
EE 144/244: Fundamental Algorithms for System
Modeling, Analysis, and Optimization

Fall 2016

Timed Automata

Stavros Tripakis
University of California, Berkeley

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Timed Automata 1 / 22

Timed Automata

A formal model for dense-time systems [Alur and Dill(1994)]

Developed mainly with verification in mind:
I in the basic TA variant, model-checking is decidable

But also an elegant theoretical extension of the standard theory of
regular and ω-regular languages.

Many different TA variants, some undecidable.

We will look at a basic variant.

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Timed Automata 2 / 22

Timed Automaton

A TA is a tuple

(C,Q, q0, Inv,�)

C: finite set of clocks

Q: finite set of control states; q0 ∈ Q: initial control state

Inv: a function assigning to each q ∈ Q an invariant

�: a finite set of actions, each being a tuple

(q, q′, g, C ′)

I q, q′ ∈ Q: source and destination control states
I g: clock guard
I C ′: set of clocks to reset to 0, C ′ ⊆ C

Invariants and guards are simple constraints on clocks, e.g.,
c ≤ 1, 0 < c1 < 2 ∧ c2 = 4, etc.

Can also have atomic propositions labeling control states, labels on actions,
communication via shared memory or message passing, etc.

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Timed Automata 3 / 22

Timed Automaton

A TA is a tuple

(C,Q, q0, Inv,�)

C: finite set of clocks

Q: finite set of control states; q0 ∈ Q: initial control state

Inv: a function assigning to each q ∈ Q an invariant

�: a finite set of actions, each being a tuple

(q, q′, g, C ′)

I q, q′ ∈ Q: source and destination control states
I g: clock guard
I C ′: set of clocks to reset to 0, C ′ ⊆ C

Invariants and guards are simple constraints on clocks, e.g.,
c ≤ 1, 0 < c1 < 2 ∧ c2 = 4, etc.

Can also have atomic propositions labeling control states, labels on actions,
communication via shared memory or message passing, etc.

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Timed Automata 3 / 22

Example: Timed Automaton

A simple light controller:

off light bright
touch

c := 0

touch

c < 2

touch

c ≥ 2

touch

C = {c}
Q = { off, light, bright }
q0 = off

touch: action label (can be seen as the input symbol)

Inv(q) = true for all q ∈ Q

Actions: (off, light, true, {c}), (light, off, c ≥ 2, {}), ...

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Timed Automata 4 / 22

Event-based vs. state-based models

High-level:

Low-level:
off light bright

touch

c := 0

touch

c < 2

touch

c ≥ 2

touch

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Timed Automata 5 / 22

Timed Automata: Semantics

A TA (C,Q, q0, Inv,�) defines a transition system

(S, S0, R)

such that

Set of states: S = Q× RC
+

I RC
+: the set of all functions v : C → R+

I each v is called a valuation: it assigns a value to every clock

Set of initial states: S0 = {(q0, v0)}, where we define v0(c) = 0 for all c ∈ C
(i.e., all clocks are initially set to 0)

I we could also define S0 = {q0} × RC
+ – what does this say?

Set of transitions: R = Rt ∪Rd

I Rt: set of transitions modeling passage of time
I Rd: set of discrete transitions (“jumps” between control states)

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Timed Automata 6 / 22

Timed Automata: Semantics

A TA (C,Q, q0, Inv,�) defines a transition system

(S, S0, R)

such that

Set of states: S = Q× RC
+

I RC
+: the set of all functions v : C → R+

I each v is called a valuation: it assigns a value to every clock

Set of initial states: S0 = {(q0, v0)}, where we define v0(c) = 0 for all c ∈ C
(i.e., all clocks are initially set to 0)

I we could also define S0 = {q0} × RC
+ – what does this say?

Set of transitions: R = Rt ∪Rd

I Rt: set of transitions modeling passage of time
I Rd: set of discrete transitions (“jumps” between control states)

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Timed Automata 6 / 22

Timed Automata: Discrete and Time Transitions

Rt = {
(
(q, v), (q, v + t)

)
| ∀t′ ≤ t : v + t′ |= Inv(q)}

Rd = {
(
(q, v), (q′, v′)

)
| ∃a = (q, q′, g, C ′) ∈ � :

v |= g ∧ v′ = v[C ′ := 0]}

where:

v + t is a new valuation u such that u(c) = v(c) + t for all c

if g is a constraint, then v |= g means v satisfies g

v[C ′ := 0] is a new valuation u such that u(c) = 0 if c ∈ C ′ and
u(c) = v(c) otherwise

Instead of
(
(q, v), (q, v + t)

)
∈ Rt we write (q, v)

t−→ (q, v + t).

Instead of
(
(q, v), (q′, v′)

)
∈ Rd we write (q, v)

a−→ (q′, v′).

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Timed Automata 7 / 22

Timed Automata: Discrete and Time Transitions

Rt = {
(
(q, v), (q, v + t)

)
| ∀t′ ≤ t : v + t′ |= Inv(q)}

Rd = {
(
(q, v), (q′, v′)

)
| ∃a = (q, q′, g, C ′) ∈ � :

v |= g ∧ v′ = v[C ′ := 0]}

where:

v + t is a new valuation u such that u(c) = v(c) + t for all c

if g is a constraint, then v |= g means v satisfies g

v[C ′ := 0] is a new valuation u such that u(c) = 0 if c ∈ C ′ and
u(c) = v(c) otherwise

Instead of
(
(q, v), (q, v + t)

)
∈ Rt we write (q, v)

t−→ (q, v + t).

Instead of
(
(q, v), (q′, v′)

)
∈ Rd we write (q, v)

a−→ (q′, v′).

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Timed Automata 7 / 22

Example: Alarm Modeled as a Timed Automaton

off

c ≤ 10

RING!
c = 10

stopped

cancel?
c ≤ 10

Inv(off) = c ≤ 10 : automaton cannot spend more than 10 time units at
control state “off”.

What if we omit the invariant?

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Timed Automata 8 / 22

Example: Alarm Modeled as a Timed Automaton

off

c ≤ 10

RING!
c = 10

stopped

cancel?
c ≤ 10

Inv(off) = c ≤ 10 : automaton cannot spend more than 10 time units at
control state “off”.

What if we omit the invariant?

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Timed Automata 8 / 22

Example: Alarm Modeled as a Timed Automaton

off

c ≤ 10

RING!
c = 10

stopped

cancel?
c ≤ 10

Does it work correctly if cancel arrives exactly when c = 10?

