EE 144/244: Fundamental Algorithms for System Modeling, Analysis, and Optimization Fall 2016

Timed Automata

Timed Automata

- A formal model for dense-time systems [Alur and Dill(1994)]
- Developed mainly with verification in mind:
- in the basic TA variant, model-checking is decidable
- But also an elegant theoretical extension of the standard theory of regular and ω-regular languages.
- Many different TA variants, some undecidable.
- We will look at a basic variant.

Timed Automaton

A TA is a tuple

$$
\left(C, Q, q_{0}, \operatorname{lnv}, \triangleright\right)
$$

- C : finite set of clocks
- Q : finite set of control states; $q_{0} \in Q$: initial control state
- Inv: a function assigning to each $q \in Q$ an invariant
- \triangleright : a finite set of actions, each being a tuple

$$
\left(q, q^{\prime}, g, C^{\prime}\right)
$$

- $q, q^{\prime} \in Q$: source and destination control states
- g : clock guard
- C^{\prime} : set of clocks to reset to $0, C^{\prime} \subseteq C$
- Invariants and guards are simple constraints on clocks, e.g.,

$$
c \leq 1, \quad 0<c_{1}<2 \wedge c_{2}=4, \quad \text { etc. }
$$

Timed Automaton

A TA is a tuple

$$
\left(C, Q, q_{0}, \operatorname{lnv}, \triangleright\right)
$$

- C : finite set of clocks
- Q : finite set of control states; $q_{0} \in Q$: initial control state
- Inv: a function assigning to each $q \in Q$ an invariant
- \triangleright : a finite set of actions, each being a tuple

$$
\left(q, q^{\prime}, g, C^{\prime}\right)
$$

- $q, q^{\prime} \in Q$: source and destination control states
- g : clock guard
- C^{\prime} : set of clocks to reset to $0, C^{\prime} \subseteq C$
- Invariants and guards are simple constraints on clocks, e.g.,

$$
c \leq 1, \quad 0<c_{1}<2 \wedge c_{2}=4, \quad \text { etc. }
$$

Can also have atomic propositions labeling control states, labels on actions, communication via shared memory or message passing, etc.

Example: Timed Automaton

A simple light controller:

- $C=\{c\}$
- $Q=\{$ off, light, bright $\}$
- $q_{0}=$ off
- touch: action label (can be seen as the input symbol)
- $\operatorname{Inv}(q)=$ true for all $q \in Q$
- Actions: (off, light, true, $\{c\}$), (light, off, $c \geq 2,\{ \}$), ...

Event-based vs. state-based models

Generator Regulator with Specification Monitors
This model checks the behavior against a specification that is given formally using hierarchical state machines that monitor the behavior for conformance

High-level:

- overvoltageThreshold: 120.0

Specification monitor here provides a violation signal if the
spec is not me. The result will be an exception.
See also a cleaner version of this model,
where the specification monitor is an aspect.

Low-level:

Timed Automata: Semantics

A TA $\left(C, Q, q_{0}, \operatorname{lnv}, \triangleright\right)$ defines a transition system

$$
\left(S, S_{0}, R\right)
$$

such that

- Set of states: $S=Q \times \mathbb{R}_{+}^{C}$
- \mathbb{R}_{+}^{C} : the set of all functions $v: C \rightarrow \mathbb{R}_{+}$
- each v is called a valuation: it assigns a value to every clock
- Set of initial states: $S_{0}=\left\{\left(q_{0}, v_{0}\right)\right\}$, where we define $v_{0}(c)=0$ for all $c \in C$ (i.e., all clocks are initially set to 0)
- Set of transitions: $R=R_{t} \cup R_{d}$
- R_{t} : set of transitions modeling passage of time
- R_{d} : set of discrete transitions ("jumps" between control states)

Timed Automata: Semantics

A TA $\left(C, Q, q_{0}, \operatorname{lnv}, \triangleright\right)$ defines a transition system

$$
\left(S, S_{0}, R\right)
$$

such that

- Set of states: $S=Q \times \mathbb{R}_{+}^{C}$
- \mathbb{R}_{+}^{C} : the set of all functions $v: C \rightarrow \mathbb{R}_{+}$
- each v is called a valuation: it assigns a value to every clock
- Set of initial states: $S_{0}=\left\{\left(q_{0}, v_{0}\right)\right\}$, where we define $v_{0}(c)=0$ for all $c \in C$ (i.e., all clocks are initially set to 0)
- we could also define $S_{0}=\left\{q_{0}\right\} \times \mathbb{R}_{+}^{C}$ - what does this say?
- Set of transitions: $R=R_{t} \cup R_{d}$
- R_{t} : set of transitions modeling passage of time
- R_{d} : set of discrete transitions ("jumps" between control states)

