c2) )

[]((X(al_healthy)  & c2) -> X(c2) )
[]((X(ar_healthy)  & c3) -> X(c3) )

[]((X(!gl_healthy) & X(!al_healthy)  & X(ar_healthy) & !c2) -> X(c3) )

[]((X(!gr_healthy) & X(!ar_healthy)  & X(al_healthy) & !c3) -> X(c2) )

[]((!gl_healthy & !al_healthy & !ar_healthy) -> X(c6) )

[]((!gr_healthy & !ar_healthy & !al_healthy) -> X(c5) )

EECS 144/244, UC Berkeley: 18

Declarative specification of controllers

Example: LTL specification for EPS

Close mapping from English to LTL:

[](gl_healthy | gr_healthy | al_healthy | ar_healthy)
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The controller synthesis problem

Given formula specification (e.g., in LTL) synthesize 
controller (e.g., FSM) which implements the 
specification (or state that such a controller does not 
exist).

EECS 144/244, UC Berkeley: 20

Automatic controller synthesis from declarative 
specifications
Example: controller for EPS synthesized from previous 

LTL spec using Tulip (Caltech) ~3k lines of Matlab
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Automatic controller synthesis from declarative 
specifications
Example: controller for EPS synthesized using Tulip 

(Caltech), ~40 states – zooming in

EECS 144/244, UC Berkeley: 22

Synthesis in these two lectures

Part 1: Controller synthesis and game solving.

Part 2: Example-guided and syntax-guided synthesis.



12

EECS 144/244, UC Berkeley: 23

CONTROLLER SYNTHESIS

EECS 144/244, UC Berkeley: 24

Declarative specification of controllers

At the outset the controller is just a box with inputs and 
outputs:

We can specify the input-output behavior of the controller 
in a high-level language, e.g., in temporal logic.
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Controller synthesis (reactive synthesis)
[Pnueli-Rosner, POPL 1989]

Given interface of controller:

and given temporal logic formula φ over set of 
input/output variables,

synthesize a controller (= state machine) M, such that all
behaviors of M (for any sequence of inputs) satisfy φ.

⋮ ⋮
ଵ݌
௡݌ ௠ݍ

ଵݍ

Note: other notions of controller synthesis exist in the literature.
See “Bridging the gap” paper on the course web site for details.

EECS 144/244, UC Berkeley: 26

Examples

Consider controller interface:

and specifications

݌ ݍ

߮ଵ ൌ ݌ሺܩ → ሻݍܺ

߮ଶ ൌ ݌ሺܩ ↔ ሻݍܺ

߮ଷ ൌ ݍሺܩ ↔ ሻ݌ܺ



14

EECS 144/244, UC Berkeley: 27

Examples

Consider controller interface:

and specifications

݌ ݍ

߮ଵ ൌ ݌ሺܩ → ሻݍܺ

߮ଶ ൌ ݌ሺܩ ↔ ሻݍܺ

߮ଷ ൌ ݍሺܩ ↔ ሻ݌ܺ No solution: controller cannot 
foresee the future!

݁ݑݎݐ

ݍ

ݍ

݌

݌

̅݌

̅݌

തݍ
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Satisfiability vs. realizability

Satisfiability: exists some behavior that satisfies the 
specification. (In this behavior, we may choose both 
inputs and outputs as we wish.)

Realizability: exists controller that implements the 
specification. Must work for all input sequences, since 
inputs are uncontrollable.

Inherently different problems, also w.r.t. complexity: 

LTL satisfiability: PSPACE

LTL realizability: 2EXPTIME
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Controller synthesis algorithms: computing 
strategies in games

Solving safety games

Solving reachability games

Solving deterministic Büchi games (liveness)

Remarks on the general LTL synthesis problem

EECS 144/244, UC Berkeley: 30

Controller synthesis algorithms

Solving safety games

Solving reachability games

Solving deterministic Büchi games (liveness)

Remarks on the general LTL synthesis problem
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Safety automata

In some fortunate cases, the LTL specification can be 
translated to a safety automaton.