Depends on the semantics of composition: if it’s non-deterministic (as
usually done) then alarm may still ring. Otherwise, must give higher
priority to the cancel transition.

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Timed Automata 9 / 22

Example: Alarm Modeled as a Timed Automaton

off

c ≤ 10

RING!
c = 10

stopped

cancel?
c ≤ 10

Does it work correctly if cancel arrives exactly when c = 10?

Depends on the semantics of composition: if it’s non-deterministic (as
usually done) then alarm may still ring. Otherwise, must give higher
priority to the cancel transition.

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Timed Automata 9 / 22

Timed Automata Model-Checking: Reachability

Basic question: is a given control state q reachable?

I i.e., does there exist some reachable state s = (q, v) in the transition
system defined by the timed automaton?

Many interesting questions about timed automata can be reduced to this
question.

Is the basic control-state reachability question decidable?

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Timed Automata 10 / 22

Timed Automata Model-Checking: Reachability

Basic question: is a given control state q reachable?

I i.e., does there exist some reachable state s = (q, v) in the transition
system defined by the timed automaton?

Many interesting questions about timed automata can be reduced to this
question.

Is the basic control-state reachability question decidable?

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Timed Automata 10 / 22

Timed Automata Reachability

Not the same as discrete-state reachability!

q0 q1 q2 q3 q4
c1 := 0 c2 := 0 c2 > 1 c1 ≤ 1

q4 is reachable if we ignore the timing constraints.
But is it really reachable?

No: at q3, c2 > 1 and c1 ≥ c2, therefore c1 > 1 also.

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Timed Automata 11 / 22

Timed Automata Reachability

Not the same as discrete-state reachability!

q0 q1 q2 q3 q4
c1 := 0 c2 := 0 c2 > 1 c1 ≤ 1

q4 is reachable if we ignore the timing constraints.
But is it really reachable?

No: at q3, c2 > 1 and c1 ≥ c2, therefore c1 > 1 also.

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Timed Automata 11 / 22

Timed Automata Model-Checking: Reachability

A less obvious example: Fischer’s mutual exclusion protocol.

Suppose we have many processes, each behaving like the TA above.
Is mutual-exclusion guaranteed?
I.e., at most 1 process is in critical section (control state cs) at any given
time.

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Timed Automata 12 / 22

Timed Automata Model-Checking: Reachability

Brute-force idea: exhaustive state-space exploration of the transition system
defined by the timed automaton

does not work since state-space is infinite (even uncountable)

Yet problem is decidable! [Alur-Dill’94]

Key idea:

Region equivalence: partitions the state-space into finite number of
equivalence classes (regions)

Perform reachability on finite (abstract) state-space

Can prove that q is reachable in the abstract space iff it is reachable in the
concrete space

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Timed Automata 13 / 22

Timed Automata Model-Checking: Reachability

Brute-force idea: exhaustive state-space exploration of the transition system
defined by the timed automaton

does not work since state-space is infinite (even uncountable)

Yet problem is decidable! [Alur-Dill’94]

Key idea:

Region equivalence: partitions the state-space into finite number of
equivalence classes (regions)

Perform reachability on finite (abstract) state-space

Can prove that q is reachable in the abstract space iff it is reachable in the
concrete space

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Timed Automata 13 / 22

The Region Equivalence
Key idea: two valuations v1, v2 are equivalent iff:

1 v1 satisfies a guard g iff v2 satisfies g.

2 v1 can lead to some v′1 satisfying a guard g with a discrete transition iff v2
can do the same.

3 v1 can lead to some v′1 satisfying a guard g with a time
transition iff v2 can do the same.

Region = equivalence class w.r.t. region equivalence = set of all equivalent
valuations.

• if v(x) ≤ M andv(y) ≤ M , then{v(x)} ≤
{v(y)} iff {v′(x)} ≤ {v′(y)} for all x, y ∈
X.

The relation≡M
df is an equivalence relation of finite

index. The partitioningRM
df (X) is then defined as

the set of equivalence classes of
�X

/≡M
df

. Fig. 2
explains the region construction for two clocks.

0 1 2 x

1

2

y

•
×

(a) Partition compatible with con-
straints, not with time elapsing (the two
points• and× can not be equivalent)

0 1 2 x

1

2

y

region defined by:
8

<

:

1 < x < 2
1 < y < 2
{x} < {y}

(b) Partition compatible with con-
straints, time elapsing (and resets)

Fig. 2: Diagonal-free region partitioning for two
clocks and maximal constant2

It is easy to prove (and left as an exercise) the fol-
lowing lemma:

Lemma 1 The partitioningRM
df (X) is a set of re-

gions for the constraintsCM
df (X).

Roughly counting all possible combinations
above, we can bound the number of regions in
RM

df (X) by 2|X|.|X|!.(2M + 2)|X| where|X| is
the cardinal ofX.

Sets of regions for general constraints. Recall
that the difference between diagonal-free clock
constraints and general clock constraints stands in
the fact thatdiagonal constraints(i.e. constraints
of the formx − y ./ c) can be used. An easy ex-
tension of the previous construction can be done.
We do not define it formally here, but only give a
simple example with two clocks, seeFig. 3.
This set of regions is denotedRM (X), and its
cardinal can roughly be bounded by(2M +

0 1 2 x

1

2

y

region defined by:
8

<

:

2 < x

1 < y < 2
1 < x − y < 2

Fig. 3: Set of regions for2-bounded general con-
straints with two clocks

2)(|X|+1)2 . Note that this set of regions is also cor-
rect forM -bounded diagonal-free constraints.

Region automata for classical timed automata.
LetA be a timed automaton with set of clocksX.
Let M be the maximal constant involved in one
of the constraints ofA, the setRM (X) is a set
of regions forA. From the results of the previous
subsections, we get the following theorem, due to
Alur and Dill [6, 7], which is the core of the veri-
fication of timed systems.

Theorem 1 (Alur & Dill 90’s) Reachability (or
equivalently emptiness) is decidable for timed
automata. It is a PSPACE-complete problem
(for both diagonal-free as well as general timed
automata).

Although this theorem has been first proved in [7],
the proof we choose to sketch is taken from [1],
where it is written in details.
Proof. [Sketch] PSPACE membership is easy: the
size of th region automaton is exponential in
the size of the original automaton. Using the
NLOGSPACE complexity of the reachability prob-
lem in classical untimed graphs, we get that reach-
ability in timed automata can be done in PSPACE.
PSPACE-hardness can be proved by reducing the
termination of a linearly bounded Turing machine
(LBTM for short) on some input to reachability in
timed automata. The encoding is done as follows:
assuming the alphabet is{a, b}, the content of cell
Cj of the track of the LBTM is encoded by two
clocksxj andyj . Cell Cj contains an “a” when
the constraintxj = yj holds, and cellCj contains
a “b” when the constraintxj < yj holds. Note that
these two conditions are invariant by time elaps-
ing.

