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Timed Systems

In circuits, as well as in embedded / cyber-physical systems, timing is key:

proper timing = an issue of correctness

the right values, at the right time (not too late, not too early)

c.f. real-time control.

Contrast this to personal computers: “best-effort” systems – timing an
issue of performance.
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(Timed) Discrete-Event (DE) Systems
vs. Continuous Control Systems

Continuous control systems:

Coming from continuous system theory.

Typically implemented by periodic sampling controllers (but
sometimes also event-driven controllers): these are discrete, but try to
approximate the continuous ones.

Discrete-event systems:

More “sparse” events (typically).

Discrete control: e.g., mode switches.

Typically higher level: e.g., supervisory control (DE) vs. cruise control
(continuous).

Other application domains:
I Queueing theory.
I Circuits (VHDL, Verilog, SystemC).
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(Timed) Discrete Events

Event:

something occurring at some point in time

may also carry a value

event = (timestamp, value)

discrete-event systems: consumers/producers of event streams
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Continuous vs. Discrete Event Systems

Continuous systems: functions on continuous signals.
Continuous signal x = continuous function of dense time (R+)

x : R+ → V

x(t): value of x at time t; belongs to some set of values V (e.g., R)

Timed Discrete Event Systems: deal with timed discrete-event signals.
Timed discrete-event signal: sequence of timed events.
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DIGRESSION:

CONTINUOUS vs. DISCRETE SIGNALS
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Continuous vs. discrete signals

Intuition:

Discrete: only finite number of events can happen in a finite amount of
time.

Continuous: not discrete.

Let’s try to formalize this intuition.
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Continuous vs. discrete signals

Let R+ be the set of non-negative reals, modeling time.

Let V be a set of values.

A signal can be defined as a set of events:

s ⊆ R+ × V

(this is the tagged signal model [Lee and Sangiovanni-Vincentelli(1998)]).

Let T (s) be the set of all timestamps in signal s:

T (s) = {t | ∃(t, v) ∈ s}

Then we can define:

s is discrete if T (s) is order-isomorphic to a subset of N, where
N = {0, 1, 2, ...} is the set of natural numbers.

Otherwise, s is continuous.
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Order-isomorphisms

A order-isomorphic B means there is an order-preserving bijection
f : A→ B.

In our case the order is the usual < on R+ and N. So:

f must be a bijection: (1) f(a) must be defined for all a ∈ A, (2) for
all b ∈ B there must exist a ∈ A such that f(a) = b, and (3)
a 6= a′ ⇒ f(a) 6= f(a′).

f must be order-preserving: a < a′ ⇒ f(a) < f(a′).

Is N× N (with lexicographic order) order-isomorphic to N ?
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Continous and discrete signals

Are the signals below discrete or continuous?

s1 = {(t, t) | t ∈ R+}?

Continuous.

s2 = {(n, v) | n ∈ N, v ∈ V }? Discrete.

s3 = {(0, 0), (1, 1, ), (2, 2)}? Discrete.

s4 = {(0.3, 0), (1.27, 1, ), (2π, 2)}? Discrete.

s5 = {}? Discrete.

s6 = {(t, t) | t ∈ [0, 1]}? Continuous.

s7 = {(t, btc) | t ∈ R+}? Continuous, according to our definition. But it
is also piecewise constant, and could therefore be considered as
essentially discrete. This is how discrete signals are modeled in Simulink.
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Continuous vs. discrete signals

Our definition of discrete vs. continuous signals:

s is discrete if T (s) is order-isomorphic to a subset of N, where
N = {0, 1, 2, ...} is the set of natural numbers.

Otherwise, s is continuous.

Recall our intuition:

Discrete: only finite number of events can happen in a finite amount
of time.

Continuous: not discrete.

