
Fundamental Algorithms 

for System Modeling, 

Analysis, and Optimization

Edward A. Lee, Jaijeet Roychowdhury, 
Sanjit A. Seshia
UC Berkeley

EECS 244

Fall 2016

Lecturer: Yu-Yun Dai

Copyright ©  2010-date, E. A. Lee, J. Roychowdhury,             
S. A. Seshia, All rights reserved

Timing Analysis

Thanks to Kurt Keutzer for several slides



Why Does Timing Analysis Matter?

• (Clock) Speed is one of the major performance metrics for digital circuits

Timing Analysis = the process of verifying that a chip meets its speed 
requirement

• Determine fastest permissible clock speed (e.g. 1 GHz) by determining 
delay of longest path from register to register (e.g. 1ns.)

LATC
H

ES

LATC
H

ES

Common Clock

Combinational Circuit
(No feedback loops)



Must find:

Longest path in the control-flow 

graph (CFG)

Path Space in Program



4

Saurabh Srivastava et al., 
ACT project, UC Berkeley

Enzymatic Pathway Synthesis 
(Synthetic Biology)



Timing Analysis for Circuits

• Consider a signal in a clocked design:
• The value varies between one (high-voltage) and zero (low-voltage)

• Changes can occur at different times in each cycle
• Time required for change depends on input patterns

• May not change at all in some cycles

• May make multiple changes before settling to a final value



Static Timing Analysis

• “Static” means we are not doing simulation (dynamic)

• Consider the worst case
• Assume that signal becomes stable at latest possible time

• Assume signal becomes unstable at the earliest possible time

Real circuits are 
made from gates 

made out of 
transistors…….



Timing Analysis: Basic Model

• Set up/Cycle time: Does data always reach a stable value at all latch 
inputs in time for the clock to capture it?

• Look at late mode timing, or longest path

• Hold time: Does data always stay stable at all latch inputs long 
enough after the clock to get stored?

• Determine this by looking at early mode timing, or shortest path

Tclock1

cycle time

maxT T

Tclock1

data

setup time

max setupT T T 

Tclock1

data

hold time

min hold skewT T T 



Timing Analysis: Topological and Functional

• Do we worry about “gate function”?
• Logical timing analysis: YES, We care “false path”

• Topological timing analysis: NO, we only worry about the delay through the 
paths => overestimate



We will Learn

• False path v.s. True path
• Static Sensitization

• Static Co-sensitization

• Algorithms to find the longest path in a DAG
• Incremental longest path in a DAG

• Top k longest paths in a DAG

• Sequential synthesis: Retiming*



False Paths  (consider Transition Mode)

Graph model implies path of length 6

A path is false if it cannot be responsible for the delay of a circuit



False Paths

Graph model implies path of length 6

A path is false if it cannot be responsible for the delay of a circuit



False vs. True Paths

• TRUE path = one that can be responsible for the delay of a circuit

• Need techniques to find whether a path is TRUE or FALSE



The Fixed Delay Model: Constant Delay for Each Gate (or 
Wire)



Paradoxical Behavior with the Transition 
Model?



Problems with Fixed Delay + Transition Model

1. Transition model can be tricky to reason about

2. Fixed gate delays are unrealistic, due to manufacturing process 
variations 

• More realistic delay model: Lower and upper bounds

• Perform timing analysis for a whole family of circuits that share the 
same lower/upper bounds



Fixed Delays   Bounded Delays

Want algorithms that report the critical path delay

of the slowest circuit in the circuit family

Delay of 6 for the above circuit for transition model

(longest path that can propagate a transition)



Floating-Mode Delay Model

Input transition  Single input vector condition

Pessimistic, but easier to compute



Floating-Mode Delay Model
Assume an input pair <v1, v2> has been applied, but we only 

look at v2 -- i.e. node values are unknown until set by v2

(pessimistic because we assume any v1 can be adversarially 

selected, to reason about long paths)

Assume the 1 at the input of the AND arrives before the 

0 (even if in reality it arrives later and the gate output 

stays at 0 throughout, and no path is sensitized).