Cjw0

{xj , yj}

Region in gray:
1 < x < 2 ∧ 1 < y < 2 ∧ x > y.
Other regions:
x = y = 0,
0 < x = y < 1,
x = 0 ∧ 0 < y < 1,
etc.

Pictures in this and other slides taken from [Bouyer(2005)].

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Timed Automata 14 / 22

The Region Equivalence: Finiteness

Finite number of equivalence classes: bounded by constant c = maximal
constant appearing in a guard or invariant.

• if v(x) ≤ M andv(y) ≤ M , then{v(x)} ≤
{v(y)} iff {v′(x)} ≤ {v′(y)} for all x, y ∈
X.

The relation≡M
df is an equivalence relation of finite

index. The partitioningRM
df (X) is then defined as

the set of equivalence classes of
�X

/≡M
df

. Fig. 2
explains the region construction for two clocks.

0 1 2 x

1

2

y

•
×

(a) Partition compatible with con-
straints, not with time elapsing (the two
points• and× can not be equivalent)

0 1 2 x

1

2

y

region defined by:
8

<

:

1 < x < 2
1 < y < 2
{x} < {y}

(b) Partition compatible with con-
straints, time elapsing (and resets)

Fig. 2: Diagonal-free region partitioning for two
clocks and maximal constant2

It is easy to prove (and left as an exercise) the fol-
lowing lemma:

Lemma 1 The partitioningRM
df (X) is a set of re-

gions for the constraintsCM
df (X).

Roughly counting all possible combinations
above, we can bound the number of regions in
RM

df (X) by 2|X|.|X|!.(2M + 2)|X| where|X| is
the cardinal ofX.

Sets of regions for general constraints. Recall
that the difference between diagonal-free clock
constraints and general clock constraints stands in
the fact thatdiagonal constraints(i.e. constraints
of the formx − y ./ c) can be used. An easy ex-
tension of the previous construction can be done.
We do not define it formally here, but only give a
simple example with two clocks, seeFig. 3.
This set of regions is denotedRM (X), and its
cardinal can roughly be bounded by(2M +

0 1 2 x

1

2

y

region defined by:
8

<

:

2 < x

1 < y < 2
1 < x − y < 2

Fig. 3: Set of regions for2-bounded general con-
straints with two clocks

2)(|X|+1)2 . Note that this set of regions is also cor-
rect forM -bounded diagonal-free constraints.

Region automata for classical timed automata.
LetA be a timed automaton with set of clocksX.
Let M be the maximal constant involved in one
of the constraints ofA, the setRM (X) is a set
of regions forA. From the results of the previous
subsections, we get the following theorem, due to
Alur and Dill [6, 7], which is the core of the veri-
fication of timed systems.

Theorem 1 (Alur & Dill 90’s) Reachability (or
equivalently emptiness) is decidable for timed
automata. It is a PSPACE-complete problem
(for both diagonal-free as well as general timed
automata).

Although this theorem has been first proved in [7],
the proof we choose to sketch is taken from [1],
where it is written in details.
Proof. [Sketch] PSPACE membership is easy: the
size of th region automaton is exponential in
the size of the original automaton. Using the
NLOGSPACE complexity of the reachability prob-
lem in classical untimed graphs, we get that reach-
ability in timed automata can be done in PSPACE.
PSPACE-hardness can be proved by reducing the
termination of a linearly bounded Turing machine
(LBTM for short) on some input to reachability in
timed automata. The encoding is done as follows:
assuming the alphabet is{a, b}, the content of cell
Cj of the track of the LBTM is encoded by two
clocksxj andyj . Cell Cj contains an “a” when
the constraintxj = yj holds, and cellCj contains
a “b” when the constraintxj < yj holds. Note that
these two conditions are invariant by time elaps-
ing.

Cjw0

{xj , yj}

Some regions are unbounded, e.g.:
x > 2 ∧ 0 < y < 1
x > 2 ∧ y > 2
etc.

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Timed Automata 15 / 22

The Region Graph
A graph of regions: one region space for each control location.

• if v(x) ≤ M andv(y) ≤ M , then{v(x)} ≤
{v(y)} iff {v′(x)} ≤ {v′(y)} for all x, y ∈
X.

The relation≡M
df is an equivalence relation of finite

index. The partitioningRM
df (X) is then defined as

the set of equivalence classes of
�X

/≡M
df

. Fig. 2
explains the region construction for two clocks.

0 1 2 x

1

2

y

•
×

(a) Partition compatible with con-
straints, not with time elapsing (the two
points• and× can not be equivalent)

0 1 2 x

1

2

y

region defined by:
8

<

:

1 < x < 2
1 < y < 2
{x} < {y}

(b) Partition compatible with con-
straints, time elapsing (and resets)

Fig. 2: Diagonal-free region partitioning for two
clocks and maximal constant2

It is easy to prove (and left as an exercise) the fol-
lowing lemma:

Lemma 1 The partitioningRM
df (X) is a set of re-

gions for the constraintsCM
df (X).

Roughly counting all possible combinations
above, we can bound the number of regions in
RM

df (X) by 2|X|.|X|!.(2M + 2)|X| where|X| is
the cardinal ofX.

Sets of regions for general constraints. Recall
that the difference between diagonal-free clock
constraints and general clock constraints stands in
the fact thatdiagonal constraints(i.e. constraints
of the formx − y ./ c) can be used. An easy ex-
tension of the previous construction can be done.
We do not define it formally here, but only give a
simple example with two clocks, seeFig. 3.
This set of regions is denotedRM (X), and its
cardinal can roughly be bounded by(2M +

0 1 2 x

1

2

y

region defined by:
8

<

:

2 < x

1 < y < 2
1 < x − y < 2

Fig. 3: Set of regions for2-bounded general con-
straints with two clocks

2)(|X|+1)2 . Note that this set of regions is also cor-
rect forM -bounded diagonal-free constraints.

Region automata for classical timed automata.
LetA be a timed automaton with set of clocksX.
Let M be the maximal constant involved in one
of the constraints ofA, the setRM (X) is a set
of regions forA. From the results of the previous
subsections, we get the following theorem, due to
Alur and Dill [6, 7], which is the core of the veri-
fication of timed systems.

