EE 144 /244: Fundamental Algorithms for System
Modeling, Analysis, and Optimization
Fall 2016

Discrete Event Simulation

Stavros Tripakis
University of California, Berkeley

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Discrete Event Simulation 1/53

Timed Systems

In circuits, as well as in embedded / cyber-physical systems, timing is key:
@ proper timing = an issue of correctness
o the right values, at the right time (not too late, not too early)

o c.f. real-time control.

Contrast this to personal computers: “best-effort” systems — timing an
issue of performance.

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Discrete Event Simulation 2 /53

(Timed) Discrete-Event (DE) Systems
vs. Continuous Control Systems

Continuous control systems:
@ Coming from continuous system theory.

e Typically implemented by periodic sampling controllers (but
sometimes also event-driven controllers): these are discrete, but try to
approximate the continuous ones.

Discrete-event systems:
@ More “sparse” events (typically).
@ Discrete control: e.g., mode switches.

e Typically higher level: e.g., supervisory control (DE) vs. cruise control
(continuous).
@ Other application domains:

» Queueing theory.
» Circuits (VHDL, Verilog, SystemC).

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Discrete Event Simulation 3 /53

(Timed) Discrete Events

Event:
@ something occurring at some point in time
@ may also carry a value
@ event = (timestamp, value)
°

discrete-event systems: consumers/producers of event streams

e e es ey es €6 er €g

TN N S S A

t1 ty ts ly ts time te t7 tg

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Discrete Event Simulation

time

4/53

Continuous vs. Discrete Event Systems

@ Continuous systems: functions on continuous signals.
Continuous signal x = continuous function of dense time (R.)

z:Ry =V

z(t): value of x at time t; belongs to some set of values V (e.g., R)

@ Timed Discrete Event Systems: deal with timed discrete-event signals.
Timed discrete-event signal: sequence of timed events.

/\/\ continuous /—_/
system

time time
e e: ez e € €6 er s
! N AR ’ discrete
T T T T T — event i T T T
system A
t ty ts ty ts time ts 24 ts time

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Discrete Event Simulation 5 /53

DIGRESSION:
CONTINUOUS vs. DISCRETE SIGNALS

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Discrete Event Simulation 6 /53

Continuous vs. discrete signals

Intuition:

Discrete: only finite number of events can happen in a finite amount of
time.

Continuous: not discrete.

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Discrete Event Simulation 7 /53

Continuous vs. discrete signals

Intuition:

Discrete: only finite number of events can happen in a finite amount of
time.

Continuous: not discrete.

Let's try to formalize this intuition.

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Discrete Event Simulation 7 /53

Continuous vs. discrete signals

Let R4 be the set of non-negative reals, modeling time.
Let V' be a set of values.
A signal can be defined as a set of events:

sCRy xV

(this is the tagged signal model [Lee and Sangiovanni-Vincentelli(1998)]).

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Discrete Event Simulation

8 /53

Continuous vs. discrete signals
Let R4 be the set of non-negative reals, modeling time.
Let V' be a set of values.
A signal can be defined as a set of events:
sCRy xV
(this is the tagged signal model [Lee and Sangiovanni-Vincentelli(1998)]).

Let T'(s) be the set of all timestamps in signal s:

T(s)={t|3(,v) € s}

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Discrete Event Simulation 8 /53

Continuous vs. discrete signals
Let R4 be the set of non-negative reals, modeling time.
Let V' be a set of values.
A signal can be defined as a set of events:
sCRy xV
(this is the tagged signal model [Lee and Sangiovanni-Vincentelli(1998)]).
Let T'(s) be the set of all timestamps in signal s:

T(s) ={t|3(t,v) € s}

Then we can define:

@ s is discrete if T'(s) is order-isomorphic to a subset of N, where
N={0,1,2,...} is the set of natural numbers.

@ Otherwise, s is continuous.

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Discrete Event Simulation

8 /53

Order-isomorphisms

A order-isomorphic B means there is an order-preserving bijection
f:A— B.

In our case the order is the usual < on Ry and N. So:

e f must be a bijection: (1) f(a) must be defined for all a € A, (2) for
all b € B there must exist a € A such that f(a) = b, and (3)
a#d = f(a) # f(d).

e f must be order-preserving: a < a' = f(a) < f(d').

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Discrete Event Simulation 9 /53

Order-isomorphisms

A order-isomorphic B means there is an order-preserving bijection
f:A— B.

In our case the order is the usual < on Ry and N. So:

e f must be a bijection: (1) f(a) must be defined for all a € A, (2) for
all b € B there must exist a € A such that f(a) = b, and (3)
a#a = f(a) # f(d).

e f must be order-preserving: a < a' = f(a) < f(d').
Is N x N (with lexicographic order) order-isomorphic to N ?
Stavros Tripakis (UC Berkeley)

EE 144/244, Fall 2016 Discrete Event Simulation 9 /53

Continous and discrete signals

Are the signals below discrete or continuous?

s1={(t,t) |t e R, }?

