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Timed Systems

In circuits, as well as in embedded / cyber-physical systems, timing is key:
@ proper timing = an issue of correctness
o the right values, at the right time (not too late, not too early)

o c.f. real-time control.

Contrast this to personal computers: “best-effort” systems — timing an
issue of performance.
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(Timed) Discrete-Event (DE) Systems
vs. Continuous Control Systems

Continuous control systems:
@ Coming from continuous system theory.

e Typically implemented by periodic sampling controllers (but
sometimes also event-driven controllers): these are discrete, but try to
approximate the continuous ones.

Discrete-event systems:
@ More “sparse” events (typically).
@ Discrete control: e.g., mode switches.

e Typically higher level: e.g., supervisory control (DE) vs. cruise control
(continuous).
@ Other application domains:

» Queueing theory.
» Circuits (VHDL, Verilog, SystemC).
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(Timed) Discrete Events

Event:
@ something occurring at some point in time
@ may also carry a value
@ event = (timestamp, value)
°

discrete-event systems: consumers/producers of event streams
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Continuous vs. Discrete Event Systems

@ Continuous systems: functions on continuous signals.
Continuous signal x = continuous function of dense time (R.)

z:Ry =V

z(t): value of x at time t; belongs to some set of values V (e.g., R)

@ Timed Discrete Event Systems: deal with timed discrete-event signals.
Timed discrete-event signal: sequence of timed events.
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DIGRESSION:
CONTINUOUS vs. DISCRETE SIGNALS
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Continuous vs. discrete signals

Intuition:

Discrete: only finite number of events can happen in a finite amount of
time.

Continuous: not discrete.
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Continuous vs. discrete signals

Intuition:

Discrete: only finite number of events can happen in a finite amount of
time.

Continuous: not discrete.

Let's try to formalize this intuition.
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Continuous vs. discrete signals

Let R4 be the set of non-negative reals, modeling time.
Let V' be a set of values.
A signal can be defined as a set of events:

sCRy xV

(this is the tagged signal model [Lee and Sangiovanni-Vincentelli(1998)]).
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Continuous vs. discrete signals
Let R4 be the set of non-negative reals, modeling time.
Let V' be a set of values.
A signal can be defined as a set of events:
sCRy xV
(this is the tagged signal model [Lee and Sangiovanni-Vincentelli(1998)]).

Let T'(s) be the set of all timestamps in signal s:

T(s)={t|3(,v) € s}
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Continuous vs. discrete signals
Let R4 be the set of non-negative reals, modeling time.
Let V' be a set of values.
A signal can be defined as a set of events:
sCRy xV
(this is the tagged signal model [Lee and Sangiovanni-Vincentelli(1998)]).
Let T'(s) be the set of all timestamps in signal s:

T(s) ={t|3(t,v) € s}

Then we can define:

@ s is discrete if T'(s) is order-isomorphic to a subset of N, where
N={0,1,2,...} is the set of natural numbers.

@ Otherwise, s is continuous.
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Order-isomorphisms

A order-isomorphic B means there is an order-preserving bijection
f:A— B.

In our case the order is the usual < on Ry and N. So:

e f must be a bijection: (1) f(a) must be defined for all a € A, (2) for
all b € B there must exist a € A such that f(a) = b, and (3)
a#d = f(a) # f(d).

e f must be order-preserving: a < a' = f(a) < f(d').
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Order-isomorphisms

A order-isomorphic B means there is an order-preserving bijection
f:A— B.

In our case the order is the usual < on Ry and N. So:

e f must be a bijection: (1) f(a) must be defined for all a € A, (2) for
all b € B there must exist a € A such that f(a) = b, and (3)
a#a = f(a) # f(d).

e f must be order-preserving: a < a' = f(a) < f(d').
Is N x N (with lexicographic order) order-isomorphic to N ?
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Continous and discrete signals

Are the signals below discrete or continuous?

s1={(t,t) |t e R, }?
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Continous and discrete signals

Are the signals below discrete or continuous?

s1 ={(t,t) |t € Ry}?  Continuous.
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Continous and discrete signals

Are the signals below discrete or continuous?
s1 ={(t,t) |t € Ry}?  Continuous.

so={(n,v) | neNveV}?
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Continous and discrete signals

Are the signals below discrete or continuous?
s1 ={(t,t) |t € Ry}?  Continuous.

sy ={(n,v) [ neN,veV}? Discrete.
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Continous and discrete signals

Are the signals below discrete or continuous?
s1 ={(t,t) |t € Ry}?  Continuous.
sy ={(n,v) [ neN,veV}? Discrete.

