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Composition of Discrete Systems

Two major paradigms:

Synchronous composition
I All sub-systems move together: in “lock-step”
I Main application: synchronous circuits

F all sub-circuits having the same clock

Asynchronous composition
I Each sub-system moves at its own pace
I Applications: concurrent software (processes, threads, ...),

non-synchronized distributed systems, asynchronous circuits, ...

Common principle: the state-space of the composite (also called product)
system is the product of the state-spaces of its components (subsystems).
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Symbolic Asynchronous Composition

Given two KS K1 and K2, each represented symbolically as

Ki = (Init i,Trans i)

Recall: symbolic synchronous composition:

K1 ×K2 = (Init1 ∧ Init2,Trans1 ∧ Trans2)

How can the asynchronous composition K1||K2 be represented
symbolically?

K1||K2 = (Init1 ∧ Init2,Trans1 ∨ Trans2)

is this correct?
No: need to state also that the other process doesn’t move.
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Symbolic Asynchronous Composition: second attempt

Given two KS K1 and K2, each represented symbolically as

Ki = (Init i,Trans i)

where ~xi are the variables of Ki.

Symbolic asynchronous composition (2nd attempt):

K1||K2 =
(
Init1 ∧ Init2, (Trans1 ∧ ~x′2 = ~x2) ∨ (Trans2 ∧ ~x′1 = ~x1)

)

Is it correct now?

What if the two systems share variables?

No problem if no shared written variables, but problems otherwise.
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Symbolic Asynchronous Composition: second attempt

Consider two asynchronous processes writing to a shared variable x:

s0 || p0

x++ x++

Composite transition relation according to 2nd attempt:

x′ = x+ 1 ∧ x′ = x︸ ︷︷ ︸
from process 1

∨x′ = x+ 1 ∧ x′ = x︸ ︷︷ ︸
from process 2

⇔ false

Need to talk explicitly about shared variables.
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Symbolic Asynchronous Composition: final version

Given two KS K1 and K2, each represented symbolically as

Ki = (Init i,Trans i)

their asynchronous composition K1||K2 can be represented symbolically as

K1||K2 =
(
Init1 ∧ Init2, (Trans1 ∧ ~x′2 = ~x2) ∨ (Trans2 ∧ ~x′1 = ~x1)

)
where:

~xi are the variables owned by Ki: they can be read by any process,
but they can be written only by Ki.

Trans i may refer also to shared variables ~v, which are written by
both K1 and K2.
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Symbolic Asynchronous Composition: example

Consider our previous example again:

s0 || p0

x++ x++

Only one variable, x, shared.

Composite transition relation:

x′ = x+ 1︸ ︷︷ ︸
from process 1

∨ x′ = x+ 1︸ ︷︷ ︸
from process 2
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Symbolic Asynchronous Composition: example

Consider the modified example:

s0 || p0

y++
x++

z++

x++

x shared, y owned by process 1, z owned by process 2.

Composite transition relation:

x′ = x+ 1 ∧ y′ = y + 1 ∧ z′ = z︸ ︷︷ ︸
from process 1

∨x′ = x+ 1 ∧ z′ = z + 1 ∧ y′ = y︸ ︷︷ ︸
from process 2
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Asynchronous Process Communication

Two prominent paradigms:

Shared memory (the one we just saw)
I A common pool of shared (global) variables
I Standard in concurrent programming models of today (e.g., threads).
I Common problems: avoid corrupt values, races, deadlocks (e.g., when

semaphores are used), ...

Message passing
I Transmitter process sends messages to receiver process.
I Usually some type of message queue is used to store messages.
I Used in several modeling and programming languages and tools, e.g.,

UML/SysML, Erlang, Go, MPI, TCP/IP, UDP, ...
I Many different versions, depending whether queues are finite or infinite,

single-writer/reader, or multiple-writer/reader, FIFO, lossy, read is
blocking, etc.
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Communication via Message Passing

Examples of formalisms using message passing:

Kahn Process Networks [Kahn, 1974] (studied in Systems, Models,
and Algorithms course): infinite queues, single-writer, single-reader,
blocking read. A deterministic model!

Petri nets [Murata, 1989]: unordered tokens, multiple-writer,
multiple-reader.

Rendez-vous:
I Can be seen (as in Spin/Promela) as message passing with queues of

size zero.
I Message cannot be stored in the queue (because queue size is 0) ⇒

transmitter and receiver must synchronize.
⇒ transmission and reception occurs simultaneously.
I Common in process algebras, e.g., CSP [Hoare, 1985],

CCS [Milner, 1980], etc.
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Rendez-vous communication: example

CSP notation:

a! || a? = τ

CCS notation:

a || a = τ

τ : silent (or internal) action.
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FAIRNESS
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Fairness: Motivation
Consider the following asynchronous composition example:

s0 || p0 p1

x++

x > 4

x ≤ 4

Will the rightmost process ever get to move to p1?

Asynchronous composition transition relation:

x′ = x+ 1 ∧ p′ = p︸ ︷︷ ︸
from process 1

∨ (x > 4→ p′ = p1) ∧ (x ≤ 4→ p′ = p0) ∧ x′ = x︸ ︷︷ ︸
from process 2

The transition relation allows a process to be neglected forever.
Not realistic: no matter how slow the rightmost process is, it will move at
some point ⇒ need to exclude unrealistic behaviors.
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Fairness: Motivation
Fairness is a mechanism to exclude such unrealistic (unfair) behaviors.

Indispensable for proving properties of systems, e.g.:

A message will eventually reach its destination: need to assume that
the communication channel will not keep losing the message forever.
This is a fairness assumption.