Theorem 1 (Alur & Dill 90’s) Reachability (or
equivalently emptiness) is decidable for timed
automata. It is a PSPACE-complete problem
(for both diagonal-free as well as general timed
automata).

Although this theorem has been first proved in [7],
the proof we choose to sketch is taken from [1],
where it is written in details.
Proof. [Sketch] PSPACE membership is easy: the
size of th region automaton is exponential in
the size of the original automaton. Using the
NLOGSPACE complexity of the reachability prob-
lem in classical untimed graphs, we get that reach-
ability in timed automata can be done in PSPACE.
PSPACE-hardness can be proved by reducing the
termination of a linearly bounded Turing machine
(LBTM for short) on some input to reachability in
timed automata. The encoding is done as follows:
assuming the alphabet is{a, b}, the content of cell
Cj of the track of the LBTM is encoded by two
clocksxj andyj . Cell Cj contains an “a” when
the constraintxj = yj holds, and cellCj contains
a “b” when the constraintxj < yj holds. Note that
these two conditions are invariant by time elaps-
ing.

Cjw0

{xj , yj}

• if v(x) ≤ M andv(y) ≤ M , then{v(x)} ≤
{v(y)} iff {v′(x)} ≤ {v′(y)} for all x, y ∈
X.

The relation≡M
df is an equivalence relation of finite

index. The partitioningRM
df (X) is then defined as

the set of equivalence classes of
�X

/≡M
df

. Fig. 2
explains the region construction for two clocks.

0 1 2 x

1

2

y

•
×

(a) Partition compatible with con-
straints, not with time elapsing (the two
points• and× can not be equivalent)

0 1 2 x

1

2

y

region defined by:
8

<

:

1 < x < 2
1 < y < 2
{x} < {y}

(b) Partition compatible with con-
straints, time elapsing (and resets)

Fig. 2: Diagonal-free region partitioning for two
clocks and maximal constant2

It is easy to prove (and left as an exercise) the fol-
lowing lemma:

Lemma 1 The partitioningRM
df (X) is a set of re-

gions for the constraintsCM
df (X).

Roughly counting all possible combinations
above, we can bound the number of regions in
RM

df (X) by 2|X|.|X|!.(2M + 2)|X| where|X| is
the cardinal ofX.

Sets of regions for general constraints. Recall
that the difference between diagonal-free clock
constraints and general clock constraints stands in
the fact thatdiagonal constraints(i.e. constraints
of the formx − y ./ c) can be used. An easy ex-
tension of the previous construction can be done.
We do not define it formally here, but only give a
simple example with two clocks, seeFig. 3.
This set of regions is denotedRM (X), and its
cardinal can roughly be bounded by(2M +

0 1 2 x

1

2

y

region defined by:
8

<

:

2 < x

1 < y < 2
1 < x − y < 2

Fig. 3: Set of regions for2-bounded general con-
straints with two clocks

2)(|X|+1)2 . Note that this set of regions is also cor-
rect forM -bounded diagonal-free constraints.

Region automata for classical timed automata.
LetA be a timed automaton with set of clocksX.
Let M be the maximal constant involved in one
of the constraints ofA, the setRM (X) is a set
of regions forA. From the results of the previous
subsections, we get the following theorem, due to
Alur and Dill [6, 7], which is the core of the veri-
fication of timed systems.

Theorem 1 (Alur & Dill 90’s) Reachability (or
equivalently emptiness) is decidable for timed
automata. It is a PSPACE-complete problem
(for both diagonal-free as well as general timed
automata).

Although this theorem has been first proved in [7],
the proof we choose to sketch is taken from [1],
where it is written in details.
Proof. [Sketch] PSPACE membership is easy: the
size of th region automaton is exponential in
the size of the original automaton. Using the
NLOGSPACE complexity of the reachability prob-
lem in classical untimed graphs, we get that reach-
ability in timed automata can be done in PSPACE.
PSPACE-hardness can be proved by reducing the
termination of a linearly bounded Turing machine
(LBTM for short) on some input to reachability in
timed automata. The encoding is done as follows:
assuming the alphabet is{a, b}, the content of cell
Cj of the track of the LBTM is encoded by two
clocksxj andyj . Cell Cj contains an “a” when
the constraintxj = yj holds, and cellCj contains
a “b” when the constraintxj < yj holds. Note that
these two conditions are invariant by time elaps-
ing.

Cjw0

{xj , yj}

q1 q2

Nodes: pairs (q, r) where

q is a control location of the timed automaton.

r is a region.

Two types of edges:

(q, r)
a−→ (q′, r′): discrete transition

(q, r)
time−→ (q, r′): time transition

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Timed Automata 16 / 22

Decidability

Theorem ([Alur and Dill(1994)])

∃ reachable state (q, v) in a timed automaton
iff

∃ reachable node (q, r) in its region graph.

Finite # regions and control states ⇒ Region graph is finite ⇒
Reachability is decidable.

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Timed Automata 17 / 22

The Problem with Regions

STATE EXPLOSION!

Worst-case number of regions:

O(2n · n! · cn)

where n is the number of clocks and c is the maximal constant.

This is actually often close to the actual number of regions ⇒ no practical
tool uses regions.

Model-checkers for TA (Uppaal, Kronos, ...) have improved upon the
region-graph idea and use symbolic techniques.

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Timed Automata 18 / 22

From Regions to Zones
Zone: a convex union of regions, e.g., x1 ≥ 3 ∧ x2 ≤ 5 ∧ x1 − x2 ≤ 4.

A DBM M = (mi,j ,≺i,j)i,j=1...n defines the fol-
lowing subset of

�n (the clockx0 is supposed to
be always equal to zero,i.e. for each valuationv,
v(x0) = 0):

{v : X →
�
| ∀ i, j, v(xi)− v(xj) ≺i,j mi,j}

whereγ < ∞ simply means thatγ is some real
without bound. This subset of

�n is a zone and
will be denoted, in what follows, byJMK. In what
follows, to simplify notations, we will assume that
all constraints are non-strict, so that coefficient of
DBMs will be elements of�∪ {∞}.