Timed Automata: Discrete and Time Transitions

$$
\begin{aligned}
& R_{t}=\left\{((q, v),(q, v+t)) \mid \forall t^{\prime} \leq t: v+t^{\prime} \models \operatorname{lnv}(q)\right\} \\
& R_{d}=\left\{\left((q, v),\left(q^{\prime}, v^{\prime}\right)\right) \mid \exists a=\left(q, q^{\prime}, g, C^{\prime}\right) \in \triangleright:\right. \\
&\left.v \models g \wedge v^{\prime}=v\left[C^{\prime}:=0\right]\right\}
\end{aligned}
$$

where:

- $v+t$ is a new valuation u such that $u(c)=v(c)+t$ for all c
- if g is a constraint, then $v \models g$ means v satisfies g
- $v\left[C^{\prime}:=0\right]$ is a new valuation u such that $u(c)=0$ if $c \in C^{\prime}$ and $u(c)=v(c)$ otherwise

Timed Automata: Discrete and Time Transitions

$$
\begin{aligned}
R_{t}= & \left\{((q, v),(q, v+t)) \mid \forall t^{\prime} \leq t: v+t^{\prime} \models \operatorname{lnv}(q)\right\} \\
R_{d}= & \left\{\left((q, v),\left(q^{\prime}, v^{\prime}\right)\right) \mid \exists a=\left(q, q^{\prime}, g, C^{\prime}\right) \in \triangleright:\right. \\
& \left.v \models g \wedge v^{\prime}=v\left[C^{\prime}:=0\right]\right\}
\end{aligned}
$$

where:

- $v+t$ is a new valuation u such that $u(c)=v(c)+t$ for all c
- if g is a constraint, then $v \vDash g$ means v satisfies g
- $v\left[C^{\prime}:=0\right]$ is a new valuation u such that $u(c)=0$ if $c \in C^{\prime}$ and $u(c)=v(c)$ otherwise

Instead of $((q, v),(q, v+t)) \in R_{t}$ we write $(q, v) \xrightarrow{t}(q, v+t)$. Instead of $\left((q, v),\left(q^{\prime}, v^{\prime}\right)\right) \in R_{d}$ we write $(q, v) \xrightarrow{a}\left(q^{\prime}, v^{\prime}\right)$.

Example: Alarm Modeled as a Timed Automaton

$\operatorname{lnv}($ off $)=c \leq 10:$ automaton cannot spend more than 10 time units at control state "off".

Example: Alarm Modeled as a Timed Automaton

$\operatorname{Inv}($ off $)=c \leq 10$: automaton cannot spend more than 10 time units at control state "off".

What if we omit the invariant?

Example: Alarm Modeled as a Timed Automaton

Does it work correctly if cancel arrives exactly when $c=10$?

Example: Alarm Modeled as a Timed Automaton

Does it work correctly if cancel arrives exactly when $c=10$?
Depends on the semantics of composition: if it's non-deterministic (as usually done) then alarm may still ring. Otherwise, must give higher priority to the cancel transition.

Timed Automata Model-Checking: Reachability

- Basic question: is a given control state q reachable?
- i.e., does there exist some reachable state $s=(q, v)$ in the transition system defined by the timed automaton?
- Many interesting questions about timed automata can be reduced to this question.

Timed Automata Model-Checking: Reachability

- Basic question: is a given control state q reachable?
- i.e., does there exist some reachable state $s=(q, v)$ in the transition system defined by the timed automaton?
- Many interesting questions about timed automata can be reduced to this question.
- Is the basic control-state reachability question decidable?

Timed Automata Reachability

Not the same as discrete-state reachability!

q_{4} is reachable if we ignore the timing constraints. But is it really reachable?

Timed Automata Reachability

Not the same as discrete-state reachability!

q_{4} is reachable if we ignore the timing constraints. But is it really reachable?

No: at $q_{3}, c_{2}>1$ and $c_{1} \geq c_{2}$, therefore $c_{1}>1$ also.

Timed Automata Model-Checking: Reachability

A less obvious example: Fischer's mutual exclusion protocol.

Suppose we have many processes, each behaving like the TA above. Is mutual-exclusion guaranteed?
l.e., at most 1 process is in critical section (control state cs) at any given time.

Timed Automata Model-Checking: Reachability

Brute-force idea: exhaustive state-space exploration of the transition system defined by the timed automaton

- does not work since state-space is infinite (even uncountable)

Timed Automata Model-Checking: Reachability

Brute-force idea: exhaustive state-space exploration of the transition system defined by the timed automaton

- does not work since state-space is infinite (even uncountable)

Yet problem is decidable! [Alur-Dill'94]
Key idea:

- Region equivalence: partitions the state-space into finite number of equivalence classes (regions)
- Perform reachability on finite (abstract) state-space
- Can prove that q is reachable in the abstract space iff it is reachable in the concrete space

The Region Equivalence

Key idea: two valuations v_{1}, v_{2} are equivalent iff:
(1) v_{1} satisfies a guard g iff v_{2} satisfies g.
(2) v_{1} can lead to some v_{1}^{\prime} satisfying a guard g with a discrete transition iff v_{2} can do the same.
(3) v_{1} can lead to some v_{1}^{\prime} satisfying a guard g with a time transition iff v_{2} can do the same.