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016

Continous and discrete signals

Are the signals below discrete or continuous?

s1 ={(t,t) |t € Ry}? Continuous.

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Discrete Event Simulation 10 / 53

Continous and discrete signals

Are the signals below discrete or continuous?
s1 ={(t,t) |t € Ry}? Continuous.

so={(n,v) | neNveV}?

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Discrete Event Simulation

10 / 53

Continous and discrete signals

Are the signals below discrete or continuous?
s1 ={(t,t) |t € Ry}? Continuous.

sy ={(n,v) [neN,veV}? Discrete.

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Discrete Event Simulation

10 / 53

Continous and discrete signals

Are the signals below discrete or continuous?
s1 ={(t,t) |t € Ry}? Continuous.
sy ={(n,v) [neN,veV}? Discrete.

S3 = {(07 0)7 (1’ 1,)7 (27 2)}?

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016

Discrete Event Simulation

10 / 53

Continous and discrete signals

Are the signals below discrete or continuous?
s1 ={(t,t) |t € Ry}? Continuous.
sy ={(n,v) [neN,veV}? Discrete.

s3 ={(0,0),(1,1,),(2,2)}? Discrete.

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016

Discrete Event Simulation

10 / 53

Continous and discrete signals

Are the signals below discrete or continuous?

s1 ={(t,t) |t € Ry}? Continuous.
={(n,v) |neN,v e V}? Discrete.
(0
(0

=1
{

,0),(1,1,),(2,2)}? Discrete.

3,0), (1.27,1,), (2m,2)}?

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Discrete Event Simulation 10 / 53

Continous and discrete signals

Are the signals below discrete or continuous?

s1 ={(t,t) |t € Ry}? Continuous.
={(n,v) |neN,v e V}? Discrete.
(0
(0

=1
{

,0),(1,1,),(2,2)}? Discrete.

.3,0),(1.27,1,),(2m,2)}? Discrete.

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Discrete Event Simulation 10 / 53

Continous and discrete signals

Are the signals below discrete or continuous?
S1 = {

(t,t) |t e R.}? Continuous.
={(n,v) [neN,v e V}? Discrete.
(0,

={(0,0),(1,1,),(2,2)}? Discrete.
sq ={(0.3,0),(1.27,1,), (27, 2)}? Discrete.
S5 — {}?
Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016

Discrete Event Simulation

10 / 53

Continous and discrete signals

Are the signals below discrete or continuous?

s1 = {(t,

={(n,v) | neN,v e V}? Discrete.
0,

{(0,0),(1,1,),(2,2)}? Discrete.

t)|t € Ry}? Continuous.

sq ={(0.3,0),(1.27,1,), (27, 2)}? Discrete.

ss ={}? Discrete.

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016

Discrete Event Simulation

10 / 53

Continous and discrete signals

Are the signals below discrete or continuous?

s1 = {(t,

={(n,v) | neN,v e V}? Discrete.
0,

{(0,0),(1,1,),(2,2)}? Discrete.

t)|t € Ry}? Continuous.

sq ={(0.3,0),(1.27,1,), (27, 2)}? Discrete.

ss ={}? Discrete.

s¢ = {(t,t) | t €[0,1]}7?

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016

Discrete Event Simulation

10 / 53

Continous and discrete signals

Are the signals below discrete or continuous?

s1 = {(t,

={(n,v) | neN,v e V}? Discrete.
0,

{(0,0),(1,1,),(2,2)}? Discrete.

t)|t € Ry}? Continuous.

sq ={(0.3,0),(1.27,1,), (27, 2)}? Discrete.

ss ={}? Discrete.

s¢ = {(t,t) | t €10,1]}? Continuous.

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016

Discrete Event Simulation

10 / 53

Continous and discrete signals

Are the signals below discrete or continuous?

s1 = {(t,
={(n,v) |neN,v e V}? Discrete.

{(0,0),(1,1,),(2,2)}? Discrete.

s4 ={(0.3,0),(1.27,1,),(27,2)}? Discrete.

t)|t € Ry}? Continuous.

ss ={}? Discrete.
s¢ = {(t,t) | t €10,1]}? Continuous.

st={(t,t]) |t € Ry}?

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Discrete Event Simulation

10 / 53

Continous and discrete signals

Are the signals below discrete or continuous?

s1 ={(t,t) |t € Ry}? Continuous.
={(n,v) |neN,v e V}? Discrete.
={(0,0),(1,1,),(2,2)}? Discrete.

sy = {(0.3,0),(1.27,1,),(2m,2)}? Discrete.
ss ={}? Discrete.
s¢ = {(t,t) | t €[0,1]}? Continuous.

sy ={(t,[t]) |t e R4}? Continuous, according to our definition. But it
is also piecewise constant, and could therefore be considered as
essentially discrete. This is how discrete signals are modeled in Simulink.

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Discrete Event Simulation 10 / 53

Continuous vs. discrete signals

Our definition of discrete vs. continuous signals:

e s is discrete if T'(s) is order-isomorphic to a subset of N, where
N ={0,1,2,...} is the set of natural numbers.