Roadmap for rest of lecture

• Consider conditions under which paths are TRUE or 
FALSE under the floating-mode delay model with fixed 
delays

• + under floating-mode model, fixed and bounded delays yield 
same worst-case circuit delay (for same upper bounds)

• + worst-case delay under floating-mode model is upper bound on 
that under the transition model



Controlling and Non-Controlling Values

• A controlling value at a gate input is the value that determines the 
output value of that gate irrespective of the other input value.

• (the output value is called a controlled value)

• A controlling value for an AND gate is 0 and for an OR gate is 1. (The 
controlled values are 0 and 1 resp.)

• A non-controlling value for an AND gate is 1 and for an OR gate is 0.

• What about NAND and NOR gates?



Input vector 100X statically sensitizes red path

Static Sensitization
Definition: A path is statically sensitized by a vector V, if 

along each gate on the path, if the gate output is a 

controlled value, the input corresponding to the path is the 

only input with a controlling value



Input vector 100X statically sensitizes red path

Static Sensitization

Static sensitization is sufficient for a path to

be responsible for the delay of a circuit

WHY?



Is this path statically sensitizable?

Definition: A path is statically sensitized by a vector V, if along each gate 

on the path, if the gate output is a controlling value, the input 

corresponding to the path is the only input with a controlling value



Is this path statically sensitizable?

No, red path is NOT statically sensitizable  (work this out)



More on Static Sensitization

Are paths a,d,f,g  and   b,d,f,g   statically sensitizable?

Are they true paths?



Static Sensitization is too strong

A true path (one that is responsible for delay of a circuit)

need not be statically sensitizable

Paths a,d,f,g  and   b,d,f,g  are NOT statically sensitizable.

But they are TRUE paths.



Static Co-sensitization
Definition: A path is statically co-sensitized by a

vector V, if the input corresponding to the path

presents a controlling value at each gate along

the path whose output is a controlled value.

Not necessarily the ONLY controlling value



Paths a,d,f,g  and   b,d,f,g  are statically co-sensitizable

Static Co-sensitization
Definition: A path is statically co-sensitized by a

vector V, if the input corresponding to the path

presents a controlling value at each gate along

the path whose output is a controlling value.

Not necessarily the ONLY controlling value



Static Co-sensitization and Delay
Static co-sensitization is necessary for a path to

be responsible for the delay of a circuit. (WHY?)

Is it sufficient?



Static Co-sensitization and Delay
Static co-sensitization is necessary for a path to

be responsible for the delay of a circuit

But NOT sufficient

Path of length 6 is statically co-sensitized

Delay of circuit is 5 (as observed earlier)



Summary

Static sensitization (SS) sufficient for true path, but not 

necessary

Static co-sensitization (SC) necessary for true path, but 

not sufficient

Determining whether a path is SS/SC can be formulated 

as a SAT problem



Modeling Timing in a Combinational 
Circuit

• Arrival time 
in green A

C

B

f

2

2

2

1

0

1

0

.20

.20

.20

.10

X

Y

Z

W

.15

.05

1

.05

Interconnect 

delay in 

red

Gate delay in 

blue

What’s the right mathematical 

object to use to represent this 

physical object? 



Modeling - 1

C

B

f

X

Y

W

0

.05.1

1

.2

A

.15
.20

.20

1
2

2

2

Z

• Use a labeled 
directed graph 

• G = <V,E>

• Vertices represent 
gates, primary 
inputs and primary 
outputs

• Edges represent 
wires

• Labels represent 
delays

• Now what do we do 
with this?

A

C

B

f

2

2

2

1

0

1

0

.20

.20

.20

.10

X

Y

Z

W

.15

.05

1

.05

0

0

1

s



Modeling - 2

C

B

f

X

Y

W

0

.05.1

1

.2

0

0

1

A

.15
.20

.20

1
2

2

2

Z

• Find longest path in a 
directed graph G = 
<V,E>

• What sort of directed 
graph do we have?

• Is this in the standard 
form for a 
longest/shortest path 
problem?

s



Split Nodes into Edges

C

B

f

X

Y

W

0

.05.1

1

.2

0

0

1

A

.15
.20

.20

1
2

2

2

Z

2
2

2
1

0.5 2.5

3

s



DAG with Weighted Edges

C

B

f

X

Y

W

0

1.05
0.1

1

0.2

0

0

1

A

2.15

2.2

2.2
Z

Problem:  Find the longest (critical) path 

from source s to sink f.

s



Naïve Approach: Enumerate Paths

C

B

f

X

Y

W

0

1.05
.1

1

.2

0

0

1

A

2.15

2.2

2.2
Z

Problem: 

Find the longest path from source s to sink f.