Region $=$ equivalence class w.r.t. region equivalence $=$ set of all equivalent valuations.

Pictures in this and other slides taken from [Bouyer(2005)].

The Region Equivalence: Finiteness

Finite number of equivalence classes: bounded by constant $c=$ maximal constant appearing in a guard or invariant.

Some regions are unbounded, e.g.:
$x>2 \wedge 0<y<1$
$x>2 \wedge y>2$
etc.

The Region Graph

A graph of regions: one region space for each control location.

Nodes: pairs (q, r) where

- q is a control location of the timed automaton.
- r is a region.

Two types of edges:

- $(q, r) \xrightarrow{a}\left(q^{\prime}, r^{\prime}\right)$: discrete transition
- $(q, r) \xrightarrow{\text { time }}\left(q, r^{\prime}\right):$ time transition

Decidability

Theorem ([Alur and Dill(1994)])

\exists reachable state (q, v) in a timed automaton
\exists reachable node (q, r) in its region graph.

Finite \# regions and control states \Rightarrow Region graph is finite \Rightarrow Reachability is decidable.

The Problem with Regions

STATE EXPLOSION!

Worst-case number of regions:

$$
O\left(2^{n} \cdot n!\cdot c^{n}\right)
$$

where n is the number of clocks and c is the maximal constant.
This is actually often close to the actual number of regions \Rightarrow no practical tool uses regions.

Model-checkers for TA (Uppaal, Kronos, ...) have improved upon the region-graph idea and use symbolic techniques.

From Regions to Zones

Zone: a convex union of regions, e.g., $x_{1} \geq 3 \wedge x_{2} \leq 5 \wedge x_{1}-x_{2} \leq 4$.

From Regions to Zones

Zone: a convex union of regions, e.g., $x_{1} \geq 3 \wedge x_{2} \leq 5 \wedge x_{1}-x_{2} \leq 4$.

Key property: can be represented efficiently using difference bound matrices (DBMs) [Dill(1989)].

$$
\left.x_{1} \geq 3 \wedge x_{2} \leq 5 \wedge x_{1} \leq x_{2}+4 \quad: \begin{array}{l}
\\
x_{0} \\
x_{1} \\
x_{2}
\end{array} \begin{array}{ccc}
x_{0} & x_{1} & x_{2} \\
\infty & -3 & \infty \\
\infty & \infty & 4 \\
5 & \infty & \infty
\end{array}\right)
$$

Symbolic Manipulations of Zones using DBMs

DBMs $=$ the BDDs of the timed automata world.
Time elapse, guard intersection, clock resets, are all easily implementable in DBMs.

Symbolic Manipulations of Zones using DBMs

DBMs $=$ the BDDs of the timed automata world.
Time elapse, guard intersection, clock resets, are all easily implementable in DBMs.

Is zone union implementable with DBMs?

Symbolic Manipulations of Zones using DBMs

DBMs $=$ the BDDs of the timed automata world.
Time elapse, guard intersection, clock resets, are all easily implementable in DBMs.

Is zone union implementable with DBMs?
No! The union of two zones in general is not a zone.
\Rightarrow often state explosion even with zones ...

Timed Automata Reachability: Simple Example

Is q_{2} reachable? (initially, $c_{1}=c_{2}=0$)

Timed Automata Reachability: Simple Example

Is q_{2} reachable? (initially, $c_{1}=c_{2}=0$)

Symbolic reachability analysis:
step symbolic state

$$
\text { initially: } \quad\left(q_{0}, c_{1}=0 \wedge c_{2}=0\right)
$$

Timed Automata Reachability: Simple Example

Is q_{2} reachable? (initially, $c_{1}=c_{2}=0$)

Symbolic reachability analysis:

step	symbolic state
initially:	$\left(q_{0}, c_{1}=0 \wedge c_{2}=0\right)$
let time elapse:	

Timed Automata Reachability: Simple Example

Is q_{2} reachable? (initially, $c_{1}=c_{2}=0$)

Symbolic reachability analysis:
step symbolic state

$$
\begin{aligned}
\text { initially: } & \left(q_{0}, c_{1}=0 \wedge c_{2}=0\right) \\
\text { let time elapse: } & \left(q_{0}, c_{1}=c_{2}\right)
\end{aligned}
$$