S3 = {(07 0)7 (1’ 1, )7 (27 2)}?
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Continous and discrete signals

Are the signals below discrete or continuous?
s1 ={(t,t) |t € Ry}?  Continuous.
sy ={(n,v) [ neN,veV}? Discrete.

s3 ={(0,0),(1,1,),(2,2)}? Discrete.
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Continous and discrete signals

Are the signals below discrete or continuous?

s1 ={(t,t) |t € Ry}?  Continuous.
={(n,v) |neN,v e V}? Discrete.
(0
(0

=1
{

,0),(1,1,),(2,2)}? Discrete.

3,0), (1.27,1,), (2m,2)}?
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Continous and discrete signals

Are the signals below discrete or continuous?

s1 ={(t,t) |t € Ry}?  Continuous.
={(n,v) |neN,v e V}? Discrete.
(0
(0

=1
{

,0),(1,1,),(2,2)}? Discrete.

.3,0),(1.27,1,),(2m,2)}?  Discrete.
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Continous and discrete signals

Are the signals below discrete or continuous?
S1 = {

(t,t) |t e R.}?  Continuous.
={(n,v) [ neN,v e V}? Discrete.
(0,

={(0,0),(1,1,),(2,2)}? Discrete.
sq ={(0.3,0),(1.27,1,), (27, 2)}?  Discrete.
S5 — {}?
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Continous and discrete signals

Are the signals below discrete or continuous?

s1 = {(t,

={(n,v) | neN,v e V}? Discrete.
0,

{(0,0),(1,1,),(2,2)}? Discrete.

t)|t € Ry}?  Continuous.

sq ={(0.3,0),(1.27,1,), (27, 2)}?  Discrete.

ss ={}? Discrete.
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Continous and discrete signals

Are the signals below discrete or continuous?

s1 = {(t,

={(n,v) | neN,v e V}? Discrete.
0,

{(0,0),(1,1,),(2,2)}? Discrete.

t)|t € Ry}?  Continuous.

sq ={(0.3,0),(1.27,1,), (27, 2)}?  Discrete.

ss ={}? Discrete.

s¢ = {(t,t) | t €[0,1]}7?
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Continous and discrete signals

Are the signals below discrete or continuous?

s1 = {(t,

={(n,v) | neN,v e V}? Discrete.
0,

{(0,0),(1,1,),(2,2)}? Discrete.

t)|t € Ry}?  Continuous.

sq ={(0.3,0),(1.27,1,), (27, 2)}?  Discrete.

ss ={}? Discrete.

s¢ = {(t,t) | t €10,1]}?  Continuous.
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Continous and discrete signals

Are the signals below discrete or continuous?

s1 = {(t,
={(n,v) |neN,v e V}? Discrete.

{(0,0),(1,1,),(2,2)}? Discrete.

s4 ={(0.3,0),(1.27,1,),(27,2)}?  Discrete.

t)|t € Ry}?  Continuous.

ss ={}? Discrete.
s¢ = {(t,t) | t €10,1]}?  Continuous.

st={(t,t]) |t € Ry}?
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Continous and discrete signals

Are the signals below discrete or continuous?

s1 ={(t,t) |t € Ry}?  Continuous.
={(n,v) |neN,v e V}? Discrete.
={(0,0),(1,1,),(2,2)}? Discrete.

sy = {(0.3,0),(1.27,1,),(2m,2)}?  Discrete.
ss ={}? Discrete.
s¢ = {(t,t) | t €[0,1]}?  Continuous.

sy ={(t,[t]) |t e R4}?  Continuous, according to our definition. But it
is also piecewise constant, and could therefore be considered as
essentially discrete. This is how discrete signals are modeled in Simulink.
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Continuous vs. discrete signals

Our definition of discrete vs. continuous signals:

e s is discrete if T'(s) is order-isomorphic to a subset of N, where
N ={0,1,2,...} is the set of natural numbers.

@ Otherwise, s is continuous.

Recall our intuition:

@ Discrete: only finite number of events can happen in a finite amount
of time.
o Continuous: not discrete.

Does the definition capture our original intuition?
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Example: bouncing ball

to simulate a bouncing k|

This is a classic example

an infinite number of bo

time. Open the Ball Mod
TimedPlotter

Ball Model This =
it installed, you can get it from:

hitp://java.sun.com/products/java-media/3D/.