@ Otherwise, s is continuous.

Recall our intuition:

@ Discrete: only finite number of events can happen in a finite amount
of time.
o Continuous: not discrete.

Does the definition capture our original intuition?

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Discrete Event Simulation 11 / 53

Example: bouncing ball

to simulate a bouncing k|

This is a classic example

an infinite number of bo

time. Open the Ball Mod
TimedPlotter

Ball Model This =
it installed, you can get it from:

hitp://java.sun.com/products/java-media/3D/.

Periodicsampler scale

Animate Ball

Position
1 10
9
8
o7
36

£
£s
24
3
2
1
0
o 5 15 20 25
time (sec)

Jie Liu and Edward A. Lee

Stavros Tripakis

C Berkeley)

velociy g e s
free.initialPosition = initialPosition; nbs(puslllon}_< stoppedThreshold
free.init ity = 0.0 =

position

gum;»sump isPresent "

Hesintiavelocty - ~elasticy* m«\.w

free initialPosition = pos
The transition from init free Initializes the ball position a\:d velocity.
The self transition on,free is triggered when a bump has been,detected
(inside the state refifement). The set actions on the transition teverse
the velocity (with some loss due to elasticity). The transition to the
stop state is takeh when the position and velocity have gotten small
enough that we decide the ball has stopped. If this transition is 5
removed, thén in theory time cannot progress past a certain point.
In practice, numerical errors domainate and eventually the bump is
not detected. Try it.

EE 144/244, Fall 2016

Continuous Director
This models the dynamics of a ball
falling in a gravitational field.

Gravitational
Force

Velocity .

Position e

LevelCrossingDetector
bump

Discrete Event Simulation

11 /53

. . Zeno system: infinite # of
Example. bouncmg ball discrete events in a finite

amount of time => time blocked.

) quard: true

set
free.initialPositior
free.init it

to simulate a bouncing t .
. - el

This is a classic example position
an infinite number of bo
time. Open the Ball Mod

mp_isPresent N
itialVelocity = -elasticity * velogi
Position = posti

TimedPlotter

sal ogel This _ X
it installed, you can get it from: oy PR e el p2 "
rap:/ vl o/ prodctsfava-med /301 The transition from init 16 free initializes the ball position and velocity.

The self transition on,free is triggered when a bump has been detected
peradicsampler scle pnimate gall (inside the state refirfement). The set actions on the transition feverse

the velocity (with some loss due to elasticity). The transition to the
stop state is takeh when the position and velocity have gotten small
enough that we decide the ball has stopped. If this transition is
removed, thén in theory time cannot progress past a certain point.
In practice, numerical errors domainate and eventually the bump is
not detected. Try it. N
Position - —

L

N S I -

Continuous Director
This models the dynamics of a ball
falling in a gravitational field.

Gravitational Velocity

Force velocity

height meters

Position e

LevelCrossingDetector
bump

20 25

15
time (sec)

Jie Liu and Edward A. Lee

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Discrete Event Simulation 11 / 53

ZENCN FELEATES -

Zeno's “Achilles and the tortoise” paradox:

@ Achilles and the tortoise enter a race. Achilles runs of course much
faster. He graciously allows the tortoise a head start of 1 meter. Who
will win?

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Discrete Event Simulation 14 / 53

ZENCN FELEATES -

Zeno's “Achilles and the tortoise” paradox:

@ Achilles and the tortoise enter a race. Achilles runs of course much

faster. He graciously allows the tortoise a head start of 1 meter. Who
will win?

“In a race, the quickest runner can never overtake the slowest, since
the pursuer must first reach the point whence the pursued started, so
that the slower must always hold a lead.”

(from wikipedia)

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Discrete Event Simulation 14 / 53

Zeno DE systems
A DE system is zeno if it generates
time:

an infinite number of events in a finite amount of

F3 zeno. TimedPlotter

Fle Edt Specel Hep
Zeno SIgna|S Zeno Conditions L

| BE |

10 12 14 16 18 20
Time

00 02 04 06 08

Clock

s 0.0
valves (1.2}

SingleEvent Merge
VariableDelay

Eventually, execution
stops advancing time.
Why?

This model ilustrates a Zeno condition, where an infinite number of events
oceur before time 2.0, and hence the Clock actor is unable to ever produce

its output at time 2.0.

Note that if the Ramp is set to produce
integer outputs, then eventually the
output will overflow and become

negative, which will cause an exception.
Lee 12: 19

Zeno systems are sometimes useful (c.f., bouncing ball) but often an error of modeling.

We will see how to avoid it in DE simulation, to avoid blocking time globally.

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Discrete Event Simulation 15 / 53

END DIGRESSION

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016

Example Discrete-Event System: Dense-Time Delay

€1 €9 €3 €y €1 €9 €3 €y
L 1] [1]
1 19 2.5 4.1 Ry 2.9 3.5 51 Ry

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016

Delay vs. Server

DE Director

PoissonClock

P

TimeDelay

TimedPlotter

in e
delay x
server o

00 05 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Discrete Event Simulation 18 / 53

DIGRESSION:
EVENTS vs. STATES

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016

From States to Events

If my formalism only has the notion of state, can | define events?

