Fundamental Algorithms
for System Modeling,
Analysis, and Optimization

Edward A. Lee, Jaijeet Roychowdhury,

Sanjit A. Seshia

UC Berkeley
EECS 244 Fall 2016
Lecturer: Yu-Yun Dai

Copyright © 2010-date, E. A. Lee, J. Roychowdhury,
S. A. Seshia, All rights reserved

Boolean Satisfiability (SAT) Solving

The Boolean Satisfiability Problem
(SAT)

» Given:
A Boolean formula F(X;, X5, X3, ..., X)

 Can F evaluate to 1 (true)?
— Is F satisfiable?

— If yes, return values to x;'s (satisfying
assignment) that make F true

Why Is SAT important?

* Theoretical importance:
— First NP-complete problem (Cook, 1971)

* Many practical applications:
— Model Checking
— Automatic Test Pattern Generation
— Combinational Equivalence Checking
— Planning in Al
— Automated Theorem Proving
— Software Verification

An Example

* Inputs to SAT solvers are usually
represented in CNF

(@a+b+c)(@a+b +c)(a+tb +c)(@ +b+c)

An Example

* Inputs to SAT solvers are usually
represented in CNF

(a+tb+c)(@+b +c)(a+tb +c)(@ +b+c)

Why CNF?

Why CNF?

 |Input-related reason
— Can transform from circuit to CNF in linear time &
space (HOW?)
« Solver-related: Most SAT solver variants can
exploit CNF
— Easy to detect a conflict

— Easy to remember partial assignments that don't work
(just add ‘conflict’ clauses)

— Other “ease of representation” points?

* Any reasons why CNF might NOT be a good
choice?

Complexity of k-SAT

* A SAT problem with input in CNF with at
most K literals in each clause

« Complexity for non-trivial values of k:
—2-SAT: InP
— 3-SAT: NP-complete
— > 3-SAT: ?

Worst-Case
Complexity

Beyond Worst-Case Complexity

* What we really care about is “typical-case”
complexity

* But how can one measure “typical-case™?

* Two approaches:

— Is your problem a restricted form of 3-SAT?
That might be polynomial-time solvable

— Experiment with (random) SAT instances and
see how the solver run-time varies with

formula parameters (#vars, #clauses, ...)

10

Special Cases of 3-SAT that are

polynomial-time solvable

* Obvious specialization: 2-SAT

— T. Larrabee observed that many clauses in
ATPG tend to be 2-CNF

* Another useful class: Horn-SAT
— A clause is a Horn clause if at most one literal
IS positive
— If all clauses are Horn, then problem is Horn-
SAT

— E.g. Application:- Checking that one finite-
state system refines (Implements) another

11

Phase Transitions in k-SAT

« Consider a fixed-length clause model

— k-SAT means that each clause contains
exactly k literals

* Let SAT problem comprise m clauses and
n variables

— Randomly generate the problem for fixed k
and varying m and n

* Question: How does the problem hardness
vary with m/n ?

12

3-SAT Hardness

T]
Ratio of Clauses-to-Variables m/n

AS n increases
hardness
transition

grows sharper

13

Transition
atm/n'4.3

Ratio of Clauses-to-Variables

Miichall, Sslman, and Levasgua 1351

m/n

14

Threshold Conjecture

* For every k, there exists a c* such that
— For m/n <c*, as n > o, problem is satisfiable
with probability 1
— Form/n >c*, as n - o, problem is
unsatisfiable with probability 1

» Conjecture proved true for k=2 and c*=1

 For k=3, current status Is that c* is In the
range 3.42 — 4.51

15

The (2+p)-SAT Model

* We know:
—2-SATiIsIinP
— 3-SAT isin NP
* Problems are (typically) a mix of binary
and ternary clauses
—Letp € {0,1}

— Let problem comprise (1-p) fraction of binary
clauses and p of ternary

— So-called (2+p)-SAT problem

16

Experimentation with random
(2+p)-SAT

* Whenp <-~0.41
— Problem behaves like 2-SAT
— Linear scaling

* When p >~0.42

— Problem behaves like 3-SAT
— Exponential scaling

* Nice observations, but don't help us
predict behavior of problems in practice

17

Backbones and Backdoors

 Backbone [Parkes; Monasson et al.]