Periodicsampler scale

Animate Ball

Position
1 10
9
8
o7
36

£
£s
24
3
2
1
0
o 5 15 20 25
time (sec)

Jie Liu and Edward A. Lee

Stavros Tripakis

C Berkeley)

velociy g e s
free.initialPosition = initialPosition; nbs(puslllon}_< stoppedThreshold
free.init ity = 0.0 =

position

gum;»sump isPresent "

Hesintiavelocty - ~elasticy* m«\.w

free initialPosition = pos
The transition from init free Initializes the ball position a\:d velocity.
The self transition on,free is triggered when a bump has been,detected
(inside the state refifement). The set actions on the transition teverse
the velocity (with some loss due to elasticity). The transition to the
stop state is takeh when the position and velocity have gotten small
enough that we decide the ball has stopped. If this transition is 5
removed, thén in theory time cannot progress past a certain point.
In practice, numerical errors domainate and eventually the bump is
not detected. Try it.
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Continuous Director
This models the dynamics of a ball
falling in a gravitational field.

Gravitational
Force

Velocity .

Position e

LevelCrossingDetector
bump
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. . Zeno system: infinite # of
Example. bouncmg ball discrete events in a finite

amount of time => time blocked.

) quard: true

set
free.initialPositior
free.init it

to simulate a bouncing t .
. - el

This is a classic example position
an infinite number of bo
time. Open the Ball Mod

mp_isPresent N
itialVelocity = -elasticity * velogi
Position = posti

TimedPlotter

sal ogel This _ X
it installed, you can get it from: oy PR e el p2 "
rap:/ vl o/ prodctsfava-med /301 The transition from init 16 free initializes the ball position and velocity.

The self transition on,free is triggered when a bump has been detected
peradicsampler scle pnimate gall (inside the state refirfement). The set actions on the transition feverse

the velocity (with some loss due to elasticity). The transition to the
stop state is takeh when the position and velocity have gotten small
enough that we decide the ball has stopped. If this transition is
removed, thén in theory time cannot progress past a certain point.
In practice, numerical errors domainate and eventually the bump is
not detected. Try it. N
Position - —

L

N S I -

Continuous Director
This models the dynamics of a ball
falling in a gravitational field.

Gravitational Velocity

Force velocity

height meters

Position e

LevelCrossingDetector
bump

20 25

15
time (sec)

Jie Liu and Edward A. Lee

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Discrete Event Simulation 11 / 53




ZENCN  FELEATES -

Zeno's “Achilles and the tortoise” paradox:

@ Achilles and the tortoise enter a race. Achilles runs of course much
faster. He graciously allows the tortoise a head start of 1 meter. Who
will win?
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ZENCN  FELEATES -

Zeno's “Achilles and the tortoise” paradox:

@ Achilles and the tortoise enter a race. Achilles runs of course much

faster. He graciously allows the tortoise a head start of 1 meter. Who
will win?

“In a race, the quickest runner can never overtake the slowest, since
the pursuer must first reach the point whence the pursued started, so
that the slower must always hold a lead.”

(from wikipedia)
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Zeno DE systems
A DE system is zeno if it generates
time:

an infinite number of events in a finite amount of

F3 zeno. TimedPlotter

Fle Edt Specel Hep
Zeno SIgna|S Zeno Conditions L

| BE |

10 12 14 16 18 20
Time

00 02 04 06 08

Clock

s 0.0
valves (1.2}

SingleEvent Merge
VariableDelay

Eventually, execution
stops advancing time.
Why?

This model ilustrates a Zeno condition, where an infinite number of events
oceur before time 2.0, and hence the Clock actor is unable to ever produce

its output at time 2.0.

Note that if the Ramp is set to produce
integer outputs, then eventually the
output will overflow and become

negative, which will cause an exception.
Lee 12: 19

Zeno systems are sometimes useful (c.f., bouncing ball) but often an error of modeling.

We will see how to avoid it in DE simulation, to avoid blocking time globally.
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END DIGRESSION
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Example Discrete-Event System: Dense-Time Delay

€1 €9 €3 €y €1 €9 €3 €y
L 1] [ 1 ]
1 19 2.5 4.1 Ry 2.9 3.5 51 Ry
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Delay vs. Server

DE Director

PoissonClock

P

TimeDelay

TimedPlotter

in e
delay x
server o

00 05 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
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DIGRESSION:
EVENTS vs. STATES

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016



From States to Events

If my formalism only has the notion of state, can | define events?
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From States to Events

If my formalism only has the notion of state, can | define events?