Example:

Automaton:

߮ ൌ ݌ሺܩ → ሻݍ

തݍ݌

̅݌ ൅ ݍ

“bad” state

EECS 144/244, UC Berkeley: 32

“Spreading” a safety automaton to a game
[Ehlers PhD thesis, 2013]

We need to separate the input moves from the output 
moves:

Automaton:

Game:

തݍ݌

̅݌ ൅ ݍ

݌

ݍ

•

•

̅݌݁ݑݎݐ
തݍ
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Safety games

Input (environment) states:

Output (controller) states:

Bad state:

Goal: find winning strategy = avoiding bad state

•

݌

ݍ

•

•

̅݌݁ݑݎݐ
തݍ

“them”

“us”

if we reach this
state we lose

EECS 144/244, UC Berkeley: 34

Solving safety games

1. Compute set of losing states, starting with Losing := {   };

2. If initial state in Losing, no strategy exists.

3. Otherwise, all remaining states are winning. Extract 
strategy from them by choosing outputs that avoid the 
losing states.

݌

ݍ

•

•

̅݌݁ݑݎݐ
തݍ
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Solving safety games

1. Compute set of losing states, starting with Losing := {   };
 repeat

• UncontrollablyLosing := { s | s has uncontrollable succ in Losing };

• ControllablyLosing := { s | all controllable succs of s are in Losing};

• Losing := Losing U UncontrollablyLosing U ControllablyLosing ;

 until Losing does not change;

݌

ݍ

•

•

̅݌݁ݑݎݐ
തݍ

EECS 144/244, UC Berkeley: 36

Solving safety games

1. Compute set of losing states, starting with Losing := {   };
 repeat

• UncontrollablyLosing := { s | s has uncontrollable succ in Losing };

• ControllablyLosing := { s | all controllable succs of s are in Losing};

• Losing := Losing U UncontrollablyLosing U ControllablyLosing ;

 until Losing does not change;

Losing•
•

UncontrollablyLosing

ControllablyLosing •

in1

in2

out1
out2

out3
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Solving safety games

• Extracting the strategy: “cut” controllable transitions in 
order to avoid losing states.

• Strategy is state-based (also called “positional”, or 
“memoryless”).

Losing•ControllablyWinning
out2

out1

EECS 144/244, UC Berkeley: 38

Controller synthesis algorithms

Solving safety games

Solving reachability games

Solving deterministic Büchi games (liveness)

Remarks on the general LTL synthesis problem
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Reachability games: dual of safety games

Reachability game: trying to reach a target state.

Observation: what is Losing for the safety player is 
Winning for the reachability player (and vice versa).

݌

ݍ

•

•

̅݌݁ݑݎݐ
തݍ
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Solving reachability games: direct algorithm

1. Compute set of Winning states;
 Winning := {    };

 repeat
• Winning := Winning U ForceNext(Winning);

 until Winning does not change;

• ForceNext(S) := { s | all uncontrollable succs of s are in S } 
U  { s | s has controllable succ in S }

Winning

•
•UncontrollablyWinning

ControllablyWinning •

in1

in2

out1

out2
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How to extract strategies in reachability games?

Similarly as for safety games:

Is strategy state-based?

Yes! 

Extract strategy from ForceNext(S): ensure you choose the 
right controllable transition that leads in winning state.

Winning

•
•UncontrollablyWinning

ControllablyWinning •

in1

in2

out1

out2

EECS 144/244, UC Berkeley: 42

How to extract strategies in reachability games?

Similarly as for safety games: BUT, a subtlety:

Need to fix successor the first time state is added in 
Winning.

•

•
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Controller synthesis algorithms

Solving safety games

Solving reachability games

Beyond safety and reachability games

Remarks on the general LTL synthesis problem

EECS 144/244, UC Berkeley: 44

What about other types of properties?

Bounded response specifications can be translated to 
safety automata/games:

Automaton:

߮ ൌ ݌ሺܩ → ሺݍ	ݎ݋	ݍܺ	ݎ݋	ݍܺܺሻሻ݌ ݍ

തݍ݌

̅݌ ൅ ݍ

തݍ തݍ

ݍ
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What about liveness properties?