How many paths in this example?

In the worst case?

s



Algorithm 1: Longest path in a DAG

Critical Path Method [Kirkpatrick 1966, IBM JRD]

Let w(u,v) denote weight of edge from u to v

Steps:

1. Topologically sort vertices

order:  v1, v2, …, vn v1 = s,  vn = ?

2. For each vertex v, compute 

d(v) = length of longest path from source s to v

d(v1) = 0

For i = 2..n

d(vi)  = maxall incoming edges (u, vi)
d(u) + w(u,vi)



Algorithm 1: Longest path in a DAG

Critical Path Method [Kirkpatrick 1966, IBM JRD]

Let w(u,v) denote weight of edge from u to v

Steps:

1. Topologically sort vertices

order:  v1, v2, …, vn v1 = s,  vn = f

2. For each vertex v, compute 

d(v) = length of longest path from source s to v

d(v1) = 0

For i = 2..n

d(vi)  = maxall incoming edges (u, vi)
d(u) + w(u,vi)

Time Complexity?

O(m+n)

Run the CPM on our example



Algorithm 2: Incremental longest path in 
a DAG

Suppose only a few weights/nodes/edges change.

How do we recompute the longest path efficiently?

C

B

f

X

Y

W

0  3

1.05
.1

1

.2

0

0

1

A

2.15

2.2

2.2
Z

s

Exercise:  READ HANDOUT



Algorithm 3: Top k longest paths in a DAG

Often, we don’t want just the longest path

Want to find the top k longest paths

How to do this efficiently? (i.e., polynomial in n, m, k)

Key insight/idea:

• The 2nd longest path shares a prefix with the 

longest path.

• From each node along longest path, keep track of 

the “next longest” route to sink f.



Algorithm 3: Top k longest paths in a DAG

Pre-compute phase:

1. (v) = length of longest path from vertex v to sink f.

How to compute? Complexity?

2. At each vertex v: order successor vertices u1, u2, …, uk by 

decreasing cost(ui) = w(v, ui) + (ui)

3. Compute ‘branch’ slacks at v: bsi(v) = cost(ui) – cost(ui+1)

bsk(v) = cost(uk)



Algorithm 3: Top k longest paths in a DAG

Pre-compute phase:

1. (v) = length of longest path from vertex v to sink f.

How to compute? Complexity?

2. At each vertex v: order successor vertices u1, u2, …, uk by 

decreasing cost(ui) = w(v, ui) + (ui)

3. Compute ‘branch’ slacks at v: bsi(v) = cost(ui) – cost(ui+1)

bsk(v) = cost(uk)

Main phase:

1. Let longest path p = s, v1, v2, …, vr, f 

2. For 2nd (next) longest, order nodes according to branch slacks: 

bs1(s), bs1(v1), … bs1(vr), and pick the smallest. The 

corresponding successor indicates the next longest path. 

3. For 3rd longest, add nodes along 2nd longest to the ordered node 

list, maintaining order. Go back to step 2 (check ‘next’ branch 

slack). (see handout for details)



Example: Top k longest paths in a DAG

B

F

DC

G

10

5
19

10 10

10 12

bs = 3
bs = 1

2030



Example: Top k longest paths in a DAG

B

F

DC

G

10

5
19

10 10

10 12

bs = 3
bs = 1

2030



Bibliography

• S. Devadas, K. Keutzer, S. Malik: “Computation of Floating Mode Delay 
in Combinational Circuits: Theory and Algorithms”, IEEE TCAD, 
December 1993.

• Sachin Sapatnekar , “Timing”, Chapter 5-”Timing Analysis for 
Combinational Circuits”, Springer-Verlag New York, Inc. 2004

• E. A. Lee and S. A. Seshia , Chapter 15 of “Introduction to Embedded 
Systems” , http://leeseshia.org

http://leeseshia.org/