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016

From States to Events

If my formalism only has the notion of state, can | define events?

Event = change of state

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Discrete Event Simulation 20 / 53

From States to Events

If my formalism only has the notion of state, can | define events?

Event = change of state

Example: Lustre program

node UpwardEdge (X : bool) returns (E : bool);

let
E = false -> X and not pre X ;

tel

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Discrete Event Simulation 20 / 53

From Events to States

If my formalism only has events as primitives, can | define state?

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016

From Events to States

If my formalism only has events as primitives, can | define state?

State = history of events observed so far

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Discrete Event Simulation 21 /53

From Events to States

If my formalism only has events as primitives, can | define state?

State = history of events observed so far
Formally:

@ X: set of events

@ X*: set of finite event sequences = histories

o Every s € ¥* can be seen as a state

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Discrete Event Simulation

21 /53

From Events to States

If my formalism only has events as primitives, can | define state?

State = history of events observed so far
Formally:

@ X set of events

@ X*: set of finite event sequences = histories

o Every s € ¥* can be seen as a state

C.f. a famous theorem:

Theorem (Myhill-Nerode theorem)

A language L C ¥* is regular iff the equivalence relation over words
s~ s 2 Vs'e¥r:is.s"eles s"el

has a finite set of equivalence classes. The number of equivalence classes of ~, is
the number of states in the smallest DFA recognizing L.

v

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Discrete Event Simulation 21 /53

END DIGRESSION

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016

Discrete-Event Models (DE)

Networks of actors such as Delay, Server, sources, sinks, ...

DE Director

C.W1 mw-r@ncmﬂ(TimedPlotter
attendant l I
source \s*l':

model 1 (drawing) model 2 (ptolemy)

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Discrete Event Simulation 23 /53

Example: car wash
Taken from [Misra(1986)]:

ICW1I

attendant l—l *I

source sink

@ Source generates car arrivals at some arbitrary times.

@ Attendant directs cars to car wash stations CW1 or CW2:
if both CW1 and CW?2 are free, then to CW1;

» if only one is free, then to this free one;

» otherwise car waits until a station becomes free.
» Cars are served by attendant in FIFO order.

@ CW1 spends 8 mins to wash a car.

\4

@ CW2 spends 10 mins to wash a car.

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Discrete Event Simulation 24 /53

Delay vs. Server

Are CW1, CW2 delays or servers?

attendant

source

Stavros Tripakis (UC Berkeley)

;CW‘II

L1

EE 144/244, Fall 2016

\>||.

sink

Discrete Event Simulation

25 / 53

Analysis of DE Models

DE Director

PoissonClock

tringer f |

TimedPlotter

attendant

A

source sink

model 1 (drawing) model 2 (ptolemy)

o We will look at simulation of DE models.

e Exhaustive verification (model-checking) of DE models: not well
studied (see [Stergiou et al. 2013])

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Discrete Event Simulation 26 / 53

Analysis of DE Models

DE Director

PoissonClack
= TimedPlotter

tringer f |

attendant

A

source sink

model 1 (drawing) model 2 (ptolemy)

@ We will look at simulation of DE models.

e Exhaustive verification (model-checking) of DE models: not well
studied (see [Stergiou et al. 2013])

@ Well studied problem: exhaustive verification of another type of DE
system: timed automata [Alur and Dill(1994)]

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Discrete Event Simulation 26 / 53

DISCRETE-EVENT SIMULATION

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016

Discrete-Event Simulation: Basic Idea

Standard DE simulation scheme:

1 t:=0; // initialize simulation time to 0

. initialize global event queue Q with a set of initial events;
// events in () ordered by timestamp

3: while Q is not empty do

4: remove earliest event e = (v, te) from @Q;

5

6

N

ti=te; // advance global time
“execute” event e: update system state, generate possible future
events, and add them to (), ordered by timestamps;

7: end while

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Discrete Event Simulation 28 / 53

Example: Clock and Delay

DE Director

DiscreteClock TimeDelay TimedPlotter)
triggerp Clock period: 0.6
ci: events generated by Clock

d;: events generated by Delay

periochy

£ 3

1: t:=0;

2: initialize global event queue @ with a set of initial events;
3: while Q is not empty do

4. remove earliest event e = (ve, te) from Q;

5: t = te;

6: “execute” event e;

7: end while

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Discrete Event Simulation 29 /53

Example: Clock and Delay

DE Director
Clock period: 0.6
DiscreteClock TimeDelay Timedplotter Ci: €VeNts generated by Clock
} d;: events generated by Delay
point in algo t Q current event e
after initialization (step 2) 0 [(c0,0), (c1,0.6), (c2,1.2),...]

after step 4 [(c1,0.6), (c2,1.2),..] (co,0)
after step 5 [(c1,0.6), (do, 1.0), (¢c2,1.2), ...]
after step 6 0
after step 4 [(do, 1.0), (e2,1.2),...] (c1,0.6)
after step 5 [(do, 1.0), (c2,1.2),(d1,1.6),...]
after step 6 0.6
after step 4 [(c2,1.2),(d1,1.6),...] (do, 1.0)
after step 5 @ does not change, but

something gets printed

after step 6 1.0

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Discrete Event Simulation

30 / 53

Discrete-Event Simulation: Issues

1. t:=0;

2: initialize global event queue @ with a set of initial events;

3: while @ is not empty do

4: remove earliest event ¢ = (v, te) from Q;

5: t:=t.;

6: “execute” event e: update system state, generate possible future events,
and add them to @), ordered by timestamps;

7: end while

@ Appears intuitive, but details are left unspecified: steps 2, 6.

