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Timed Automata

o A formal model for dense-time systems [Alur and Dill(1994)]
@ Developed mainly with verification in mind:
» in the basic TA variant, model-checking is decidable
@ But also an elegant theoretical extension of the standard theory of
regular and w-regular languages.
@ Many different TA variants, some undecidable.
@ We will look at a basic variant.
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Timed Automaton
A TA is a tuple

(Cv Q: q0, InV: I>)
C' finite set of clocks
Q: finite set of control states; qy € Q: initial control state

Inv: a function assigning to each ¢ € Q an invariant

>>: a finite set of actions, each being a tuple
(¢.4,9,C")

» ¢,q € Q: source and destination control states
» g: clock guard
» C': set of clocks to reset to 0, C' C C

Invariants and guards are simple constraints on clocks, e.g.,
c<1l, 0<c<2Acyg=4, etc
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Timed Automaton

A TA is a tuple
(Ca Q: q0, InV7 I>)
C' finite set of clocks
Q: finite set of control states; qy € Q: initial control state

Inv: a function assigning to each ¢ € Q an invariant

>>: a finite set of actions, each being a tuple
(¢.4,9,C")

» ¢,q € Q: source and destination control states
» g: clock guard
» C': set of clocks to reset to 0, C' C C

Invariants and guards are simple constraints on clocks, e.g.,
c<1l, 0<c<2Acyg=4, etc

Can also have atomic propositions labeling control states, labels on actions,
communication via shared memory or message passing, etc.

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Timed Automata 3/22



Example: Timed Automaton

A simple light controller:

touch
c>2

touch
C={c}
Q = { off, light, bright }
qo = off

touch: action label (can be seen as the input symbol)
Inv(q) = true for all ¢ € Q
Actions: (off, light, true,{c}), (light, off, ¢ > 2,{}), ...
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Event-based vs. state-based models

SEoce - Generator Regulator with Specification Monitors
This model checks the behavior against a specification that is given formally
using hierarchical state machines that monitor the behavior for conformance.

© owerVoltageThreshold: 120.0

Supervisor synthesized by TuLiP.

A GeneratorContactorLoad Conroller
= MicrostepDelay

o] ey i e ] ey o T

ngh_level At time 15, turn

on a load. Expression

|——4 vliage >= overoliageThreshold Je=
An over-voltage
threshold of 120 [— SpecificationMonitor2  ThrowModelErmor2
is exceeded during

this controller, the
fault condition
disables connecting
the load SpecificationMonitor  ThrowModelError

Specification here is not met by this
implementation, so if the connection
is made to the ThrowModelError actor,
then an exception will result on
running the model

Specification monitor here provides a violation signal if the

specis not me. The result will be an exception.

See also a cleaner version of this model,
where the specification monitor is an aspect.

touch
c>2

Low-level:

touch
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Timed Automata: Semantics

A TA (C,Q, qo, Inv,>) defines a transition system
(S7 SO7 R)

such that

@ Set of states: S =Q x RY

» RY: the set of all functions v: C — Ry
» each v is called a valuation: it assigns a value to every clock

@ Set of initial states: Sy = {(qo, v0)}, where we define vy(c) =0 for all c € C
(i.e., all clocks are initially set to 0)

@ Set of transitions: R = R; U Ry

» R;: set of transitions modeling passage of time
» Ry: set of discrete transitions (“jumps” between control states)
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Timed Automata: Semantics

A TA (C,Q, qo, Inv,>) defines a transition system
(S7 SO7 R)

such that

@ Set of states: S =Q x RY

» RY: the set of all functions v: C — Ry
» each v is called a valuation: it assigns a value to every clock

@ Set of initial states: Sy = {(qo, v0)}, where we define vy(c) =0 for all c € C
(i.e., all clocks are initially set to 0)

> we could also define Sy = {go} x RY — what does this say?
@ Set of transitions: R = R; U Ry

» R;: set of transitions modeling passage of time
» Ry: set of discrete transitions (“jumps” between control states)
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Timed Automata: Discrete and Time Transitions

Re = {((@0)(@0+0) W <0+t = Inv(g))
Ry = {((q.v).(d,v)) | Fa=(q.4,9.C") €>:
vEgAY =00 :=0]}

where:

@ v+t is a new valuation u such that u(c) = v(c) 4t for all ¢
e if g is a constraint, then v = g means v satisfies g

e v[C" :=0] is a new valuation u such that u(c) =0 if ¢ € C’ and
u(c) = v(c) otherwise
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Timed Automata: Discrete and Time Transitions