Example 3 Consider the zone defined by the con-
straints(x1 ≥ 3) ∧ (x2 ≤ 5) ∧ (x1 − x2 ≤ 4).
This zone, depicted below on the right, can be rep-
resented by the DBM below (on the left).

x0 x1 x2

x0

x1

x2

∞ −3 ∞
∞ ∞ 4
5 ∞ ∞

3 4 9

5

2

A zone can have several representations using
DBMs. For example, the zone of the previous
example can equivalently be represented by the
DBM

0 −3 0
9 0 4
5 2 0

A normal form can be defined on DBMs, which
tightens all possible constraints. This can be done
using a Floyd algorithm on the matrice (viewed
as a weighted graph). A zone has a unique rep-
resentation as a DBM in normal form. Tests like
emptiness checking, or comparison of zones can
then be done syntactically on the DBMs in normal
form. For example, a zoneZ is included in a zone
Z ′ if the DBM in normal form representingZ is
smaller than the DBM in normal form represent-
ing Z ′. Finally all operations on zones described
in section 6.2 can easily be done on the DBMs,
details can be found in all mentioned papers on
DBMs.

Let us just mention that the DBM data structure is
the most basic data structure which is used for an-
alyzing timed systems, some more involved BDD-
like data structures can also be used, for example
CDDs (which stands for “Clock Difference Dia-
grams”) [37].

6.4 Backward Analysis
Let A = (Σ, Q, T, I, F, X) be a timed automa-
ton. Backward analysis then consists in com-
puting the following sets of symbolic configura-
tions: S0 = {(f,

�X) | f ∈ F}, and iteratively

Sp+1 = {(`, Z) | ∃e = (`
g,a,Y
−−−→ `′)∃(`′, Z ′) ∈

Sp s.t.Z = Pree(Z
′)}, . . .

Theorem 4 The backward computation termi-
nates and is correct w.r.t. reachability, i.e. if a
state is found reachable by the computation, then
it is really reachable.

Correctness is immediate as the computation isex-
act (as opposed to over-(or under-)approximate).
Termination needs some additional argument, re-
lated to properties of the region partitioning asso-
ciated with timed automata. The termination proof
then relies on the following lemma, which can be
proved as an exercise.

Lemma 2 Let A be a timed automaton and let
R be a set of regions satisfying conditions➀, ➁
and➂ (for A). Consider a finite union of regions
⋃p

i=1 Ri (with Ri ∈ R for 1 ≤ i ≤ p). Then the
following holds:

-
←−−−−−
⋃p

i=1 Ri is a finite union of regions

- [Y ← 0]−1(
⋃p

i=1 Ri) is a finite union of re-
gions (for any set of clocksY)

- g ∩ (
⋃p

i=1 Ri) is a finite union of regions ifg
is a constraint ofA (thus compatible withR)

Backward analysis thus appears as a very interest-
ing method for analyzing timed systems. However,
in practice, most commonly used tools (for exam-
ple UPPAAL) prefer using a forward analysis pro-
cedure. A natural question then arises: what’s the
problem with backward analysis? It comes from
the fact that the use of bounded integer variables
really improves and eases the modeling of real sys-
tems. Backward analysis is then not suitable for
arithmetical operations: for example if we know
in which interval lies the variablei and if we know
thati is assigned the valuej.k + `.m, it is not easy
to compute the possible values of variablesj, k,
`, m (apart from listing all possible tuples of val-
ues). For this kind of operations, forward analysis
is much more suitable.

6.5 Forward Analysis
Let A = (Σ, Q, T, I, F, X) be a timed automa-
ton. Forward analysis then consists in comput-
ing the following sets of symbolic configurations:

Key property: can be represented efficiently using difference bound matrices
(DBMs) [Dill(1989)].

x1 ≥ 3 ∧ x2 ≤ 5 ∧ x1 ≤ x2 + 4 :

A DBM M = (mi,j ,≺i,j)i,j=1...n defines the fol-
lowing subset of

�n (the clockx0 is supposed to
be always equal to zero,i.e. for each valuationv,
v(x0) = 0):

{v : X →
�
| ∀ i, j, v(xi)− v(xj) ≺i,j mi,j}

whereγ < ∞ simply means thatγ is some real
without bound. This subset of

�n is a zone and
will be denoted, in what follows, byJMK. In what
follows, to simplify notations, we will assume that
all constraints are non-strict, so that coefficient of
DBMs will be elements of�∪ {∞}.

Example 3 Consider the zone defined by the con-
straints(x1 ≥ 3) ∧ (x2 ≤ 5) ∧ (x1 − x2 ≤ 4).
This zone, depicted below on the right, can be rep-
resented by the DBM below (on the left).

x0 x1 x2

x0

x1

x2

∞ −3 ∞
∞ ∞ 4
5 ∞ ∞

3 4 9

5

2

A zone can have several representations using
DBMs. For example, the zone of the previous
example can equivalently be represented by the
DBM

0 −3 0
9 0 4
5 2 0

A normal form can be defined on DBMs, which
tightens all possible constraints. This can be done
using a Floyd algorithm on the matrice (viewed
as a weighted graph). A zone has a unique rep-
resentation as a DBM in normal form. Tests like
emptiness checking, or comparison of zones can
then be done syntactically on the DBMs in normal
form. For example, a zoneZ is included in a zone
Z ′ if the DBM in normal form representingZ is
smaller than the DBM in normal form represent-
ing Z ′. Finally all operations on zones described
in section 6.2 can easily be done on the DBMs,
details can be found in all mentioned papers on
DBMs.

Let us just mention that the DBM data structure is
the most basic data structure which is used for an-
alyzing timed systems, some more involved BDD-
like data structures can also be used, for example
CDDs (which stands for “Clock Difference Dia-
grams”) [37].

6.4 Backward Analysis
Let A = (Σ, Q, T, I, F, X) be a timed automa-
ton. Backward analysis then consists in com-
puting the following sets of symbolic configura-
tions: S0 = {(f,

�X) | f ∈ F}, and iteratively

Sp+1 = {(`, Z) | ∃e = (`
g,a,Y
−−−→ `′)∃(`′, Z ′) ∈

Sp s.t.Z = Pree(Z
′)}, . . .

Theorem 4 The backward computation termi-
nates and is correct w.r.t. reachability, i.e. if a
state is found reachable by the computation, then
it is really reachable.

Correctness is immediate as the computation isex-
act (as opposed to over-(or under-)approximate).
Termination needs some additional argument, re-
lated to properties of the region partitioning asso-
ciated with timed automata. The termination proof
then relies on the following lemma, which can be
proved as an exercise.