— Subset of literals that must be true in every satisfying
assignment (if one exists)

— Empirically related to hardness of problems

 Backdoor [wiliams, Gomes, Selman]

— Subset of variables such that once you've given those
a suitable assignment (if one exists), the rest of the
problem is poly-time solvable

— Also empirically related to hardness

* But no easy way to find such backbones /
backdoors! ®

18

Circuit to CNF

* Introduce one variable per circuit vertex

— formulate the circuit as a conjunction of
constraints imposed on the vertex values by
the gates

— size of formula i1s linear In the size of the
circuit
x1 x4

x2
x6

x3

XS5
19

SAT-Based Model Checking

X=(X1,X5,--+,Xp)
—_—

S=(S4,S5;---,S;)
>

Y:(y1’y2 """ yn)

N

 Bounded model checking

M(X,Y,S,S,,8,):
X: Inputs
Y: Outputs
S: Current State
Sy: Initial State(s)
5. X~ S — S (next state function)
L X~ S =Y (output function)

 |nterpolation and SAT-based Model Checking

* IC3/PDR

20

Constraint Satisfaction Problems

* Find feasible assignments for a
homogeneous collection of finite
constraints(limitations) over variables

« Examples:
— Graph coloring problem
— Eight queens puzzle
— Many other logic puzzles...

21

A Classification of SAT Algorithms

« Davis-Putnam (DP)
— Based on resolution

« Davis-Logemann-Loveland (DLL/DPLL)

— Search-based
— Basis for current most successful solvers

« Stalmarck’s algorithm
— More of a “breadth first” search, proprietary algorithm

« Stochastic search
— Local search, hill climbing, etc.
— Unable to prove unsatisfiability (incomplete)

22

Circult SAT

Search for consistent assignment to entire
cone of requested vertex by systematically
trying all combinations

Implication
Learning

| |
Backtracking o D}_QSJLD”

23

Resolution

 Two CNF clauses that contain a variable x
IN opposite phases (polarities) imply a new
CNF clause that contains all literals except
X and X’

(@a+b)(@ +c)=(a+b)a +c)b+c)
 Why Is this true?

24

The Davis-Putnam Algorithm

* [teratively select a variable x to perform
resolution on

* Retain only the newly added clauses and
the ones not containing x

« Termination: You elther
— Derive the empty clause (conclude UNSAT)
— Or all variables have been selected

25

Resolution Example

(a b+ c){b)y ¢’ +f’]@+e a+@}[a+@] a’+c)(a +c)
\A \\./” ~ Ig'f f

“=.d'
{ﬂ*@"el@*j”’ {®+c}{®_+n*}
(a+e+ @{?ﬁ
F) e
SAT ()
UNSAT

How many clauses can you end up with?
(at any iteration)

26

A Classification of SAT Algorithms

« Davis-Putnam (DP)
— Based on resolution

« Davis-Logemann-Loveland (DLL/DPLL)

— Search-based
— Basis for current most successful solvers

« Stalmarck’s algorithm
— More of a “breadth first” search, proprietary algorithm

« Stochastic search
— Local search, hill climbing, etc.
— Unable to prove unsatisfiability (incomplete)

27

DLL Algorithm: General Ideas

* |teratively set variables until
— you find a satisfying assignment (done!)
— you reach a conflict (backtrack and try different value)

e Two main rules:

— Unit Literal Rule: If an unsatisfied clause has all but 1
literal set to O, the remaining literal must be setto 1
(a+b+c)(d+e)(a+c +d)

— Conflict Rule: If all literals in a clause have been set
to 0, the formula is unsatisfiable along the current
assignment path

28

Search Tree

DLL Example 1

e ASsume
— decision order Is a->b->c->d
—assign 1 first and then O

 Show the decision tree and
implication graph.

(a+b+cC)
(a+ b+ -C)
(ma+ b+ -C)
(a+c+d)
(ra+c+d)
(—a + c + d)
(mb + =Cc + —d)
(-b + =Cc + d)

30

DLL Algorithm Pseudo-code

DLL_iterative()
{

Preprocess status = preprocess();
if (status!=UNKNOWN)

return status;
while(1) {
Branch decide _next_branch():
while (true)
{
status = deduce():
if (status == CONFLICT)

Propagate {
implications of that blevel = analyze_conflict();
branch and deal if (blevel < 0)
with conflicts return UNSATISFIABLE;
else
backtrack(blevel);

ks

else if (status == SATISFIAELE)
return SATISFIABLE;

else break;

DLL Algorithm Pseudo-code

DLL_iterative() Main StepSZ

{

status = preprocess();

Pre-processing

if (status!=UNKNOWN)
return status;

while(1) {
decide_next_branch(); Branching
while (true)
{
gtatus = deduce() ; Un|t propagation
if (status == CONFLICT))
{ (apply unit rule)
blevel = analyze_conflict();
if (blevel < 0)
return UI'JSATISFIABLE;\ConﬂiCt AnaIySiS
else .
backtrack(blevel) / & BathraCklng
+

else if (status == SATISFIAELE)
return SATISFIABLE;
else break;

32

Pre-processing. Pure Literal Rule

* |f a variable appears in only one phase
throughout the problem, then you can set
the corresponding literal to 1

— E.qg. if we only see a’ in the CNF, seta’ to 1
(ato 0)

 Why?