What about unbounded response?

More interesting example:

߮ ൌ ݌ሺܩ → ݌ሻݍܨ ݍ

ଵ݌ ଵݍ
ଶ݌ଶݍ

߮ ൌ ܩ ଵ݌ → ଵݍܨ ܩ	&	 ଶ݌ → ଶݍܨ 	
ܩ	& ൓ሺݍଵ	&	ݍଶሻ

EECS 144/244, UC Berkeley: 46

Synthesis for general LTL specifications

Given LTL specification φ:

If φ can be translated to a deterministic Büchi automaton, 
then can extend the previous ideas to solving Büchi
games.

Otherwise, solution involves more advanced topics, such 
as tree automata. Will not be covered in this course.

Note: LTL cannot always be translated to deterministic 
Büchi automata.
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Büchi automata

Syntactically same as finite state automata:

But Büchi automata accept infinite words.

A run must visit an accepting state infinitely often.

ܣ ൌ ሺΣ, ܵ, ,଴ݏ ,ߜ ሻܨ

accepting 
states:
ܨ ⊆ ܵ

alphabet

states
initial
state

transition
function

EECS 144/244, UC Berkeley: 48

From LTL to Büchi automata

Consider unbounded response property:

Büchi automaton:

߮ ൌ ݌ሺܩ → ሻݍܨ

തݍ݌

̅݌ ൅ ݍ

ݍ

തݍ

accepting state
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From LTL to Büchi automata

Consider LTL formula:

Büchi automaton? (s.t. there exists an accepting run)

Is there a deterministic Büchi automaton for this spec?

No!

߮ ൌ ݍܩܨ

ݍ

݁ݑݎݐ ݍ

EECS 144/244, UC Berkeley: 50

Controller synthesis algorithms

Solving safety games

Solving reachability games

Solving deterministic Büchi games (liveness)

Remarks on the general LTL synthesis problem
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Spreading Büchi automata to Büchi games

Büchi automaton:

Büchi game:

തݍ݌

̅݌ ൅ ݍ

ݍ

തݍ

തݍ
•

݌ തݍ

ݍ

̅݌ •

•

݁ݑݎݐ

݁ݑݎݐ

ݍ
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Solving deterministic Büchi games

1. Compute set of RecurrentAccepting states = accepting 
states from which controller can force returning to an 
accepting state infinitely often.

2. Solve reachability game with target = RecurrentAccepting.

തݍ
•

݌ തݍ

ݍ

̅݌ •

•

݁ݑݎݐ

݁ݑݎݐ

ݍ
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Solving deterministic Büchi games

1. Compute set of RecurrentAccepting states = accepting 
states from which controller can force returning to an 
accepting state infinitely often.
 RecAcc := set of all accepting states;

 repeat
• Revisit := { };

• repeat
Revisit := Revisit U ForceNext(Revisit U RecAcc);

• until Revisit does not change;

• RecAcc := RecAcc ∩ Revisit;

 until set RecAcc does not change;

EECS 144/244, UC Berkeley: 54

Recall 

ForceNext(S) := { s | all uncontrollable succs of s are in S } 
U  { s | s has controllable succ in S }

S

•
•UncontrollablyWinning

ControllablyWinning •

in1

in2

out1

out2
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Solving deterministic Büchi games –
Example

 RecAcc := set of all accepting states;

 repeat
• Revisit := { };

• repeat
Revisit := Revisit U ForceNext(Revisit U RecAcc);

• until Revisit does not change;

• RecAcc := RecAcc ∩ Revisit;

 until set RecAcc does not change;

തݍ
•

݌ തݍ

ݍ

̅݌ •

•

݁ݑݎݐ

݁ݑݎݐ

ݍ

1

2

3
4

5
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Computing recurrent accepting states: a subtle 
relation with reachability games

1. Compute set of RecurrentAccepting states = accepting 
states from which controller can force returning to an 
accepting state infinitely often.
 RecAcc := set of all accepting states;

 repeat
• Revisit := { };

• repeat
Revisit := Revisit U ForceNext(Revisit U RecAcc);

• until Revisit does not change;

• RecAcc := RecAcc ∩ Revisit;

 until set RecAcc does not change;

(almost) a
reachability
game iteration
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Solving reachability games vs. computing Revisit

1. Compute set of Winning states:
 Winning := {    };

 repeat
• Winning := Winning U ForceNext(Winning);

 until Winning does not change;

2. Compute Revisit:
• Revisit := { };

• repeat
Revisit := Revisit U ForceNext(Revisit U RecAcc);

• until Revisit does not change;

What is the difference?
Does it matter?