@ Not modular : step 6 appears to work on the entire system state, not on
individual actors.

@ How to make such a scheme completely modular is an active topic of
research (we will come back to this).

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Discrete Event Simulation 31/53

Discrete-Event Simulation: Issues

1. t:=0;

2: initialize global event queue @ with a set of initial events;

3: while @ is not empty do

4: remove earliest event ¢ = (v, te) from Q;

5: t:=t.;

6: “execute” event e: update system state, generate possible future events,
and add them to @), ordered by timestamps;

7: end while

@ Appears intuitive, but details are left unspecified: steps 2, 6.

@ Not modular : step 6 appears to work on the entire system state, not on
individual actors.

@ How to make such a scheme completely modular is an active topic of
research (we will come back to this).

Let's try to flesh out the details of steps 2 and 6.

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Discrete Event Simulation 31/53

Modeling Source Actors
Source actor = an actor with no inputs.

DE Director

DiscreteClock TimeDelay TimedPlotter

delay of:
1.0

A

triggery|

periody

Clock is a source:

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Discrete Event Simulation 32 /53

Modeling Source Actors
Source actor = an actor with no inputs.

DE Director

DiscreteClock TimeDelay TimedPlotter
tiggery]

g8

period |

doxs

ES

Clock is a source:

@ Option 1 — sources generate all their events at initialization.

» Simulation time is finite, so presumably only finite number of events.
» But it may be very large.

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Discrete Event Simulation 32 /53

Modeling Source Actors
Source actor = an actor with no inputs.

DE Director

DiscreteClock TimeDelay TimedPlotter

delay of:
1.0 5

A

triggery|

periody]

Clock is a source:

@ Option 1 — sources generate all their events at initialization.

» Simulation time is finite, so presumably only finite number of events.
» But it may be very large.

@ Option 2 — model sources using feedback loops with initial events:

DE Director

TimeDela: !
SampleDelay y TimedPlotter

TimeDelay2

0.6

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Discrete Event Simulation 32 /53

Feedback loops are necessary in general
Example: car wash (taken from [Misra(1986)]):

attendant

[ow | 1
I

source sink

@ Source generates car arrivals at some arbitrary times (e.g., at times 3, 8, 9, 14, 16,

22)

@ Attendant directs cars to car wash stations CW1 or CW2:

>

>
>
>

if both CW1 and CW?2 are free, then to CW1
if only one is free, then to this free one
otherwise car waits until a station becomes free
cars are served by attendant in FIFO order

@ CW1 (a server actor) spends 8 mins to wash a car

@ CW2 (a server actor) spends 10 mins to wash a car

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Discrete Event Simulation

33 /53

But feedback loops can also be dangerous ...

¥4 zeno. TimedPlotter g@@

File Edt Special Help
Zeno Signals Zeno Conditions EE@E
20F T i f i i i i i ™

DE Director Clock
TimedPlotter

period: 1.0
offsets: {0.0}
values: {1.2}

SingleEvent Merge

. VariableDelay
time: 0.0
value: 1.0

Esression Eventually, execution
stops advancing time.

This model illustrates a Zeno condition, where an infinite number of events Why’?
occur before time 2.0, and hence the Clock actor is unable to ever produce
its output at time 2.0.

Note that if the Ramp is set to produce
integer outputs, then eventually the
output will overflow and become
Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Discrete Event Simulation 34 /53

Avoiding Zeno Systems

Suppose we add a constant (or at least bounded from below) non-zero
delay in every feedback loop:

DE Director
TimeDelay
delay of:
1.0
JAY
SingleEvent Merge TimedPlotter
I

Is it sufficient to avoid zenoness?

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Discrete Event Simulation 35 /53

Avoiding Zeno Systems

Suppose we add a constant (or at least bounded from below) non-zero
delay in every feedback loop:

DE Director
TimeDelay
delay of:
1.0
JAY
SingleEvent Merge TimedPlotter
I

Is it sufficient to avoid zenoness?

Yes. Exercise: prove it.

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Discrete Event Simulation 35 /53

Avoiding Zeno Systems

Suppose we add a constant (or at least bounded from below) non-zero

delay in every feedback loop:

DE Director

SingleEvent

T |

TimeDelay

delay of:

1.0
A

Merge

Is it sufficient to avoid zenoness?

Yes. Exercise: prove it.