33

DLL Algorithm Pseudo-code

DLL_iterative() Main StepSZ

{

status = preprocess();

Pre-processing

if (status!=UNKNOWN)
return status;

while(1) {
decide_next_branch(); Branching
while (true)
{
gtatus = deduce() ; Un|t propagation
if (status == CONFLICT))
{ (apply unit rule)
blevel = analyze_conflict();
if (blevel < 0)
return UI'JSATISFIABLE;\C()nﬂiCt Analysis
else .
backtrack(blevel) / & BathraCklng
+

else if (status == SATISFIAELE)
return SATISFIABLE;
else break;

34

Conflict-based Learning

Important detall for cut selection:

— During implication processing, record decision level
for each implication

— At conflict, select earliest cut such that exactly one
node of the implication graph lies on current decision
level

 Either decision variable itself

* Or UIP (“unique implication point”) that represents a
dominator node for current decision level in conflict graph

By selecting such cut, implication processing
will automatically flip decision variable (or UIP
variable) to its complementary value

35

Conflicts & Backtracking

» Chronological Backtracking
— Proposed in original DLL paper

— Backtrack to highest (largest) decision level
that has not been tried with both values

* But does this decision level have to be the reason
for the conflict?

36

Non-Chronological Backtracking

Jump back to a decision level “higher” than the
last one

— The second highest decision level in the learned
clause.

Also combined with “conflict-driven learning”
— Keep track of the reason for the conflict

Proposed by Marques-Silva and Sakallah in
1996

— Similar work by Bayardo and Schrag in ‘97

37

DLL Example 2

e ASsume
— decision order Is a->b->c->d
—assign 1 first and then O

 How to derive learned
clauses from the implication
graph?

(@+b+c)
(@+b+-c)
(—ra+ b+ -C)
(a+c+d)
(ra+c+d)
(—ra+c+-d)
(-b + =Cc + d)
(b +-c +d)

38

DLL Algorithm Pseudo-code

DLL_iterative() Main StepSZ

{

status = preprocess();

Pre-processing

if (status!=UNKNOWN)
return status;

while(1) {
decide_next_branch(); Branching
while (true)
{
gtatus = deduce() ; Un|t propagation
if (status == CONFLICT))
{ (apply unit rule)
blevel = analyze_conflict();
if (blevel < 0)
return UI'JSATISFIABLE;\ConﬂiCt AnaIySiS
else .
backtrack(blevel) / & BathraCklng
+

else if (status == SATISFIAELE)
return SATISFIABLE;
else break;

39

Branching

* Which variable (literal) to branch on (set)?
* This is determined by a “decision heuristic”

* What makes a “decision heuristic” good?

40

Decision Heuristic Desiderata

* If the problem Is satisfiable
— Find a short partial satisfying assignment

— GREEDY: If setting a literal will satisfy many
clauses, it might be a good choice

* If the problem Is unsatisfiable

— Reach conflicts quickly (rules out bigger
chunks of the search space)

— Similar to above: need to find a short partial
falsifying assignment

 Also: Heuristic must be cheap to compute!

41

Sample Decision Heuristics

 RAND
— Pick a literal to set at random
— What's good about this? What's not?

* Dynamic Largest Individual Sum (DLIS)

— Let cnt(l) = number of occurrences of literal |
In unsatisfied clauses

— Set the | with highest cnt(l)
— What's good about this heuristic?
— Any shortcomings?

42

DLIS: A Typical Old-Style Heuristic

« Advantages
— Simple to state and intuitive
— Targeted towards satisfying many clauses
— Dynamic: Based on current search state

« Disadvantages
— Very expensive!