Does the definition capture our original intuition?
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Example: bouncing ball

Jie Liu and Edward A. Lee
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Example: bouncing ball

Jie Liu and Edward A. Lee

Zeno system: infinite # of 
discrete events in a finite 
amount of time => time blocked.
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Zeno

Zeno’s “Achilles and the tortoise” paradox:

Achilles and the tortoise enter a race. Achilles runs of course much
faster. He graciously allows the tortoise a head start of 1 meter. Who
will win?

“In a race, the quickest runner can never overtake the slowest, since
the pursuer must first reach the point whence the pursued started, so
that the slower must always hold a lead.”

(from wikipedia)
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Zeno DE systems
A DE system is zeno if it generates an infinite number of events in a finite amount of
time:

��7 

Lee 12: 19 

Zeno Signals 

Eventually, execution 
stops advancing time. 
Why? 

Note that if the Ramp is set to produce 
integer outputs, then eventually the 
output will overflow and become 
negative, which will cause an exception. 

Lee 12: 20 

Taking Stock 

�� The discrete-event model of computation is useful for 
modeling and design of time-based systems. 

�� In DE models, signals are time-stamped events, and 
events are processed in chronological order. 

�� Simultaneous events and Zeno conditions create 
subtleties that the semantics will have to deal with. 

Zeno systems are sometimes useful (c.f., bouncing ball) but often an error of modeling.
We will see how to avoid it in DE simulation, to avoid blocking time globally.
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END DIGRESSION
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Example Discrete-Event System: Dense-Time Delay

- - 6 6 66

--

6 6 66
Delay: 1

e1 e2 e4e3

R+

· · ·

2 2.9 3.5 5.1

e1 e2 e4

1 1.9 4.1

e3

· · ·

R+2.5
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Delay vs. Server
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DIGRESSION:

EVENTS vs. STATES
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From States to Events

If my formalism only has the notion of state, can I define events?

Event = change of state

Example: Lustre program

node UpwardEdge (X : bool) returns (E : bool);

let

E = false -> X and not pre X ;

tel
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From Events to States

If my formalism only has events as primitives, can I define state?

State = history of events observed so far
Formally:

Σ: set of events

Σ∗: set of finite event sequences = histories

Every s ∈ Σ∗ can be seen as a state

C.f. a famous theorem:

Theorem (Myhill-Nerode theorem)

A language L ⊆ Σ∗ is regular iff the equivalence relation over words

s ∼L s
′ =̂ ∀s′′ ∈ Σ∗ : s · s′′ ∈ L⇔ s′ · s′′ ∈ L

has a finite set of equivalence classes. The number of equivalence classes of ∼L is
the number of states in the smallest DFA recognizing L.
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END DIGRESSION
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Discrete-Event Models (DE)

Networks of actors such as Delay, Server, sources, sinks, ...

model 1 (drawing) model 2 (ptolemy)
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Example: car wash
Taken from [Misra(1986)]:

Source generates car arrivals at some arbitrary times.

Attendant directs cars to car wash stations CW1 or CW2:

I if both CW1 and CW2 are free, then to CW1;
I if only one is free, then to this free one;
I otherwise car waits until a station becomes free.
I Cars are served by attendant in FIFO order.

CW1 spends 8 mins to wash a car.

CW2 spends 10 mins to wash a car.
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Delay vs. Server

Are CW1, CW2 delays or servers?
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Analysis of DE Models

model 1 (drawing) model 2 (ptolemy)

We will look at simulation of DE models.