EECS 144/244, UC Berkeley: 58

Solving deterministic Büchi games –
modified example

 RecAcc := set of all accepting states;

 repeat
• Revisit := { };

• repeat
Revisit := Revisit U ForceNext(Revisit U RecAcc);

• until Revisit does not change;

• RecAcc := RecAcc ∩ Revisit;

 until set RecAcc does not change;

തݍ
•

݌ തݍ

ݍ

̅݌ •

•

݁ݑݎݐ

݁ݑݎݐ
ݍ

1

2

3
4

5

݇݋ ݇݋
6
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How to extract strategies in deterministic Büchi
games?

Similarly as for reachability games:

Careful to choose the transition the first time state is 
added to S.

Is strategy state-based?

Yes! 

Extract strategy from ForceNext(S): ensure you choose the 
right controllable transition that leads in winning state.

S

•
•UncontrollablyWinning

ControllablyWinning •

in1

in2

out1

out2

EECS 144/244, UC Berkeley: 60

What about non-deterministic Büchi games?
Does same algorithm work?

Not quite:

algorithm sound

but incomplete.

[Ruediger Ehlers, 
PhD thesis, 2013]

Non-deterministic
Büchi game

Non-deterministic automaton for

ሺݎܨܩ ∧ ሻ݃ܨܩ ∨ ሺܩܨ൓ݎ ∧ ൓݃ሻܩܨ

input :	ݎ
݃ : output
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Controller synthesis algorithms

Solving safety games

Solving reachability games

Solving deterministic Büchi games (liveness)

Remarks on the general LTL synthesis problem

EECS 144/244, UC Berkeley: 62

Controller synthesis: EE vs. CS ?

CS: synthesize outputs to implement :

EE: synthesize inputs to stabilize a physical 
process/plant:

Not different: plant inputs = controller ouputs (and vice 
versa).

???
in out
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Can we capture plants in the CS synthesis 
problem?

CS: given plant P (say, a FSM), synthesize controller C, 

so that closed-loop system satisfies :

Can we reduce this problem to the standard LTL 
synthesis problem?

C
???

in out

P

EECS 144/244, UC Berkeley: 64

Remarks, assessment 

Despite some (mostly isolated) success stories, controller 
synthesis hasn’t really caught on yet in practice.

Why is that?
• Normal: things like that take time (c.f. model-checking)

• 2EXPTIME is a horrible (worst-case) complexity (remember: even 
linear is too expensive because of state explosion!)

• Tools still impractical

• Synthesis of real, complex systems from complete specs impractical 
(imagine full synthesis of complete Intel microchip from LTL specs …)

• Lack of good debugging (e.g., counter-examples)

• Need: better tools, better methods (incremental, interactive, …)

• Great opportunities for research!
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PROGRAM SYNTHESIS
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The “modern” approach to program synthesis

• Interactive:
• computer-aided programming

• programmer solves key problems (e.g., provides 
program skeleton), synthesizer fills in (boring or tedious) 
details (e.g., missing guards/assignments)

• Search-for-patterns based:
• synthesis = search among set of user-defined patterns

• Solver based:
• heavily uses verifiers like SAT and SMT solvers

• often in a counter-example guided loop

EECS 144/244, UC Berkeley: 68

Example: programming by sketching 
[Solar-Lezama, Bodik, et al.]
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Using SAT and SMT solvers for synthesis

Recall: what is synthesis?

Usually re-written as:

i.e., if input satisfies precondition, then output will satisfy 
postcondition.