TimedPlotter

From now on we assume a constant non-zero delay in every feedback loop.

Stavros Tripakis (UC Berkeley)

EE 144/244, Fall 2016

Discrete Event Simulation

35 /53

Another Example: Alarm

cancel alarm N
Source Alarm

@ Alarm actor: produces event at given time ¢, unless it receives input
at time ¢/ < t.

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Discrete Event Simulation 36 / 53

Another Example: Alarm

cancel alarm N
Source Alarm

@ Alarm actor: produces event at given time ¢, unless it receives input
at time ¢/ < t.

@ How does the DE simulation algorithm handle this example?

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Discrete Event Simulation 36 / 53

Another Example: Alarm

cancel alarm .
Source

@ Alarm actor: produces event at given time ¢, unless it receives input
at time t/ < ¢.

@ How does the DE simulation algorithm handle this example?

@ It appears that Alarm should post an initial event with time ¢

... but this event may then have to be canceled during simulation if
something arrives at the input before ¢.

@ Canceling events = removing them from the event queue.

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Discrete Event Simulation 36 / 53

Why insert events only to cancel them later?

Whether an event will be generated before ¢ may not always be easy to
determine:

cancel

Some complex model

e DE algorithm must work independently of how Alarm is connected.

@ That's what modular means.

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Discrete Event Simulation 37 /53

Discrete-Event Simulation — version 2

s t:=0;

initialize global event queue @ with a set of initial events;

while @ is not empty do
remove earliest event e = (ve, t.) from Q;
t:=te;
execute event e: update system state, generate possible future
events, and add them to @), ordered by timestamps; possibly remove
events from @Q);

7: end while

ISA A

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Discrete Event Simulation 38 /53

Another Issue: Simultaneous Events

DE Director

SingleEvent
| '—LD AddSubtract TimedPlotter
oo

+
SingleEven:Z_J_D _ g

The AddSubtract actor is supposed to behave as follows:

@ If it receives two simultaneous events, it adds/subtracts their values and
produces a single event at its output with the resulting value.

@ If it receives an event in just one of the two inputs, it simply forwards it.

Suppose the two SingleEvent actors produce two simultaneous events with the
same value x.

What should the output be?
Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Discrete Event Simulation 39 /53

Another Issue: Simultaneous Events

DE Director

SingleEvent
| '—LD AddSubtract TimedPlotter
oo

+
SingleEven:Z_J_D _ g

The AddSubtract actor is supposed to behave as follows:

@ If it receives two simultaneous events, it adds/subtracts their values and
produces a single event at its output with the resulting value.

@ If it receives an event in just one of the two inputs, it simply forwards it.

Suppose the two SingleEvent actors produce two simultaneous events with the
same value x.

What should the output be? A single event with value z — x = 0.
Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Discrete Event Simulation 39 /53

Another Issue: Simultaneous Events

How to achieve the desired behavior with the DE simulation algorithm?

DE Director

SingleEvent

| F—LD AddSubtract TimedPlotter
I5]

+

SingleEven:Z_J_D _

1. t:=0;

2: initialize global event queue @ with a set of initial events;

3: while Q is not empty do

4: remove earliest event e = (v, te) from Q;

5: t:=te;

6: execute event e: update system state, generate possible future events, and add
them to @, ordered by timestamps; possibly remove events from Q;

7: end while

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Discrete Event Simulation 40 / 53

Discrete-Event Simulation — version 3

It appears that the DE simulation algorithm must execute sets of
simultaneous events, instead of one event at a time:

s ti=0;

initialize global event queue @ with a set of initial events;

while @ is not empty do

remove earliest-event-e-="{vets) set E of all (?) simultaneous earliest
events from Q);

: t:=t.;

6: execute evente set of events E: update system state, generate possible
future events, and add them to @, ordered by timestamps; possibly remove
events from Q);

7: end while

bl o A e

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Discrete Event Simulation 41 /53

Discrete-Event Simulation — version 3

It appears that the DE simulation algorithm must execute sets of
simultaneous events, instead of one event at a time:

s ti=0;

initialize global event queue @ with a set of initial events;

while @ is not empty do

remove earliest-event-e-="{vets) set E of all (?) simultaneous earliest
events from Q);

: t:=t.;

6: execute evente set of events E: update system state, generate possible
future events, and add them to @, ordered by timestamps; possibly remove
events from Q);

7: end while

bl o A e

Not as simple ...

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Discrete Event Simulation 41 /53

Issues with Simultaneous Events

Suppose the two SingleEvent sources produce two simultaneous events.
Should these be processed together by the algorithm?

DE Director

SingleEvent

P—l—D AddSubtract ~ TimedPlotter
.

SingleEvent2 Scale o — E

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Discrete Event Simulation 42 /53

Issues with Simultaneous Events

Suppose the two SingleEvent sources produce two simultaneous events.
Should these be processed together by the algorithm?

DE Director

SingleEvent

P—l—D AddSubtract ~ TimedPlotter
.

SingleEvent2 Scale o — E

No: AddSubtract needs to wait for the output of Scale.