Event = change of state
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From States to Events

If my formalism only has the notion of state, can | define events?

Event = change of state

Example: Lustre program

node UpwardEdge (X : bool) returns (E : bool);

let
E = false -> X and not pre X ;

tel
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From Events to States

If my formalism only has events as primitives, can | define state?
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From Events to States

If my formalism only has events as primitives, can | define state?

State = history of events observed so far
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From Events to States

If my formalism only has events as primitives, can | define state?

State = history of events observed so far
Formally:

@ X: set of events

@ X*: set of finite event sequences = histories

o Every s € ¥* can be seen as a state
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From Events to States

If my formalism only has events as primitives, can | define state?

State = history of events observed so far
Formally:

@ X set of events

@ X*: set of finite event sequences = histories

o Every s € ¥* can be seen as a state

C.f. a famous theorem:

Theorem (Myhill-Nerode theorem)

A language L C ¥* is regular iff the equivalence relation over words
s~ s 2 Vs'e¥r:is.s"eles s"el

has a finite set of equivalence classes. The number of equivalence classes of ~, is
the number of states in the smallest DFA recognizing L.

v
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END DIGRESSION
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Discrete-Event Models (DE)

Networks of actors such as Delay, Server, sources, sinks, ...

DE Director

C.W1 mw-r@ncmﬂ( TimedPlotter
attendant l I
source \s*l':

model 1 (drawing) model 2 (ptolemy)
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Example: car wash
Taken from [Misra(1986)]:

ICW1I

attendant l—l \*I

source sink

@ Source generates car arrivals at some arbitrary times.

@ Attendant directs cars to car wash stations CW1 or CW2:
if both CW1 and CW?2 are free, then to CW1;

» if only one is free, then to this free one;

» otherwise car waits until a station becomes free.
» Cars are served by attendant in FIFO order.

@ CW1 spends 8 mins to wash a car.

\4

@ CW2 spends 10 mins to wash a car.
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Delay vs. Server

Are CW1, CW2 delays or servers?

attendant

source

Stavros Tripakis (UC Berkeley)

;CW‘II

L1
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sink

Discrete Event Simulation

25 / 53



Analysis of DE Models

DE Director

PoissonClock

tringer f |

TimedPlotter

attendant

A

source sink

model 1 (drawing) model 2 (ptolemy)

o We will look at simulation of DE models.

e Exhaustive verification (model-checking) of DE models: not well
studied (see [Stergiou et al. 2013])
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Analysis of DE Models

DE Director

PoissonClack
= TimedPlotter

tringer f |

attendant

A

source sink

model 1 (drawing) model 2 (ptolemy)

@ We will look at simulation of DE models.

e Exhaustive verification (model-checking) of DE models: not well
studied (see [Stergiou et al. 2013])

@ Well studied problem: exhaustive verification of another type of DE
system: timed automata [Alur and Dill(1994)]
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DISCRETE-EVENT SIMULATION
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Discrete-Event Simulation: Basic Idea

Standard DE simulation scheme:

1 t:=0; // initialize simulation time to 0

. initialize global event queue Q with a set of initial events;
// events in () ordered by timestamp

3: while Q is not empty do

4:  remove earliest event e = (v, te) from @Q;

5

6

N

ti=te; // advance global time
“execute” event e: update system state, generate possible future
events, and add them to (), ordered by timestamps;

7: end while
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Example: Clock and Delay

DE Director

DiscreteClock TimeDelay TimedPlotter )
triggerp Clock period: 0.6
ci: events generated by Clock

d;: events generated by Delay

periochy

£ 3

1: t:=0;

2: initialize global event queue @ with a set of initial events;
3: while Q is not empty do

4. remove earliest event e = (ve, te) from Q;

5: t = te;

6: “execute” event e;

7: end while

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Discrete Event Simulation 29 /53



Example: Clock and Delay

DE Director
Clock period: 0.6
DiscreteClock TimeDelay Timedplotter Ci: €VeNts generated by Clock
} d;: events generated by Delay
point in algo t Q current event e
after initialization (step 2) 0 [(c0,0), (c1,0.6), (c2,1.2),...]