Exhaustive verification (model-checking) of DE models: not well
studied (see [Stergiou et al. 2013])

Well studied problem: exhaustive verification of another type of DE
system: timed automata [Alur and Dill(1994)]
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DISCRETE-EVENT SIMULATION
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Discrete-Event Simulation: Basic Idea

Standard DE simulation scheme:

1: t := 0; // initialize simulation time to 0
2: initialize global event queue Q with a set of initial events;

// events in Q ordered by timestamp
3: while Q is not empty do
4: remove earliest event e = (ve, te) from Q;
5: t := te; // advance global time
6: “execute” event e: update system state, generate possible future

events, and add them to Q, ordered by timestamps;
7: end while
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Example: Clock and Delay

1: t := 0;
2: initialize global event queue Q with a set of initial events;
3: while Q is not empty do
4: remove earliest event e = (ve, te) from Q;
5: t := te;
6: “execute” event e;
7: end while
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Example: Clock and Delay

point in algo t Q current event e
after initialization (step 2) 0 [(c0, 0), (c1, 0.6), (c2, 1.2), ...]

after step 4 [(c1, 0.6), (c2, 1.2), ...] (c0, 0)
after step 5 [(c1, 0.6), (d0, 1.0), (c2, 1.2), ...]
after step 6 0
after step 4 [(d0, 1.0), (c2, 1.2), ...] (c1, 0.6)
after step 5 [(d0, 1.0), (c2, 1.2), (d1, 1.6), ...]
after step 6 0.6
after step 4 [(c2, 1.2), (d1, 1.6), ...] (d0, 1.0)
after step 5 Q does not change, but

something gets printed
after step 6 1.0
· · ·

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Discrete Event Simulation 30 / 53

Clock period: 0.6
ci: events generated by Clock
di: events generated by Delay



Discrete-Event Simulation: Issues

1: t := 0;
2: initialize global event queue Q with a set of initial events;
3: while Q is not empty do
4: remove earliest event e = (ve, te) from Q;
5: t := te;
6: “execute” event e: update system state, generate possible future events,

and add them to Q, ordered by timestamps;
7: end while

Appears intuitive, but details are left unspecified: steps 2, 6.

Not modular : step 6 appears to work on the entire system state, not on
individual actors.

How to make such a scheme completely modular is an active topic of
research (we will come back to this).

Let’s try to flesh out the details of steps 2 and 6.

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Discrete Event Simulation 31 / 53



Discrete-Event Simulation: Issues

1: t := 0;
2: initialize global event queue Q with a set of initial events;
3: while Q is not empty do
4: remove earliest event e = (ve, te) from Q;
5: t := te;
6: “execute” event e: update system state, generate possible future events,

and add them to Q, ordered by timestamps;
7: end while

Appears intuitive, but details are left unspecified: steps 2, 6.

Not modular : step 6 appears to work on the entire system state, not on
individual actors.

How to make such a scheme completely modular is an active topic of
research (we will come back to this).

Let’s try to flesh out the details of steps 2 and 6.

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Discrete Event Simulation 31 / 53



Modeling Source Actors
Source actor = an actor with no inputs.

Clock is a source:

Option 1 – sources generate all their events at initialization.

I Simulation time is finite, so presumably only finite number of events.
I But it may be very large.

Option 2 – model sources using feedback loops with initial events:
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Feedback loops are necessary in general
Example: car wash (taken from [Misra(1986)]):

Source generates car arrivals at some arbitrary times (e.g., at times 3, 8, 9, 14, 16,
22)

Attendant directs cars to car wash stations CW1 or CW2:

I if both CW1 and CW2 are free, then to CW1
I if only one is free, then to this free one
I otherwise car waits until a station becomes free
I cars are served by attendant in FIFO order

CW1 (a server actor) spends 8 mins to wash a car

CW2 (a server actor) spends 10 mins to wash a car
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But feedback loops can also be dangerous ...

��7 

Lee 12: 19 

Zeno Signals 

Eventually, execution 
stops advancing time. 
Why? 

Note that if the Ramp is set to produce 
integer outputs, then eventually the 
output will overflow and become 
negative, which will cause an exception. 

Lee 12: 20 

Taking Stock 

�� The discrete-event model of computation is useful for 
modeling and design of time-based systems. 

�� In DE models, signals are time-stamped events, and 
events are processed in chronological order. 