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Discrete Event Simulation 42 /53

Issues with Simultaneous Events

Suppose the two SingleEvent sources produce two simultaneous events.
Should these be processed together by the algorithm?

DE Director

SingleEvent

'P—l—DAddSubtract TimedPlotter
" il

SingleEvent2 Scale o —

No: AddSubtract needs to wait for the output of Scale.

Processing a set of simultaneous events E may result in new simultaneous
events not in E ...

We need some systematic way to do this ...

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Discrete Event Simulation 42 /53

Back to the Alarm Example

cancel alarm N
Source Alarm

@ Alarm actor: produces event at given time ¢, unless it receives input
at time t/ <t

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Discrete Event Simulation 43 / 53

Back to the Alarm Example

cancel alarm N
Source Alarm

@ Alarm actor: produces event at given time ¢, unless it receives input
at time t/ <t

@ What if Source produces an event also at time t7

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Discrete Event Simulation 43 / 53

Back to the Alarm Example

cancel alarm N
Source Alarm

@ Alarm actor: produces event at given time ¢, unless it receives input
at time t/ <t

@ What if Source produces an event also at time t7

@ According to the semantics of Alarm, it should not raise an alarm
event.

@ Does the DE simulation algorithm guarantee this?

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Discrete Event Simulation 43 / 53

Back to the Alarm Example

cancel alarm N
Source Alarm

2 t:=0;
initialize global event queue @ with {(alarm,t), (cancel,t)};
while Q is not empty do
remove earliest event e = (v, t.) from Q;
t:=t,;
execute event e: update system state, generate possible future events, and
add them to @, ordered by timestamps; possibly remove events from @;
7: end while

AR AN R

@ Non-determinism!

» Different results depending on which of the two instantaneous events
(alarm,t) and (cancel,t) is first removed from Q.

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Discrete Event Simulation 44 / 53

Dealing with Simultaneous Events

cancel alarm A
Source Alarm Sink

e Chronological ordering (= ordering by timestamps) of events in the
queue is not enough.

@ Must also respect dependencies between simultaneous events
» Alarm’s output event at time ¢ depends on Source’s output event at
time ¢

@ How to define event dependencies?

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Discrete Event Simulation 45 / 53

Dealing with Simultaneous Events

cancel alarm A
Source Alarm Sink

e Chronological ordering (= ordering by timestamps) of events in the
queue is not enough.

@ Must also respect dependencies between simultaneous events
» Alarm’s output event at time ¢ depends on Source’s output event at
time ¢

@ How to define event dependencies?

o First let's formalize actor dependencies.

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Discrete Event Simulation 45 / 53

Dependency Relation among Actors

Let A, As be two actors in the DE model.
Define the dependency relation A1 — A (As depends on A;) as follows:

Ay — Ay = A is zero-delay (i.e., its output may have the same
timestamp as the input that produced it) and there is a connection from
an output of A7 to an input of As.

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Discrete Event Simulation 46 / 53

Dependency Relation among Actors

Let A, As be two actors in the DE model.
Define the dependency relation A1 — A (As depends on A;) as follows:

Ay — Ay = A is zero-delay (i.e., its output may have the same
timestamp as the input that produced it) and there is a connection from
an output of A7 to an input of As.

Claim: — is acyclic.

Why?

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Discrete Event Simulation 46 / 53

Dependency Relation among Actors

Let A, As be two actors in the DE model.
Define the dependency relation A1 — A (As depends on A;) as follows:

Ay — Ay = A is zero-delay (i.e., its output may have the same
timestamp as the input that produced it) and there is a connection from
an output of A7 to an input of As.

Claim: — is acyclic.

Why? Because every loop is assumed to have a non-zero-delay actor.

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Discrete Event Simulation 46 / 53

Actor Dependencies — Examples

cancel alarm N
Source Alarm Sink

Alarm — Sink

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016

Actor Dependencies — Examples

cancel alarm N
Source Alarm Sink

Alarm — Sink

DE Director

SingleEvent

’—l—D AddSubtract ~ TimedPlotter
+

SingleEvent2 Scale —t — &'

Scale — AddSubtract — TimedPlotter

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Discrete Event Simulation 47 / 53

Precedence Relation on Events

Let e; = (v1,t1) and ea = (vg, t2) be two events generated during DE
simulation.
Let A; and A5 be the recipient actors of e; and es:

@ This information can be encoded in vy, vs.

@ We assume a unique recipient per event.

> No loss of generality: can view fan-out junctions as zero-delay actors
which copy every input event to all their outputs.

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Discrete Event Simulation 48 / 53

Precedence Relation on Events

Let e; = (v1,t1) and ea = (vg, t2) be two events generated during DE
simulation.
Let A; and A5 be the recipient actors of e; and es:
@ This information can be encoded in vy, vs.
@ We assume a unique recipient per event.
> No loss of generality: can view fan-out junctions as zero-delay actors

which copy every input event to all their outputs.