after step 4 [(c1,0.6), (c2,1.2),..] (co,0)
after step 5 [(c1,0.6), (do, 1.0), (¢c2,1.2), ...]
after step 6 0
after step 4 [(do, 1.0), (e2,1.2),...] (c1,0.6)
after step 5 [(do, 1.0), (c2,1.2),(d1,1.6),...]
after step 6 0.6
after step 4 [(c2,1.2),(d1,1.6),...] (do, 1.0)
after step 5 @ does not change, but

something gets printed

after step 6 1.0
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Discrete-Event Simulation: Issues

1. t:=0;

2: initialize global event queue @ with a set of initial events;

3: while @ is not empty do

4:  remove earliest event ¢ = (v, te) from Q;

5: t:=t.;

6: “execute” event e: update system state, generate possible future events,
and add them to @), ordered by timestamps;

7: end while

@ Appears intuitive, but details are left unspecified: steps 2, 6.

@ Not modular : step 6 appears to work on the entire system state, not on
individual actors.

@ How to make such a scheme completely modular is an active topic of
research (we will come back to this).
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Discrete-Event Simulation: Issues

1. t:=0;

2: initialize global event queue @ with a set of initial events;

3: while @ is not empty do

4:  remove earliest event ¢ = (v, te) from Q;

5: t:=t.;

6: “execute” event e: update system state, generate possible future events,
and add them to @), ordered by timestamps;

7: end while

@ Appears intuitive, but details are left unspecified: steps 2, 6.

@ Not modular : step 6 appears to work on the entire system state, not on
individual actors.

@ How to make such a scheme completely modular is an active topic of
research (we will come back to this).

Let's try to flesh out the details of steps 2 and 6.
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Modeling Source Actors
Source actor = an actor with no inputs.

DE Director

DiscreteClock TimeDelay TimedPlotter

delay of:
1.0

A

triggery|

periody

Clock is a source:
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Modeling Source Actors
Source actor = an actor with no inputs.

DE Director

DiscreteClock TimeDelay TimedPlotter
tiggery]

g8

period |

doxs

ES

Clock is a source:

@ Option 1 — sources generate all their events at initialization.

» Simulation time is finite, so presumably only finite number of events.
» But it may be very large.
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Modeling Source Actors
Source actor = an actor with no inputs.

DE Director

DiscreteClock TimeDelay TimedPlotter

delay of:
1.0 5

A

triggery|

periody]

Clock is a source:

@ Option 1 — sources generate all their events at initialization.

» Simulation time is finite, so presumably only finite number of events.
» But it may be very large.

@ Option 2 — model sources using feedback loops with initial events:

DE Director

TimeDela: !
SampleDelay y TimedPlotter

TimeDelay2

0.6
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Feedback loops are necessary in general
Example: car wash (taken from [Misra(1986)]):

attendant

[ ow | 1
I

source sink

@ Source generates car arrivals at some arbitrary times (e.g., at times 3, 8, 9, 14, 16,

22)

@ Attendant directs cars to car wash stations CW1 or CW2:

>

>
>
>

if both CW1 and CW?2 are free, then to CW1
if only one is free, then to this free one
otherwise car waits until a station becomes free
cars are served by attendant in FIFO order

@ CW1 (a server actor) spends 8 mins to wash a car

@ CW2 (a server actor) spends 10 mins to wash a car
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But feedback loops can also be dangerous ...

¥4 zeno. TimedPlotter g@@

File Edt Special Help
Zeno Signals Zeno Conditions EE@E
20F T i f i i i i i ™

DE Director Clock
TimedPlotter

period: 1.0
offsets: {0.0}
values: {1.2}

SingleEvent Merge

. VariableDelay
time: 0.0
value: 1.0

Esression Eventually, execution
stops advancing time.

This model illustrates a Zeno condition, where an infinite number of events Why’?
occur before time 2.0, and hence the Clock actor is unable to ever produce
its output at time 2.0.

Note that if the Ramp is set to produce
integer outputs, then eventually the
output will overflow and become
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Avoiding Zeno Systems

Suppose we add a constant (or at least bounded from below) non-zero
delay in every feedback loop:

DE Director
TimeDelay
delay of:
1.0
JAY
SingleEvent Merge TimedPlotter
I

Is it sufficient to avoid zenoness?
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Avoiding Zeno Systems

Suppose we add a constant (or at least bounded from below) non-zero
delay in every feedback loop:

DE Director
TimeDelay
delay of:
1.0
JAY
SingleEvent Merge TimedPlotter
I

Is it sufficient to avoid zenoness?