∃ܲ: :ݔ∀ ߮ሺݔ, ܲ ݔ ሻ

∃ܲ: :ݔ∀ ሻݔሺ݁ݎ݌ → ,ݔሺݐݏ݋݌ ܲ ݔ ሻ

EECS 144/244, UC Berkeley: 70

Using SAT and SMT solvers for synthesis

Example of pre(), post():

i.e., the spec for max(x1,x2).

݁ݎ݌ ,1ݔ 2ݔ : ݎܾ݁݉ݑ݊		 1ݔ ∧ ݎܾ݁݉ݑ݊ 2ݔ

ݐݏ݋݌ ,1ݔ ,2ݔ ݕ : 1ݔ		 ൑ ݕ ∧ 2ݔ ൑ ݕ ∧ ሺ1ݔ ൌ 2ݔ	∨	ݕ ൌ (ݕ

∃ܲ: :ݔ∀ ሻݔሺ݁ݎ݌ → ,ݔሺݐݏ݋݌ ܲ ݔ ሻ
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First: using SAT and SMT solvers for verification

Suppose we already have a program P.

Then instead of checking whether P is correct

we can check whether P is wrong

i.e., we can check satisfiability of the formula

:ݔ∃ ሻݔሺ݁ݎ݌ ∧ ൓ݐݏ݋݌ሺݔ, ܲ ݔ ሻ

:ݔ∀ ሻݔሺ݁ݎ݌ → ,ݔሺݐݏ݋݌ ܲ ݔ ሻ

ሻݔሺ݁ݎ݌ ∧ ൓ݐݏ݋݌ሺݔ, ܲ ݔ ሻ
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Hold on: are programs formulas?

Consider a simple loop-free program:

Formula:

function P(int x) returns (real y)
{

int tmp := 0;
if (x >= 0) then {

tmp++;
y := tmp*x;

}
else

y := -x;
return y;

}

ܲ ,ݔ ݕ ൌ ሺݔ ൒ 0 ∧ ݕ ൌ ሻݔ ∨ ሺݔ ൏ 0 ∧ ݕ ൌ െݔሻ
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Hold on: are programs formulas?

What about real programs?

Loops, data structures, libraries, pointers, threads, …

Translation to formulas much harder, but verification tools 
are available that do this, constantly making progress.

We will assume we have a formula P(x,y) representing 
the program P: “y is the output of P for input x”.
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Back to using SAT and SMT solvers for verification

We can check satisfiability of the formula

or, writing P as predicate on both input and output 
variables:

Satisfiable => P is wrong: we get a counter-example (x,y)

Unsatisfiable => P is correct (for all x)

ሻݔሺ݁ݎ݌ ∧ ܲሺݔ, ሻݕ ∧ ൓ݐݏ݋݌ሺݔ, ሻݕ

ሻݔሺ݁ݎ݌ ∧ ൓ݐݏ݋݌ሺݔ, ܲ ݔ ሻ
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Using SAT and SMT solvers for synthesis

What can be done when we don’t have the program P ?

Hint: what if we have a finite/small number of candidate 
programs?

Iterate and search!

ሻݔሺ݁ݎ݌ ∧ ܲሺݔ, ሻݕ ∧ ൓ݐݏ݋݌ሺݔ, ሻݕ
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Programs with “holes”

Almost-complete programs:
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Programs with “holes”

What should we replace “??” with?

Patterns:

integer constants

linear expressions of the form ܽݔ ൅ ݕܾ ൅ ܿ where ݔ, ݕ
are variables in the program

…

Even with these restrictions, infinite set of candidates …

Search may take a long time or never terminate.

Can we do better?
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Asking the solver to find the program

Suppose our program has 1 hole, to be filled with an 
integer variable.

Then, the formula characterizing the program becomes

Can we use the solver to find the right ݄	?

Check satisfiability of 

ܲሺ݄, ,ݔ ሻݕ

,ݔ∀ :ݕ ሻݔሺ݁ݎ݌ ∧ ܲሺ݄, ,ݔ ሻݕ → ,ݔሺݐݏ݋݌ ሻݕ

Free variable: solver 
must find right value
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Problem: universal quantification …

Today’s solvers check satisfiability of quantifier-free 
formulas (mostly).