Lemma 2 Let A be a timed automaton and let
R be a set of regions satisfying conditions➀, ➁
and➂ (for A). Consider a finite union of regions
⋃p

i=1 Ri (with Ri ∈ R for 1 ≤ i ≤ p). Then the
following holds:

-
←−−−−−
⋃p

i=1 Ri is a finite union of regions

- [Y ← 0]−1(
⋃p

i=1 Ri) is a finite union of re-
gions (for any set of clocksY)

- g ∩ (
⋃p

i=1 Ri) is a finite union of regions ifg
is a constraint ofA (thus compatible withR)

Backward analysis thus appears as a very interest-
ing method for analyzing timed systems. However,
in practice, most commonly used tools (for exam-
ple UPPAAL) prefer using a forward analysis pro-
cedure. A natural question then arises: what’s the
problem with backward analysis? It comes from
the fact that the use of bounded integer variables
really improves and eases the modeling of real sys-
tems. Backward analysis is then not suitable for
arithmetical operations: for example if we know
in which interval lies the variablei and if we know
thati is assigned the valuej.k + `.m, it is not easy
to compute the possible values of variablesj, k,
`, m (apart from listing all possible tuples of val-
ues). For this kind of operations, forward analysis
is much more suitable.

6.5 Forward Analysis
Let A = (Σ, Q, T, I, F, X) be a timed automa-
ton. Forward analysis then consists in comput-
ing the following sets of symbolic configurations:

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Timed Automata 19 / 22

From Regions to Zones
Zone: a convex union of regions, e.g., x1 ≥ 3 ∧ x2 ≤ 5 ∧ x1 − x2 ≤ 4.

A DBM M = (mi,j ,≺i,j)i,j=1...n defines the fol-
lowing subset of

�n (the clockx0 is supposed to
be always equal to zero,i.e. for each valuationv,
v(x0) = 0):

{v : X →
�
| ∀ i, j, v(xi)− v(xj) ≺i,j mi,j}

whereγ < ∞ simply means thatγ is some real
without bound. This subset of

�n is a zone and
will be denoted, in what follows, byJMK. In what
follows, to simplify notations, we will assume that
all constraints are non-strict, so that coefficient of
DBMs will be elements of�∪ {∞}.

Example 3 Consider the zone defined by the con-
straints(x1 ≥ 3) ∧ (x2 ≤ 5) ∧ (x1 − x2 ≤ 4).
This zone, depicted below on the right, can be rep-
resented by the DBM below (on the left).

x0 x1 x2

x0

x1

x2

∞ −3 ∞
∞ ∞ 4
5 ∞ ∞

3 4 9

5

2

A zone can have several representations using
DBMs. For example, the zone of the previous
example can equivalently be represented by the
DBM

0 −3 0
9 0 4
5 2 0

A normal form can be defined on DBMs, which
tightens all possible constraints. This can be done
using a Floyd algorithm on the matrice (viewed
as a weighted graph). A zone has a unique rep-
resentation as a DBM in normal form. Tests like
emptiness checking, or comparison of zones can
then be done syntactically on the DBMs in normal
form. For example, a zoneZ is included in a zone
Z ′ if the DBM in normal form representingZ is
smaller than the DBM in normal form represent-
ing Z ′. Finally all operations on zones described
in section 6.2 can easily be done on the DBMs,
details can be found in all mentioned papers on
DBMs.

Let us just mention that the DBM data structure is
the most basic data structure which is used for an-
alyzing timed systems, some more involved BDD-
like data structures can also be used, for example
CDDs (which stands for “Clock Difference Dia-
grams”) [37].

6.4 Backward Analysis
Let A = (Σ, Q, T, I, F, X) be a timed automa-
ton. Backward analysis then consists in com-
puting the following sets of symbolic configura-
tions: S0 = {(f,

�X) | f ∈ F}, and iteratively

Sp+1 = {(`, Z) | ∃e = (`
g,a,Y
−−−→ `′)∃(`′, Z ′) ∈

Sp s.t.Z = Pree(Z
′)}, . . .

Theorem 4 The backward computation termi-
nates and is correct w.r.t. reachability, i.e. if a
state is found reachable by the computation, then
it is really reachable.

Correctness is immediate as the computation isex-
act (as opposed to over-(or under-)approximate).
Termination needs some additional argument, re-
lated to properties of the region partitioning asso-
ciated with timed automata. The termination proof
then relies on the following lemma, which can be
proved as an exercise.

Lemma 2 Let A be a timed automaton and let
R be a set of regions satisfying conditions➀, ➁
and➂ (for A). Consider a finite union of regions
⋃p

i=1 Ri (with Ri ∈ R for 1 ≤ i ≤ p). Then the
following holds:

-
←−−−−−
⋃p

i=1 Ri is a finite union of regions

- [Y ← 0]−1(
⋃p

i=1 Ri) is a finite union of re-
gions (for any set of clocksY)

- g ∩ (
⋃p

i=1 Ri) is a finite union of regions ifg
is a constraint ofA (thus compatible withR)

Backward analysis thus appears as a very interest-
ing method for analyzing timed systems. However,
in practice, most commonly used tools (for exam-
ple UPPAAL) prefer using a forward analysis pro-
cedure. A natural question then arises: what’s the
problem with backward analysis? It comes from
the fact that the use of bounded integer variables
really improves and eases the modeling of real sys-
tems. Backward analysis is then not suitable for
arithmetical operations: for example if we know
in which interval lies the variablei and if we know
thati is assigned the valuej.k + `.m, it is not easy
to compute the possible values of variablesj, k,
`, m (apart from listing all possible tuples of val-
ues). For this kind of operations, forward analysis
is much more suitable.

6.5 Forward Analysis
Let A = (Σ, Q, T, I, F, X) be a timed automa-
ton. Forward analysis then consists in comput-
ing the following sets of symbolic configurations:

Key property: can be represented efficiently using difference bound matrices
(DBMs) [Dill(1989)].

x1 ≥ 3 ∧ x2 ≤ 5 ∧ x1 ≤ x2 + 4 :

A DBM M = (mi,j ,≺i,j)i,j=1...n defines the fol-
lowing subset of

�n (the clockx0 is supposed to
be always equal to zero,i.e. for each valuationv,
v(x0) = 0):

{v : X →
�
| ∀ i, j, v(xi)− v(xj) ≺i,j mi,j}

whereγ < ∞ simply means thatγ is some real
without bound. This subset of

�n is a zone and
will be denoted, in what follows, byJMK. In what
follows, to simplify notations, we will assume that
all constraints are non-strict, so that coefficient of
DBMs will be elements of�∪ {∞}.