Yes. Exercise: prove it.
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Avoiding Zeno Systems

Suppose we add a constant (or at least bounded from below) non-zero

delay in every feedback loop:

DE Director

SingleEvent

_T_ |

TimeDelay

delay of:

1.0
A

Merge

Is it sufficient to avoid zenoness?

Yes. Exercise: prove it.

TimedPlotter

From now on we assume a constant non-zero delay in every feedback loop.

Stavros Tripakis (UC Berkeley)

EE 144/244, Fall 2016

Discrete Event Simulation
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Another Example: Alarm

cancel alarm N
Source Alarm

@ Alarm actor: produces event at given time ¢, unless it receives input
at time ¢/ < t.
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Another Example: Alarm

cancel alarm N
Source Alarm

@ Alarm actor: produces event at given time ¢, unless it receives input
at time ¢/ < t.

@ How does the DE simulation algorithm handle this example?
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Another Example: Alarm

cancel alarm .
Source

@ Alarm actor: produces event at given time ¢, unless it receives input
at time t/ < ¢.

@ How does the DE simulation algorithm handle this example?

@ It appears that Alarm should post an initial event with time ¢

... but this event may then have to be canceled during simulation if
something arrives at the input before ¢.

@ Canceling events = removing them from the event queue.
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Why insert events only to cancel them later?

Whether an event will be generated before ¢ may not always be easy to
determine:

cancel

Some complex model

e DE algorithm must work independently of how Alarm is connected.

@ That's what modular means.
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Discrete-Event Simulation — version 2

s t:=0;

initialize global event queue @ with a set of initial events;

while @ is not empty do
remove earliest event e = (ve, t.) from Q;
t:=te;
execute event e: update system state, generate possible future
events, and add them to @), ordered by timestamps; possibly remove
events from @Q);

7: end while

ISA A
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Another Issue: Simultaneous Events

DE Director

SingleEvent
| '—LD AddSubtract TimedPlotter
oo

+
SingleEven:Z_J_D _ g

The AddSubtract actor is supposed to behave as follows:

@ If it receives two simultaneous events, it adds/subtracts their values and
produces a single event at its output with the resulting value.

@ If it receives an event in just one of the two inputs, it simply forwards it.

Suppose the two SingleEvent actors produce two simultaneous events with the
same value x.

What should the output be?
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Another Issue: Simultaneous Events

DE Director

SingleEvent
| '—LD AddSubtract TimedPlotter
oo

+
SingleEven:Z_J_D _ g

The AddSubtract actor is supposed to behave as follows:

@ If it receives two simultaneous events, it adds/subtracts their values and
produces a single event at its output with the resulting value.

@ If it receives an event in just one of the two inputs, it simply forwards it.

Suppose the two SingleEvent actors produce two simultaneous events with the
same value x.

What should the output be? A single event with value z — x = 0.
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Another Issue: Simultaneous Events

How to achieve the desired behavior with the DE simulation algorithm?

DE Director

SingleEvent

| F—LD AddSubtract TimedPlotter
I5]

+

SingleEven:Z_J_D _

1. t:=0;

2: initialize global event queue @ with a set of initial events;

3: while Q is not empty do

4:  remove earliest event e = (v, te) from Q;

5: t:=te;

6: execute event e: update system state, generate possible future events, and add
them to @, ordered by timestamps; possibly remove events from Q;

7: end while
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Discrete-Event Simulation — version 3

It appears that the DE simulation algorithm must execute sets of
simultaneous events, instead of one event at a time:

s ti=0;

initialize global event queue @ with a set of initial events;

while @ is not empty do

remove earliest-event-e-="{vets) set E of all (?) simultaneous earliest
events from Q);

: t:=t.;

6: execute evente set of events E: update system state, generate possible
future events, and add them to @, ordered by timestamps; possibly remove
events from Q);

7: end while

bl o A e
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Discrete-Event Simulation — version 3

It appears that the DE simulation algorithm must execute sets of
simultaneous events, instead of one event at a time:

s ti=0;

initialize global event queue @ with a set of initial events;

while @ is not empty do

remove earliest-event-e-="{vets) set E of all (?) simultaneous earliest
events from Q);

: t:=t.;

6: execute evente set of events E: update system state, generate possible
future events, and add them to @, ordered by timestamps; possibly remove
events from Q);

7: end while

bl o A e

Not as simple ...
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Issues with Simultaneous Events

Suppose the two SingleEvent sources produce two simultaneous events.
Should these be processed together by the algorithm?