What can we do about that?

Hint: what if we have a finite number of positive
examples? i.e., I/O pairs ሺݔ, ሻݕ satisfying ݁ݎ݌ሺݔሻ ∧
,ݔሺݐݏ݋݌ .ሻݕ

,ݔ∀ :ݕ ሻݔሺ݁ݎ݌ ∧ ܲሺ݄, ,ݔ ሻݕ → ,ݔሺݐݏ݋݌ ሻݕ
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Example-guided synthesis

Suppose we have a finite number of positive examples, 
say 2: ݔଵ, ଵݕ , ሺݔଶ, .ଶሻݕ

That is: we know that these hold:

So it suffices to check satisfiability of

ܲሺ݄, ,ଵݔ ଵሻݕ ∧ ܲሺ݄, ,ଶݔ ଶሻݕ

݁ݎ݌ ଵݔ , ݁ݎ݌ ଶݔ , ݐݏ݋݌ ,ଵݔ ଵݕ , ,ଶݔሺݐݏ݋݌ ଶሻݕ
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Example-guided synthesis

In general, for n positive examples and k hole variables:

We turned universal quantification into finite conjunction! 

ሥܲሺ݄ଵ, ݄ଶ, … , ݄௞, ,௜ݔ  ௜ሻݕ

௡

௜ୀଵ
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Example-guided synthesis

What if solver finds this formula unsatisfiable ?

Unsatisfiable => no program exists!

This is sound: if no program exists that works even in this 
finite set of examples, we cannot hope to find a program 
that works for all examples.

ሥܲሺ݄ଵ, ݄ଶ, … , ݄௞, ,௜ݔ  ௜ሻݕ

௡

௜ୀଵ
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Example-guided synthesis

What if solver finds this formula satisfiable ?

Satisfiable => ܲሺ݄ଵ, ݄ଶ, … , ݄௞) is only a candidate. 

It still needs to be verified for all I/O pairs.

We can again use the solver for that!

ሥܲሺ݄ଵ, ݄ଶ, … , ݄௞, ,௜ݔ  ௜ሻݕ

௡

௜ୀଵ
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Example-guided synthesis

Satisfiable => ܲሺ݄ଵ, ݄ଶ, … , ݄௞) is only a candidate.

Verify it by checking satisfiability of

If formula is unsatisfiable then we are done!

What if formula is satisfiable?

Our candidate is wrong. We get a counter-example:

What then?

ሥܲሺ݄ଵ, ݄ଶ, … , ݄௞, ,௜ݔ  ௜ሻݕ

௡

௜ୀଵ

ሻݔሺ݁ݎ݌ ∧ ܲሺ݄ଵ, ݄ଶ, … , ݄௞, ,ݔ ሻݕ ∧ ൓ݐݏ݋݌ሺݔ, ሻݕ
These are now fixed

ሺݔ∗, ሻ∗ݕ
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Adding negative examples to the synthesizer’s 
inputs

In general, for n positive examples, m negative 
examples, and k hole variables:

Alternative: the user could provide the correct output for 
the counter-example input, or we could use a 
reference (correct and deterministic) program.

ሥܲሺ݄ଵ, ݄ଶ, … , ݄௞, ,௜ݔ  ௜ሻݕ

௡

௜ୀଵ

∧ሥ൓ܲሺ݄ଵ, ݄ଶ, … , ݄௞, ௜ݔ
∗, ௜ݕ

∗ሻ 

௠

௜ୀଵ
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Counter-example guided synthesis

Synthesizer
(may also use solver internally)

Verifier
(e.g., SMT solver)

candidate program, 
e.g., formula ܲሺ݄ଵ, ݄ଶ, … , ݄௞)

spec, 
e.g., pre, post

OK

found correct 
program!

Not OK
counter-example

ሺݔ௜
∗, ௜ݕ

∗) 

fail succeed

no program
exists!

program skeleton,
initial set of 
examples
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