In a distributed protocol, say, leader election, a leader will eventually
be elected: need to assume that nodes will not keep failing.
Again, a fairness assumption.

Every bank transaction eventually completes: need to assume that a
given transaction will not constantly be overlooked due to other
transactions (no starvation).
Again, a fairness assumption.

...

Observe that the above are liveness properties.

Do we need fairness assumptions to establish safety properties?

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Composition 14 / 26



Fairness: Motivation
Fairness is a mechanism to exclude such unrealistic (unfair) behaviors.

Indispensable for proving properties of systems, e.g.:

A message will eventually reach its destination: need to assume that
the communication channel will not keep losing the message forever.
This is a fairness assumption.

In a distributed protocol, say, leader election, a leader will eventually
be elected: need to assume that nodes will not keep failing.
Again, a fairness assumption.

Every bank transaction eventually completes: need to assume that a
given transaction will not constantly be overlooked due to other
transactions (no starvation).
Again, a fairness assumption.

...

Observe that the above are liveness properties.

Do we need fairness assumptions to establish safety properties?
Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Composition 14 / 26



Defining fairness

We need to be precise: what exactly constitutes a “fair” behavior?

Two basic types [Manna and Pnueli, 1991]:

Weak fairness: a process cannot be enabled forever after some point
on, without getting to move.

Strong fairness: a process cannot be enabled infinitely often without
getting to move.

where some process i is enabled means that the overall system (consisting
of process i and potentially other processes) is at a state where process i
can move.

There are other types of fairness one may define. Depending on the application,
different types of fairness assumptions are used, sometimes expressed in temporal
logic. E.g., instead of verifying that φ holds, we verify that φfair → φ holds.
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Weak Fairness

We will define fairness on transition systems directly. Such a transition
system may be the result of composition of some processes.

Given a transition system K, a state s of K, and a transition a of K, we
say that a is enabled at s iff K has a transition s

a−→ s′ for some s′.

Then we can define weak fairness:

If a transition is always enabled after some point on, it will
eventually be taken.

or better:

A run s0
a0−→ s1

a1−→ s2
a2−→ · · · is unfair w.r.t. weak fairness if

there exists a transition a and some integer K, such that a is
enabled at all states si with i ≥ K, but never taken, i.e.,
∀i ≥ K : ai 6= a.
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Weak Fairness: example

Consider our earlier example. Weak fairness solves this problem:

s0 || p0 p1

x++

x > 4

x ≤ 4

The run where the transition from p0 to p1 never happens is unfair w.r.t.
weak fairness.
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Weak Fairness is Sometimes too Weak

s0 || p0 p1

x++

x > 4 ∧ even(x)

else

Here, the run where the transition from p0 to p1 never happens is not
unfair, because the transition is not constantly enabled after some point
on.
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Weak Fairness is Sometimes too Weak
More realistic application:

How to ensure that both processes eventually enter their critical section?
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Strong Fairness

If a transition is infinitely-often enabled after some point on, it
will eventually be taken.

or better:

A run s0
a0−→ s1

a1−→ s2
a2−→ · · · is unfair w.r.t. strong fairness if

there exists a transition a and some integer K, such that a is
enabled at state si for infinitely many i’s, but never taken after
step K, i.e., ∀i ≥ K : ai 6= a.
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Strong Fairness: example

Consider again our last example:

s0 || p0 p1

x++

x > 4 ∧ even(x)

else

Here, the run where the transition from p0 to p1 never happens is unfair
w.r.t. strong fairness, because the transition is infinitely-often enabled
(more precisely: enabled every other step).
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Model-checking in the presence of fairness

Suppose we are trying to check M |= φ:

Our attempt fails because some traces of M violate φ.

Suppose all these traces are unfair.

How to exclude them from consideration?
Hint: suppose we have a way to characterize the fair traces by a
temporal logic formula φfair.

Instead of checking φ, check a different formula:

M |= φfair → φ

Meaning: only the fair traces (those satisfying φfair) must satisfy φ.
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Fairness: additional remarks
Fairness is not about asynchronous composition only: in synchronous but
nondeterministic systems, we might want to exclude behaviors where
some of the nondeterministic choices are constantly ignored.

Example:

MODULE inverter(input)

VAR

output : boolean;

INIT

output = FALSE

TRANS

next(output) = !input | next(output) = output

This models a non-deterministic transition system.
Possible fairness requirement: if input switches, output must eventually also
switch.

Another example: a communication channel cannot keep on losing a message
forever (the choice to lose or to transmit is nondeterministic).
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Fairness: additional remarks

Fairness vs. probabilities: we could view fairness as an abstraction of
probabilities.

Example: consider a communication channel, which loses a message
with probability p = 10−6 and transmits it correctly with probability
1− p.

In this system, a behavior where the message is always lost has zero
probability. So, in principle, probabilistic systems do not need
fairness, since unfair behaviors have zero probability of occurring.

Fairness allows us to avoid specifying probabilities. Even if we don’t
know what p is, we can still claim that a certain behavior is unfair.

Also, probabilistic systems are (other things being equal) harder to
verify than nondeterministic systems (because in addition to
state-space exploration, we have to deal with the numbers).
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Composition: summary
Composition semantics:

Synchronous: all processes synchronize at every move.

Asynchronous: processes interleave (some may synchronize due to
communication, e.g., by rendez-vous).

Communication semantics (more/less orthogonal to composition
semantics):

Shared memory

Message passing

Synchronization (rendez-vous)

Spin/Promela offers asynchronous composition with all three
communication options [Holzmann, 2003].

NuXMV offers synchronous composition (asynchronous is deprecated).

Fairness important concern in both.
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