Re = {((@0)(@0+0) W <0+t = Inv(g))
Ry = {((q.v).(d,v)) | Fa=(q.4,9.C") €>:
vEgAY =00 :=0]}

where:

@ v+t is a new valuation u such that u(c) = v(c) 4t for all ¢
e if g is a constraint, then v = g means v satisfies g
e v[C" :=0] is a new valuation u such that u(c) =0 if ¢ € C’ and
u(c) = v(c) otherwise
Instead of ((g,v), (g,v + 1)) € Ry we write (q,v) —— (g,v +1).
Instead of ((g,v), (¢',v")) € Rq we write (g,v) == (¢, v’).
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Example: Alarm Modeled as a Timed Automaton

stopped

cancel?

c<10

Inv(off) = ¢ < 10 : automaton cannot spend more than 10 time units at
control state “off".
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Example: Alarm Modeled as a Timed Automaton

stopped

cancel?

c<10

Inv(off) = ¢ < 10 : automaton cannot spend more than 10 time units at
control state “off".

What if we omit the invariant?
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Example: Alarm Modeled as a Timed Automaton

stopped

Does it work correctly if cancel arrives exactly when ¢ = 107
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Example: Alarm Modeled as a Timed Automaton

stopped

Does it work correctly if cancel arrives exactly when ¢ = 107

Depends on the semantics of composition: if it's non-deterministic (as
usually done) then alarm may still ring. Otherwise, must give higher
priority to the cancel transition.
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Timed Automata Model-Checking: Reachability

@ Basic question: is a given control state g reachable?

> i.e., does there exist some reachable state s = (¢, v) in the transition
system defined by the timed automaton?

@ Many interesting questions about timed automata can be reduced to this
question.
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Timed Automata Model-Checking: Reachability

@ Basic question: is a given control state g reachable?

> i.e., does there exist some reachable state s = (¢, v) in the transition
system defined by the timed automaton?

@ Many interesting questions about timed automata can be reduced to this
question.

@ |s the basic control-state reachability question decidable?
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Timed Automata Reachability

Not the same as discrete-state reachability!

. (o) (g
“ c1:=0 @ cp:=0 o~ ca>1 \qy <1 "

q4 is reachable if we ignore the timing constraints.
But is it really reachable?
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Timed Automata Reachability

Not the same as discrete-state reachability!

. (o) (g
“ c1:=0 @ cp:=0 o~ ca>1 \qy <1 "

q4 is reachable if we ignore the timing constraints.
But is it really reachable?

No: at g3, co > 1 and ¢; > co, therefore ¢; > 1 also.
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Timed Automata Model-Checking: Reachability

A less obvious example: Fischer's mutual exclusion protocol.

ek ==0 waitin
c=0 9

O ce=A

sleeping

©

c>=Ba&&lock =i
c<=A

lock =0 lock =1, e=0

O

cs

O

trying

¢ >=B && lock ==

Suppose we have many processes, each behaving like the TA above.
Is mutual-exclusion guaranteed?

l.e., at most 1 process is in critical section (control state cs) at any given
time.
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Timed Automata Model-Checking: Reachability

Brute-force idea: exhaustive state-space exploration of the transition system
defined by the timed automaton

@ does not work since state-space is infinite (even uncountable)

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2016 Timed Automata 13 /22



Timed Automata Model-Checking: Reachability

Brute-force idea: exhaustive state-space exploration of the transition system
defined by the timed automaton

@ does not work since state-space is infinite (even uncountable)

Yet problem is decidable! [Alur-Dill'94]

Key idea:

@ Region equivalence: partitions the state-space into finite number of
equivalence classes (regions)

@ Perform reachability on finite (abstract) state-space

@ Can prove that ¢ is reachable in the abstract space iff it is reachable in the
concrete space
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The Region Equivalence
Key idea: two valuations vy, v are equivalent iff:

© v satisfies a guard g iff vo satisfies g.

@ v can lead to some v} satisfying a guard g with a discrete transition iff vy
can do the same.

© v can lead to some v} satisfying a guard g with a time
transition iff v can do the same.

Region = equivalence class w.r.t. region equivalence = set of all equivalent
valuations.

Y Region in gray:

l<z<2AN1<y<2nhnz>y.

2r- AT Other regions:
4 1 _ —
A7 z=y=0,

’/: L O<x=y<1,
S r=0N0<y<1,
0 1 ) . etc.

Pictures in this and other slides taken from [Bouyer(2005)].
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The Region Equivalence: Finiteness

Finite number of equivalence classes: bounded by constant ¢ = maximal
constant appearing in a guard or invariant.