We define precedence of events eq, es:

e < €9 = t1 < tg or (tl =ty and Al —* A2 and A1 7& AQ)

where —* is the transitive closure of —.

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Discrete Event Simulation 48 / 53

Precedence Relation on Events

Let e; = (v1,t1) and ea = (vg, t2) be two events generated during DE
simulation.

Let A; and A5 be the recipient actors of e; and es:
@ This information can be encoded in vy, vs.
@ We assume a unique recipient per event.

> No loss of generality: can view fan-out junctions as zero-delay actors
which copy every input event to all their outputs.

We define precedence of events eq, es:

e < €9 = t1 < tg or (tl =ty and Al —* A2 and A1 7& AQ)
where —* is the transitive closure of —.

Claim: < is acyclic.

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Discrete Event Simulation 48 / 53

Event Precedences — Examples
Assuming simultaneous events in the examples below:

Source el Alarm Sink

Alarm — Sink, therefore cancel < alarm.

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Discrete Event Simulation 49 / 53

Event Precedences — Examples
Assuming simultaneous events in the examples below:

Source el Alarm Sink

Alarm — Sink, therefore cancel < alarm.

DE Director

SingleEvent
AddSubtract ~ TimedPlotter

SingleEvent2 Scale

Suppose there are 3 events, e, es, €3, pending at the input port of Scale
and the two input ports of AddSubtract, respectively. Then:

e1 < e and e < es.

Discrete Event Simulation 49 / 53

es and eg are independent.

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016

Discrete-Event Simulation — final version

1. t:=0;
2: initialize global event queue) with a set of initial events;
// @ is always implicitly ordered w.r.t. timestamps
// and among events with same timestamp
// w.r.t. event dependencies
3: while @ is not empty do
4: remove set E of all minimal events w.r.t. < from Q;
// these are earliest and simultaneous events,
// which depend on no other events
5: t:=t.;
6: execute set of events F: update system state, generate possible future
events, and add them to @), ordered by timestamps; possibly remove events
from Q;
7: end while

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Discrete Event Simulation 50 / 53

Discrete-Event Simulation — final version

1. t:=0;
2: initialize global event queue @) with a set of initial events;
// @ is always implicitly ordered w.r.t. timestamps
// and among events with same timestamp
// w.r.t. event dependencies
3: while @ is not empty do
4: remove set F of all minimal events w.r.t. < from Q;
// these are earliest and simultaneous events,
// which depend on no other events
5: t:=t.;
6: execute set of events F: update system state, generate possible future
events, and add them to @), ordered by timestamps; possibly remove events
from Q;
7: end while

Claim: any new event e produced in step 6 is guaranteed to be greater than all
events in set E w.r.t. <. That is, either e has greater timestamp than all events
in E, or it depends on some event in F.

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Discrete Event Simulation 50 / 53

DE Simulation and HDLs

HDLs: Hardware Description Languages

Verilog, VHDL, SystemC, ...

Real-world languages

EDA (Electronics Design Automation) industry: billions of $$$

Simulation tools: based on DE simulation

But note: many variants, details, ...
» E.g., SystemC specification® is > 600 pages long.
» Description of the simulation algorithm (in English) is 16 pages long.

'|EEE Standard 1666 - 2011, freely available online
Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Discrete Event Simulation 51 /53

SystemC

Remarks:

o Co-operative multitasking: processes must release control back to the

kernel /scheduler
> Process executes forever = zeno system!

@ Processes may generate instantaneous events and the same process
may become runnable multiple times without time advancing -
immediate and delta steps

@ "“The order in which process instances are selected from the set of
runnable processes is implementation-defined.”

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Discrete Event Simulation 52 /53

SystemC

Remarks:

o Co-operative multitasking: processes must release control back to the
kernel /scheduler
> Process executes forever = zeno system!

@ Processes may generate instantaneous events and the same process
may become runnable multiple times without time advancing -
immediate and delta steps

@ "“The order in which process instances are selected from the set of
runnable processes is implementation-defined.”

@ Execution apparently not ordered w.r.t. dependencies.
= non-deterministic simulation results!

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Discrete Event Simulation 52 /53

Bibliography

R. Alur and D. Dill.

A theory of timed automata.
Theoretical Computer Science, 126:183-235, 1994.

M. Broy and K. Stglen.

Specification and development of interactive systems: focus on streams, interfaces, and refinement.
Springer, 2001.

E. Lee and A. Sangiovanni-Vincentelli.

A unified framework for comparing models of computation.

IEEE Trans. on Computer Aided Design of Integrated Circuits and Systems, 17(12):1217-1229, December 1998.
E. A Lee.

Modeling concurrent real-time processes using discrete events.
Annals of Software Engineering, 7:25-45, 1999.

J. Misra.

Distributed discrete-event simulation.
ACM Comput. Surv., 18(1):39-65, March 1986.

C. Stergiou, S. Tripakis, E. Matsikoudis, and E. A. Lee.

On the Verification of Timed Discrete-Event Models.
In 11th International Conference on Formal Modeling and Analysis of Timed Systems — FORMATS 2013. Springer, 2013.

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016