�� Simultaneous events and Zeno conditions create 
subtleties that the semantics will have to deal with. 
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Avoiding Zeno Systems

Suppose we add a constant (or at least bounded from below) non-zero
delay in every feedback loop:

Is it sufficient to avoid zenoness?

Yes. Exercise: prove it.

From now on we assume a constant non-zero delay in every feedback loop.

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Discrete Event Simulation 35 / 53



Avoiding Zeno Systems

Suppose we add a constant (or at least bounded from below) non-zero
delay in every feedback loop:

Is it sufficient to avoid zenoness?

Yes. Exercise: prove it.

From now on we assume a constant non-zero delay in every feedback loop.

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Discrete Event Simulation 35 / 53



Avoiding Zeno Systems

Suppose we add a constant (or at least bounded from below) non-zero
delay in every feedback loop:

Is it sufficient to avoid zenoness?

Yes. Exercise: prove it.

From now on we assume a constant non-zero delay in every feedback loop.

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Discrete Event Simulation 35 / 53



Another Example: Alarm

Source Alarm Sink
cancel alarm

Alarm actor: produces event at given time t, unless it receives input
at time t′ ≤ t.

How does the DE simulation algorithm handle this example?

It appears that Alarm should post an initial event with time t

... but this event may then have to be canceled during simulation if
something arrives at the input before t.

Canceling events = removing them from the event queue.
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Why insert events only to cancel them later?

Whether an event will be generated before t may not always be easy to
determine:

Some complex model Alarm Sink
cancel alarm

DE algorithm must work independently of how Alarm is connected.

That’s what modular means.
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Discrete-Event Simulation – version 2

1: t := 0;
2: initialize global event queue Q with a set of initial events;
3: while Q is not empty do
4: remove earliest event e = (ve, te) from Q;
5: t := te;
6: execute event e: update system state, generate possible future

events, and add them to Q, ordered by timestamps; possibly remove
events from Q;

7: end while
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Another Issue: Simultaneous Events

The AddSubtract actor is supposed to behave as follows:

If it receives two simultaneous events, it adds/subtracts their values and
produces a single event at its output with the resulting value.

If it receives an event in just one of the two inputs, it simply forwards it.

Suppose the two SingleEvent actors produce two simultaneous events with the
same value x.

What should the output be?

A single event with value x− x = 0.
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Another Issue: Simultaneous Events

How to achieve the desired behavior with the DE simulation algorithm?

1: t := 0;
2: initialize global event queue Q with a set of initial events;
3: while Q is not empty do
4: remove earliest event e = (ve, te) from Q;
5: t := te;
6: execute event e: update system state, generate possible future events, and add

them to Q, ordered by timestamps; possibly remove events from Q;
7: end while
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Discrete-Event Simulation – version 3

It appears that the DE simulation algorithm must execute sets of
simultaneous events, instead of one event at a time:

1: t := 0;
2: initialize global event queue Q with a set of initial events;
3: while Q is not empty do
4: remove earliest event e = (ve, te) set E of all (?) simultaneous earliest

events from Q;
5: t := te;
6: execute event e set of events E: update system state, generate possible

future events, and add them to Q, ordered by timestamps; possibly remove
events from Q;

7: end while

Not as simple ...
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Issues with Simultaneous Events

Suppose the two SingleEvent sources produce two simultaneous events.
Should these be processed together by the algorithm?

No: AddSubtract needs to wait for the output of Scale.

Processing a set of simultaneous events E may result in new simultaneous
events not in E ...

We need some systematic way to do this ...
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Back to the Alarm Example

Source Alarm Sink
cancel alarm

Alarm actor: produces event at given time t, unless it receives input
at time t′ ≤ t

What if Source produces an event also at time t?

According to the semantics of Alarm, it should not raise an alarm
event.