— Each time a literal is set, need to update counts for all
other literals that appear in those clauses

— Similar thing during backtracking (unsetting literals)
« Even though it is dynamic, it is “Markovian” —
somewhat static

— Is based on current state, without any knowledge of
the search path to that state

43

VSIDS: The Chaff SAT solver

heuristic

« Variable State Independent Decaying Sum
— For each literal I, maintain a VSIDS score
— Initially: set to cnt(l)

— Increment score by 1 each time it appears in an added
(conflict) clause

— Divide all scores by a constant (2) periodically (every N
backtracks)
« Advantages:
— Cheap: Why?
— Dynamic: Based on search history

— Steers search towards variables that are common
reasons for conflicts (and hence need to be set
differently)

a4

Key Ideas so Far

Data structures: Implication graph

Conflict Analysis: Learn (using cuts in implication
graph) and use non-chronological backtracking

Decision heuristic: must be dynamic, low
overhead, quick to conflict/solution

Principle: Keep #(memory accesses)/step low

— A step = a primitive operation for SAT solving, such
as a branch

45

DLL Algorithm Pseudo-code

DLL_iterative() Main StepSZ

{

status = preprocess();

Pre-processing

if (status!=UNKNOWN)
return status;

while(1) {
decide_next_branch(); Branching
while (true)
{
gtatus = deduce () ; Un|t propagation
if (status == CONFLICT)]
{ (apply unit rule)
blevel = analyze_conflict();
if (blevel < 0)
return UI'JSATISFIABLE;\ConﬂiCt AnaIySiS
else .
backtrack(blevel) / & BathraCklng
+

else if (status == SATISFIAELE)
return SATISFIABLE;
else break;

46

Unit Propagation

* Also called Boolean constraint propagation
(BCP)

« Set a literal and propagate its implications
— Find all clauses that become unit clauses
— Detect conflicts

« Backtracking is the reverse of BCP
— Need to unset a literal and ‘rollback’

* In practice: Most of solver time Is spent In
BCP

— Must optimize!

47

BCP

» Suppose literal | is set. How much time will
It take to propagate just that assignment?

« How do we check If a clause has become
a unit clause?

« How do we know if there’s a conflict?

48

* Introductory BCP slides

49

Detecting when a clause becomes
unit

Watch only two literals per clause. Why
does this work?

If one of the watched literals Is assigned 0,
what should we do?

A clause has become unit If

— Literal assigned O must continue to be
watched, other watched literal unassigned

What If other watched literal is 07
What Iif a watched literal is assigned 1?

50

* Lintao’s BCP example

51

2-literal Watching

 In a L-literal clause, L > 3, which 2 literals
should we watch?

52

Comparison:
Nalve 2-counters/clause vs 2-literal watching

 When a literal is set to 1,
update counters for all
clauses it appears in

« Same when literal is set

* No need for update

Update watched literal

to 0

« If aliteral is set, need to If aliteral is set to 0, need
update each clause the to update only each
variable appears in clause it is watched in

* During backtrack, must No updates needed
update counters during backtrack! (why?)

Overall effect: Fewer clauses accesses in 2-lit -

ZChaff Relative Cache Performance

Tdlx_ ¢ mc ex bp f

Hanoid

Mum Access

Miss Hate

Mum Access

Miss Hate

Z-Chaff

24,029 356

4 75%

364,782 257

5.38%

1,659 877

4.63%

30,396 519

11.65%

SATO
(-g100)

188,352 975

36.76%

465,160,957

41 76%

79,422 894

9.74%

202,495 679

16.77%

Grasp

The programs are compiled with —03 using g++ 2 8.1(for GERASP and Chaff) or gec 2

415,572,501

32.89%

g R T T

) k4 1
LS EN R o

153,490,555

50.25%

335,713,542

2 8.1 (for Sato3 2.1)

on Sun 05 4.1.2 Trace was generated with QPT quick tracing and profiling tool. Trace was processed
with dinerolV, the memory configuration 1s similar to a Pentium ITI processor:
L1: 16K Data, 16K Instruction, L2: 256k Unified. Both have 32 byte cache line, 4 way set associativity.

54

Key Ideas in Modern DLL SAT
Solving

Data structures: Implication graph

Conflict Analysis: Learn (using cuts in implication
graph) and use non-chronological backtracking

Decision heuristic: must be dynamic, low
overhead, quick to conflict/solution

Unit propagation (BCP): 2-literal watching helps
keep memory accesses down

Principle: Keep #(memory accesses)/step low

— A step - a primitive operation for SAT solving, such
as a branch

55

Other Techniques

« Random Restarts

— Periodically throw away current decision stack and
start from the beginning
« Why will this change the search on restart?

— Used in most modern SAT solvers

 Clause deletion

— Conflict clauses take up memory
 What's the worst-case blow-up?
— Delete periodically based on some heuristic (“age”,
length, etc.)
* Preprocessing/“Inprocessing” and Rewriting
techniques give a lot of performance
Improvements in recent solvers

56