DE Director

SingleEvent

P—l—D AddSubtract ~ TimedPlotter
.

SingleEvent2 Scale o — E
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Issues with Simultaneous Events

Suppose the two SingleEvent sources produce two simultaneous events.
Should these be processed together by the algorithm?

DE Director

SingleEvent

P—l—D AddSubtract ~ TimedPlotter
.

SingleEvent2 Scale o — E

No: AddSubtract needs to wait for the output of Scale.
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Issues with Simultaneous Events

Suppose the two SingleEvent sources produce two simultaneous events.
Should these be processed together by the algorithm?

DE Director

SingleEvent

'P—l—DAddSubtract TimedPlotter
" il

SingleEvent2 Scale o —

No: AddSubtract needs to wait for the output of Scale.

Processing a set of simultaneous events E may result in new simultaneous
events not in E ...

We need some systematic way to do this ...
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Back to the Alarm Example

cancel alarm N
Source Alarm

@ Alarm actor: produces event at given time ¢, unless it receives input
at time t/ <t
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Back to the Alarm Example

cancel alarm N
Source Alarm

@ Alarm actor: produces event at given time ¢, unless it receives input
at time t/ <t

@ What if Source produces an event also at time t7
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Back to the Alarm Example

cancel alarm N
Source Alarm

@ Alarm actor: produces event at given time ¢, unless it receives input
at time t/ <t

@ What if Source produces an event also at time t7

@ According to the semantics of Alarm, it should not raise an alarm
event.

@ Does the DE simulation algorithm guarantee this?
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Back to the Alarm Example

cancel alarm N
Source Alarm

2 t:=0;
initialize global event queue @ with {(alarm,t), (cancel,t)};
while Q is not empty do
remove earliest event e = (v, t.) from Q;
t:=t,;
execute event e: update system state, generate possible future events, and
add them to @, ordered by timestamps; possibly remove events from @;
7: end while

AR AN R

@ Non-determinism!

» Different results depending on which of the two instantaneous events
(alarm,t) and (cancel,t) is first removed from Q.
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Dealing with Simultaneous Events

cancel alarm A
Source Alarm Sink

e Chronological ordering (= ordering by timestamps) of events in the
queue is not enough.

@ Must also respect dependencies between simultaneous events
» Alarm’s output event at time ¢ depends on Source’s output event at
time ¢

@ How to define event dependencies?
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Dealing with Simultaneous Events

cancel alarm A
Source Alarm Sink

e Chronological ordering (= ordering by timestamps) of events in the
queue is not enough.

@ Must also respect dependencies between simultaneous events
» Alarm’s output event at time ¢ depends on Source’s output event at
time ¢

@ How to define event dependencies?

o First let's formalize actor dependencies.

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Discrete Event Simulation 45 / 53



Dependency Relation among Actors

Let A, As be two actors in the DE model.
Define the dependency relation A1 — A (As depends on A;) as follows:

Ay — Ay = A is zero-delay (i.e., its output may have the same
timestamp as the input that produced it) and there is a connection from
an output of A7 to an input of As.
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Dependency Relation among Actors

Let A, As be two actors in the DE model.
Define the dependency relation A1 — A (As depends on A;) as follows:

Ay — Ay = A is zero-delay (i.e., its output may have the same
timestamp as the input that produced it) and there is a connection from
an output of A7 to an input of As.

Claim: — is acyclic.

Why?
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Dependency Relation among Actors

Let A, As be two actors in the DE model.
Define the dependency relation A1 — A (As depends on A;) as follows:

Ay — Ay = A is zero-delay (i.e., its output may have the same
timestamp as the input that produced it) and there is a connection from
an output of A7 to an input of As.

Claim: — is acyclic.

Why? Because every loop is assumed to have a non-zero-delay actor.
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Actor Dependencies — Examples

cancel alarm N
Source Alarm Sink

Alarm — Sink
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Actor Dependencies — Examples

cancel alarm N
Source Alarm Sink

Alarm — Sink

DE Director

SingleEvent

’—l—D AddSubtract ~ TimedPlotter
+

SingleEvent2 Scale —t — &'

Scale — AddSubtract — TimedPlotter
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Precedence Relation on Events

Let e; = (v1,t1) and ea = (vg, t2) be two events generated during DE
simulation.
Let A; and A5 be the recipient actors of e; and es:

@ This information can be encoded in vy, vs.