Timed Automata Reachability: Simple Example

Is q_{2} reachable? (initially, $c_{1}=c_{2}=0$)

Symbolic reachability analysis:

step	symbolic state
initially:	$\left(q_{0}, c_{1}=0 \wedge c_{2}=0\right)$
let time elapse:	$\left(q_{0}, c_{1}=c_{2}\right)$
take discrete transition to $q_{1}:$	

Timed Automata Reachability: Simple Example

Is q_{2} reachable? (initially, $c_{1}=c_{2}=0$)

Symbolic reachability analysis:

step	symbolic state
initially:	$\left(q_{0}, c_{1}=0 \wedge c_{2}=0\right)$
let time elapse:	$\left(q_{0}, c_{1}=c_{2}\right)$
take discrete transition to $q_{1}:$	$\left(q_{1}, c_{1}=0 \wedge c_{2} \geq c_{1}\right)$

Timed Automata Reachability: Simple Example

Is q_{2} reachable? (initially, $c_{1}=c_{2}=0$)

Symbolic reachability analysis:

step	symbolic state
initially:	$\left(q_{0}, c_{1}=0 \wedge c_{2}=0\right)$
let time elapse:	$\left(q_{0}, c_{1}=c_{2}\right)$
take discrete transition to $q_{1}:$	$\left(q_{1}, c_{1}=0 \wedge c_{2} \geq c_{1}\right)$
let time elapse:	

Timed Automata Reachability: Simple Example

Is q_{2} reachable? (initially, $c_{1}=c_{2}=0$)

Symbolic reachability analysis:

step	symbolic state
initially:	$\left(q_{0}, c_{1}=0 \wedge c_{2}=0\right)$
let time elapse:	$\left(q_{0}, c_{1}=c_{2}\right)$
take discrete transition to $q_{1}:$	$\left(q_{1}, c_{1}=0 \wedge c_{2} \geq c_{1}\right)$
let time elapse:	$\left(q_{1}, c_{2} \geq c_{1}\right)$

Timed Automata Reachability: Simple Example

Is q_{2} reachable? (initially, $c_{1}=c_{2}=0$)

Symbolic reachability analysis:

step	symbolic state
initially:	$\left(q_{0}, c_{1}=0 \wedge c_{2}=0\right)$
let time elapse:	$\left(q_{0}, c_{1}=c_{2}\right)$
take discrete transition to $q_{1}:$	$\left(q_{1}, c_{1}=0 \wedge c_{2} \geq c_{1}\right)$
let time elapse:	$\left(q_{1}, c_{2} \geq c_{1}\right)$
take discrete transition to $q_{2}:$	

Timed Automata Reachability: Simple Example

Is q_{2} reachable? (initially, $c_{1}=c_{2}=0$)

Symbolic reachability analysis:
step symbolic state

initially:	$\left(q_{0}, c_{1}=0 \wedge c_{2}=0\right)$
let time elapse:	$\left(q_{0}, c_{1}=c_{2}\right)$
take discrete transition to $q_{1}:$	$\left(q_{1}, c_{1}=0 \wedge c_{2} \geq c_{1}\right)$
let time elapse:	$\left(q_{1}, c_{2} \geq c_{1}\right)$
take discrete transition to $q_{2}:$	cannot because
	$c_{1}>1 \wedge c_{2} \leq 1 \wedge c_{2} \geq c_{1}$ is UNSAT

Timed Automata Reachability: Simple Example

Is q_{2} reachable? (initially, $c_{1}=c_{2}=0$)

Symbolic reachability analysis:
step symbolic state

step	symbolic state
initially:	$\left(q_{0}, c_{1}=0 \wedge c_{2}=0\right)$
let time elapse:	$\left(q_{0}, c_{1}=c_{2}\right)$
take discrete transition to $q_{1}:$	$\left(q_{1}, c_{1}=0 \wedge c_{2} \geq c_{1}\right)$
let time elapse:	$\left(q_{1}, c_{2} \geq c_{1}\right)$
take discrete transition to $q_{2}:$	cannot because
	$c_{1}>1 \wedge c_{2} \leq 1 \wedge c_{2} \geq c_{1}$ is UNSAT

Bibliography

R. Alur.

Timed automata.
NATO-ASI 1998 Summer School on Verification of Digital and Hybrid Systems, 1998.
R. Alur and D. Dill.

A theory of timed automata.
Theoretical Computer Science, 126:183-235, 1994.
P. Bouyer.

An introduction to timed automata.
At http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/bouyer-etr05.pdf, 2005.
D. Dill.

Timing assumptions and verification of finite-state concurrent systems.
In J. Sifakis, editor, Automatic Verification Methods for Finite State Systems, volume 407 of LNCS, pages 197-212. Springer, 1989.