Does the DE simulation algorithm guarantee this?
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Back to the Alarm Example

Source Alarm Sink
cancel alarm

1: t := 0;
2: initialize global event queue Q with {(alarm, t), (cancel, t)};
3: while Q is not empty do
4: remove earliest event e = (ve, te) from Q;
5: t := te;
6: execute event e: update system state, generate possible future events, and

add them to Q, ordered by timestamps; possibly remove events from Q;
7: end while

Non-determinism!
I Different results depending on which of the two instantaneous events

(alarm, t) and (cancel, t) is first removed from Q.
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Dealing with Simultaneous Events

Source Alarm Sink
cancel alarm

Chronological ordering (= ordering by timestamps) of events in the
queue is not enough.

Must also respect dependencies between simultaneous events
I Alarm’s output event at time t depends on Source’s output event at

time t

How to define event dependencies?

First let’s formalize actor dependencies.
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Dependency Relation among Actors

Let A1, A2 be two actors in the DE model.

Define the dependency relation A1 → A2 (A2 depends on A1) as follows:

A1 → A2 =̂ A1 is zero-delay (i.e., its output may have the same
timestamp as the input that produced it) and there is a connection from
an output of A1 to an input of A2.

Claim: → is acyclic.

Why? Because every loop is assumed to have a non-zero-delay actor.
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Actor Dependencies – Examples

Source Alarm Sink
cancel alarm

Alarm → Sink

Scale → AddSubtract → TimedPlotter
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Precedence Relation on Events

Let e1 = (v1, t1) and e2 = (v2, t2) be two events generated during DE
simulation.

Let A1 and A2 be the recipient actors of e1 and e2:

This information can be encoded in v1, v2.

We assume a unique recipient per event.
I No loss of generality: can view fan-out junctions as zero-delay actors

which copy every input event to all their outputs.

We define precedence of events e1, e2:

e1 ≺ e2 =̂ t1 < t2 or
(
t1 = t2 and A1 →∗ A2 and A1 6= A2

)
where →∗ is the transitive closure of →.

Claim: ≺ is acyclic.
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Event Precedences – Examples
Assuming simultaneous events in the examples below:

Source Alarm Sink
cancel alarm

Alarm → Sink, therefore cancel ≺ alarm.

Suppose there are 3 events, e1, e2, e3, pending at the input port of Scale
and the two input ports of AddSubtract, respectively. Then:

e1 ≺ e2 and e1 ≺ e3.

e2 and e3 are independent.
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Discrete-Event Simulation – final version

1: t := 0;
2: initialize global event queue Q with a set of initial events;

// Q is always implicitly ordered w.r.t. timestamps
// and among events with same timestamp
// w.r.t. event dependencies

3: while Q is not empty do
4: remove set E of all minimal events w.r.t. ≺ from Q;

// these are earliest and simultaneous events,
// which depend on no other events

5: t := te;
6: execute set of events E: update system state, generate possible future

events, and add them to Q, ordered by timestamps; possibly remove events
from Q;

7: end while

Claim: any new event e produced in step 6 is guaranteed to be greater than all
events in set E w.r.t. ≺. That is, either e has greater timestamp than all events
in E, or it depends on some event in E.
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DE Simulation and HDLs

HDLs: Hardware Description Languages

Verilog, VHDL, SystemC, ...

Real-world languages

EDA (Electronics Design Automation) industry: billions of $$$

Simulation tools: based on DE simulation

But note: many variants, details, ...
I E.g., SystemC specification1 is > 600 pages long.
I Description of the simulation algorithm (in English) is 16 pages long.

1IEEE Standard 1666 - 2011, freely available online
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SystemC

Remarks:

Co-operative multitasking: processes must release control back to the
kernel/scheduler

I Process executes forever ⇒ zeno system!

Processes may generate instantaneous events and the same process
may become runnable multiple times without time advancing –
immediate and delta steps

“The order in which process instances are selected from the set of
runnable processes is implementation-defined.”

Execution apparently not ordered w.r.t. dependencies.
⇒ non-deterministic simulation results!
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