@ We assume a unique recipient per event.

> No loss of generality: can view fan-out junctions as zero-delay actors
which copy every input event to all their outputs.
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Precedence Relation on Events

Let e; = (v1,t1) and ea = (vg, t2) be two events generated during DE
simulation.
Let A; and A5 be the recipient actors of e; and es:
@ This information can be encoded in vy, vs.
@ We assume a unique recipient per event.
> No loss of generality: can view fan-out junctions as zero-delay actors

which copy every input event to all their outputs.

We define precedence of events eq, es:

e < €9 = t1 < tg or (tl =ty and Al —* A2 and A1 7& AQ)

where —* is the transitive closure of —.
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Precedence Relation on Events

Let e; = (v1,t1) and ea = (vg, t2) be two events generated during DE
simulation.

Let A; and A5 be the recipient actors of e; and es:
@ This information can be encoded in vy, vs.
@ We assume a unique recipient per event.

> No loss of generality: can view fan-out junctions as zero-delay actors
which copy every input event to all their outputs.

We define precedence of events eq, es:

e < €9 = t1 < tg or (tl =ty and Al —* A2 and A1 7& AQ)
where —* is the transitive closure of —.

Claim: < is acyclic.
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Event Precedences — Examples
Assuming simultaneous events in the examples below:

Source el Alarm Sink

Alarm — Sink, therefore cancel < alarm.
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Event Precedences — Examples
Assuming simultaneous events in the examples below:

Source el Alarm Sink

Alarm — Sink, therefore cancel < alarm.

DE Director

SingleEvent
AddSubtract ~ TimedPlotter

SingleEvent2  Scale

Suppose there are 3 events, e, es, €3, pending at the input port of Scale
and the two input ports of AddSubtract, respectively. Then:

e1 < e and e < es.

Discrete Event Simulation 49 / 53

es and eg are independent.
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Discrete-Event Simulation — final version

1. t:=0;
2: initialize global event queue ) with a set of initial events;
// @ is always implicitly ordered w.r.t. timestamps
// and among events with same timestamp
// w.r.t. event dependencies
3: while @ is not empty do
4: remove set E of all minimal events w.r.t. < from Q;
// these are earliest and simultaneous events,
// which depend on no other events
5: t:=t.;
6:  execute set of events F: update system state, generate possible future
events, and add them to @), ordered by timestamps; possibly remove events
from Q;
7: end while

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Discrete Event Simulation 50 / 53



Discrete-Event Simulation — final version

1. t:=0;
2: initialize global event queue @) with a set of initial events;
// @ is always implicitly ordered w.r.t. timestamps
// and among events with same timestamp
// w.r.t. event dependencies
3: while @ is not empty do
4: remove set F of all minimal events w.r.t. < from Q;
// these are earliest and simultaneous events,
// which depend on no other events
5: t:=t.;
6:  execute set of events F: update system state, generate possible future
events, and add them to @), ordered by timestamps; possibly remove events
from Q;
7: end while

Claim: any new event e produced in step 6 is guaranteed to be greater than all
events in set E w.r.t. <. That is, either e has greater timestamp than all events
in E, or it depends on some event in F.
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DE Simulation and HDLs

HDLs: Hardware Description Languages

Verilog, VHDL, SystemC, ...

Real-world languages

EDA (Electronics Design Automation) industry: billions of $$$

Simulation tools: based on DE simulation

But note: many variants, details, ...
» E.g., SystemC specification® is > 600 pages long.
» Description of the simulation algorithm (in English) is 16 pages long.

'|EEE Standard 1666 - 2011, freely available online
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SystemC

Remarks:

o Co-operative multitasking: processes must release control back to the

kernel /scheduler
> Process executes forever = zeno system!

@ Processes may generate instantaneous events and the same process
may become runnable multiple times without time advancing -
immediate and delta steps

@ "“The order in which process instances are selected from the set of
runnable processes is implementation-defined.”
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SystemC

Remarks:

o Co-operative multitasking: processes must release control back to the
kernel /scheduler
> Process executes forever = zeno system!

@ Processes may generate instantaneous events and the same process
may become runnable multiple times without time advancing -
immediate and delta steps

@ "“The order in which process instances are selected from the set of
runnable processes is implementation-defined.”

@ Execution apparently not ordered w.r.t. dependencies.
= non-deterministic simulation results!
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