Example 3 Consider the zone defined by the con-
straints(x1 ≥ 3) ∧ (x2 ≤ 5) ∧ (x1 − x2 ≤ 4).
This zone, depicted below on the right, can be rep-
resented by the DBM below (on the left).

x0 x1 x2

x0

x1

x2

∞ −3 ∞
∞ ∞ 4
5 ∞ ∞

3 4 9

5

2

A zone can have several representations using
DBMs. For example, the zone of the previous
example can equivalently be represented by the
DBM

0 −3 0
9 0 4
5 2 0

A normal form can be defined on DBMs, which
tightens all possible constraints. This can be done
using a Floyd algorithm on the matrice (viewed
as a weighted graph). A zone has a unique rep-
resentation as a DBM in normal form. Tests like
emptiness checking, or comparison of zones can
then be done syntactically on the DBMs in normal
form. For example, a zoneZ is included in a zone
Z ′ if the DBM in normal form representingZ is
smaller than the DBM in normal form represent-
ing Z ′. Finally all operations on zones described
in section 6.2 can easily be done on the DBMs,
details can be found in all mentioned papers on
DBMs.

Let us just mention that the DBM data structure is
the most basic data structure which is used for an-
alyzing timed systems, some more involved BDD-
like data structures can also be used, for example
CDDs (which stands for “Clock Difference Dia-
grams”) [37].

6.4 Backward Analysis
Let A = (Σ, Q, T, I, F, X) be a timed automa-
ton. Backward analysis then consists in com-
puting the following sets of symbolic configura-
tions: S0 = {(f,

�X) | f ∈ F}, and iteratively

Sp+1 = {(`, Z) | ∃e = (`
g,a,Y
−−−→ `′)∃(`′, Z ′) ∈

Sp s.t.Z = Pree(Z
′)}, . . .

Theorem 4 The backward computation termi-
nates and is correct w.r.t. reachability, i.e. if a
state is found reachable by the computation, then
it is really reachable.

Correctness is immediate as the computation isex-
act (as opposed to over-(or under-)approximate).
Termination needs some additional argument, re-
lated to properties of the region partitioning asso-
ciated with timed automata. The termination proof
then relies on the following lemma, which can be
proved as an exercise.

Lemma 2 Let A be a timed automaton and let
R be a set of regions satisfying conditions➀, ➁
and➂ (for A). Consider a finite union of regions
⋃p

i=1 Ri (with Ri ∈ R for 1 ≤ i ≤ p). Then the
following holds:

-
←−−−−−
⋃p

i=1 Ri is a finite union of regions

- [Y ← 0]−1(
⋃p

i=1 Ri) is a finite union of re-
gions (for any set of clocksY)

- g ∩ (
⋃p

i=1 Ri) is a finite union of regions ifg
is a constraint ofA (thus compatible withR)

Backward analysis thus appears as a very interest-
ing method for analyzing timed systems. However,
in practice, most commonly used tools (for exam-
ple UPPAAL) prefer using a forward analysis pro-
cedure. A natural question then arises: what’s the
problem with backward analysis? It comes from
the fact that the use of bounded integer variables
really improves and eases the modeling of real sys-
tems. Backward analysis is then not suitable for
arithmetical operations: for example if we know
in which interval lies the variablei and if we know
thati is assigned the valuej.k + `.m, it is not easy
to compute the possible values of variablesj, k,
`, m (apart from listing all possible tuples of val-
ues). For this kind of operations, forward analysis
is much more suitable.

6.5 Forward Analysis
Let A = (Σ, Q, T, I, F, X) be a timed automa-
ton. Forward analysis then consists in comput-
ing the following sets of symbolic configurations:

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Timed Automata 19 / 22

Symbolic Manipulations of Zones using DBMs

DBMs = the BDDs of the timed automata world.

Time elapse, guard intersection, clock resets, are all easily implementable
in DBMs.

Is zone union implementable with DBMs?

No! The union of two zones in general is not a zone.

⇒ often state explosion even with zones ...

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Timed Automata 20 / 22

Symbolic Manipulations of Zones using DBMs

DBMs = the BDDs of the timed automata world.

Time elapse, guard intersection, clock resets, are all easily implementable
in DBMs.

Is zone union implementable with DBMs?

No! The union of two zones in general is not a zone.

⇒ often state explosion even with zones ...

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Timed Automata 20 / 22

Symbolic Manipulations of Zones using DBMs

DBMs = the BDDs of the timed automata world.

Time elapse, guard intersection, clock resets, are all easily implementable
in DBMs.

Is zone union implementable with DBMs?

No! The union of two zones in general is not a zone.

⇒ often state explosion even with zones ...

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Timed Automata 20 / 22

Timed Automata Reachability: Simple Example

q0 q1 q2
c1 := 0 c1 > 1

c2 ≤ 1

Is q2 reachable? (initially, c1 = c2 = 0)

Symbolic reachability analysis:

step symbolic state
initially: (q0, c1 = 0 ∧ c2 = 0)

let time elapse: (q0, c1 = c2)
take discrete transition to q1: (q1, c1 = 0 ∧ c2 ≥ c1)

let time elapse: (q1, c2 ≥ c1)
take discrete transition to q2: cannot because

c1 > 1 ∧ c2 ≤ 1 ∧ c2 ≥ c1 is UNSAT
therefore q2 not reachable

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Timed Automata 21 / 22

Timed Automata Reachability: Simple Example

q0 q1 q2
c1 := 0 c1 > 1

c2 ≤ 1

Is q2 reachable? (initially, c1 = c2 = 0)

Symbolic reachability analysis:

step symbolic state
initially: (q0, c1 = 0 ∧ c2 = 0)

let time elapse: (q0, c1 = c2)
take discrete transition to q1: (q1, c1 = 0 ∧ c2 ≥ c1)

let time elapse: (q1, c2 ≥ c1)
take discrete transition to q2: cannot because

c1 > 1 ∧ c2 ≤ 1 ∧ c2 ≥ c1 is UNSAT
therefore q2 not reachable

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Timed Automata 21 / 22

Timed Automata Reachability: Simple Example

q0 q1 q2
c1 := 0 c1 > 1

c2 ≤ 1

Is q2 reachable? (initially, c1 = c2 = 0)

Symbolic reachability analysis:

step symbolic state
initially: (q0, c1 = 0 ∧ c2 = 0)

let time elapse:

(q0, c1 = c2)
take discrete transition to q1: (q1, c1 = 0 ∧ c2 ≥ c1)

let time elapse: (q1, c2 ≥ c1)
take discrete transition to q2: cannot because

c1 > 1 ∧ c2 ≤ 1 ∧ c2 ≥ c1 is UNSAT
therefore q2 not reachable

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Timed Automata 21 / 22

Timed Automata Reachability: Simple Example

q0 q1 q2
c1 := 0 c1 > 1

c2 ≤ 1

Is q2 reachable? (initially, c1 = c2 = 0)

Symbolic reachability analysis:

step symbolic state
initially: (q0, c1 = 0 ∧ c2 = 0)

let time elapse: (q0, c1 = c2)

take discrete transition to q1: (q1, c1 = 0 ∧ c2 ≥ c1)
let time elapse: (q1, c2 ≥ c1)

take discrete transition to q2: cannot because
c1 > 1 ∧ c2 ≤ 1 ∧ c2 ≥ c1 is UNSAT

therefore q2 not reachable

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Timed Automata 21 / 22

Timed Automata Reachability: Simple Example

q0 q1 q2
c1 := 0 c1 > 1

c2 ≤ 1

Is q2 reachable? (initially, c1 = c2 = 0)

Symbolic reachability analysis:

step symbolic state
initially: (q0, c1 = 0 ∧ c2 = 0)

let time elapse: (q0, c1 = c2)
take discrete transition to q1:

(q1, c1 = 0 ∧ c2 ≥ c1)
let time elapse: (q1, c2 ≥ c1)

take discrete transition to q2: cannot because
c1 > 1 ∧ c2 ≤ 1 ∧ c2 ≥ c1 is UNSAT

therefore q2 not reachable

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Timed Automata 21 / 22

Timed Automata Reachability: Simple Example

q0 q1 q2
c1 := 0 c1 > 1

c2 ≤ 1

Is q2 reachable? (initially, c1 = c2 = 0)

Symbolic reachability analysis:

step symbolic state
initially: (q0, c1 = 0 ∧ c2 = 0)

let time elapse: (q0, c1 = c2)
take discrete transition to q1: (q1, c1 = 0 ∧ c2 ≥ c1)

let time elapse: (q1, c2 ≥ c1)
take discrete transition to q2: cannot because

c1 > 1 ∧ c2 ≤ 1 ∧ c2 ≥ c1 is UNSAT
therefore q2 not reachable

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Timed Automata 21 / 22

Timed Automata Reachability: Simple Example

q0 q1 q2
c1 := 0 c1 > 1

c2 ≤ 1

Is q2 reachable? (initially, c1 = c2 = 0)

Symbolic reachability analysis:

step symbolic state
initially: (q0, c1 = 0 ∧ c2 = 0)

let time elapse: (q0, c1 = c2)
take discrete transition to q1: (q1, c1 = 0 ∧ c2 ≥ c1)

let time elapse:

(q1, c2 ≥ c1)
take discrete transition to q2: cannot because

c1 > 1 ∧ c2 ≤ 1 ∧ c2 ≥ c1 is UNSAT
therefore q2 not reachable

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Timed Automata 21 / 22

Timed Automata Reachability: Simple Example

q0 q1 q2
c1 := 0 c1 > 1

c2 ≤ 1

Is q2 reachable? (initially, c1 = c2 = 0)

Symbolic reachability analysis:

step symbolic state
initially: (q0, c1 = 0 ∧ c2 = 0)

let time elapse: (q0, c1 = c2)
take discrete transition to q1: (q1, c1 = 0 ∧ c2 ≥ c1)

let time elapse: (q1, c2 ≥ c1)

take discrete transition to q2: cannot because
c1 > 1 ∧ c2 ≤ 1 ∧ c2 ≥ c1 is UNSAT

therefore q2 not reachable

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Timed Automata 21 / 22

Timed Automata Reachability: Simple Example

q0 q1 q2
c1 := 0 c1 > 1

c2 ≤ 1

Is q2 reachable? (initially, c1 = c2 = 0)

Symbolic reachability analysis:

step symbolic state
initially: (q0, c1 = 0 ∧ c2 = 0)

let time elapse: (q0, c1 = c2)
take discrete transition to q1: (q1, c1 = 0 ∧ c2 ≥ c1)

let time elapse: (q1, c2 ≥ c1)
take discrete transition to q2:

cannot because
c1 > 1 ∧ c2 ≤ 1 ∧ c2 ≥ c1 is UNSAT

therefore q2 not reachable

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Timed Automata 21 / 22

Timed Automata Reachability: Simple Example

q0 q1 q2
c1 := 0 c1 > 1

c2 ≤ 1

Is q2 reachable? (initially, c1 = c2 = 0)

Symbolic reachability analysis:

step symbolic state
initially: (q0, c1 = 0 ∧ c2 = 0)

let time elapse: (q0, c1 = c2)
take discrete transition to q1: (q1, c1 = 0 ∧ c2 ≥ c1)

let time elapse: (q1, c2 ≥ c1)
take discrete transition to q2: cannot because

c1 > 1 ∧ c2 ≤ 1 ∧ c2 ≥ c1 is UNSAT

therefore q2 not reachable

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Timed Automata 21 / 22

Timed Automata Reachability: Simple Example

q0 q1 q2
c1 := 0 c1 > 1

c2 ≤ 1

Is q2 reachable? (initially, c1 = c2 = 0)

Symbolic reachability analysis:

step symbolic state
initially: (q0, c1 = 0 ∧ c2 = 0)

let time elapse: (q0, c1 = c2)
take discrete transition to q1: (q1, c1 = 0 ∧ c2 ≥ c1)

let time elapse: (q1, c2 ≥ c1)
take discrete transition to q2: cannot because

c1 > 1 ∧ c2 ≤ 1 ∧ c2 ≥ c1 is UNSAT
therefore q2 not reachable

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Timed Automata 21 / 22

Bibliography

R. Alur.

Timed automata.
NATO-ASI 1998 Summer School on Verification of Digital and Hybrid Systems, 1998.

R. Alur and D. Dill.

A theory of timed automata.
Theoretical Computer Science, 126:183–235, 1994.

P. Bouyer.

An introduction to timed automata.
At http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/bouyer-etr05.pdf, 2005.

D. Dill.

Timing assumptions and verification of finite-state concurrent systems.
In J. Sifakis, editor, Automatic Verification Methods for Finite State Systems, volume 407 of LNCS, pages 197–212.
Springer, 1989.

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Timed Automata 22 / 22

http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/bouyer-etr05.pdf
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/bouyer-etr05.pdf