Y

Some regions are unbounded, e.g.:

r>2N0<y<1
T>2ANy>2
etc.
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The Region Graph

A graph of regions: one region space for each control location.

Nodes: pairs (g, 7) where

@ ¢ is a control location of the timed automaton.

@ r is a region.

Two types of edges:

o (¢,7) - (¢',r"): discrete transition

time

@ (gq,7) — (g,7"): time transition
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Decidability

Theorem ([Alur and Dill(1994)])

3 reachable state (q,v) in a timed automaton
iff
3 reachable node (q,r) in its region graph.

Finite # regions and control states = Region graph is finite =
Reachability is decidable.
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The Problem with Regions

STATE EXPLOSION!

Worst-case number of regions:
O2"-n!-c")
where n is the number of clocks and ¢ is the maximal constant.

This is actually often close to the actual number of regions = no practical
tool uses regions.

Model-checkers for TA (Uppaal, Kronos, ...) have improved upon the
region-graph idea and use symbolic techniques.
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From Regions to Zones
Zone: a convex union of regions, e.g., x1 > 3 A 22 < 5 Ax — 29 < 4.

34 9
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From Regions to Zones
Zone: a convex union of regions, e.g., x1 > 3 A 22 < 5 Ax — 29 < 4.

34 9

Key property: can be represented efficiently using difference bound matrices
(DBMs) [Dill(1989)].

o I1 X2

o oo —3 oo
1 >3 Naxo <bAx1 <x90+4+4 T 00 00 A
To 5 o0 00
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Symbolic Manipulations of Zones using DBMs

DBMs = the BDDs of the timed automata world.

Time elapse, guard intersection, clock resets, are all easily implementable
in DBMs.
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Time elapse, guard intersection, clock resets, are all easily implementable
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Symbolic Manipulations of Zones using DBMs

DBMs = the BDDs of the timed automata world.

Time elapse, guard intersection, clock resets, are all easily implementable
in DBMs.

Is zone union implementable with DBMs?
No! The union of two zones in general is not a zone.

= often state explosion even with zones ...
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Timed Automata Reachability: Simple Example

. (o)
“ cl = @ cp>1 ©
<1

Is g2 reachable? (initially, ¢c; = co = 0)
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Timed Automata Reachability: Simple Example

— ()
“ cl = @ cp>1 ©
<1

Is g2 reachable? (initially, ¢c; = co = 0)

Symbolic reachability analysis:

step symbolic state

initially: ~ (go,c1 =0 A ¢y =0)
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Timed Automata Reachability: Simple Example

— ()
“ cl = @ cp>1 ©
<1

Is g2 reachable? (initially, ¢c; = co = 0)

Symbolic reachability analysis:

step symbolic state
initially: ~ (go,c1 =0 A ¢y =0)
let time elapse:  (qo,c1 = c2)
take discrete transition to ¢1:  (q1,¢1 = 0A ¢ > ¢1)
let time elapse:  (g1,c2 > ¢1)
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Timed Automata Reachability: Simple Example

— ()
“ cl = @ cp>1 ©
<1

Is g2 reachable? (initially, ¢c; = co = 0)

Symbolic reachability analysis:

step symbolic state

initially:  (go,c1 =0Ac2 =0)
let time elapse:  (qo,c1 = ¢2)
take discrete transition to ¢1:  (q1,¢1 = 0A ¢ > ¢1)
let time elapse:  (q1,¢2 > ¢1)
take discrete transition to g¢s:
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Timed Automata Reachability: Simple Example

. (a)
“ cl = \qu cp>1 ”
<1

Is g2 reachable? (initially, ¢c; = co = 0)

Symbolic reachability analysis:

step symbolic state

initially:  (go,c1 =0Ac2 =0)
let time elapse:  (qo,c1 = ¢2)
take discrete transition to ¢1:  (q1,¢1 = 0A ¢ > ¢1)
let time elapse:  (q1,¢2 > ¢1)
take discrete transition to ¢3: cannot because

c1>1ANea <1Acg > cpis UNSAT
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Timed Automata Reachability: Simple Example

. (a)
“ cl = \qu cp>1 ”
<1

Is g2 reachable? (initially, ¢c; = co = 0)

Symbolic reachability analysis:

step symbolic state

initially:  (go,c1 =0Ac2 =0)
let time elapse:  (qo,c1 = c2)
take discrete transition to ¢1:  (q1,¢1 = 0A ¢ > ¢1)
let time elapse:  (q1,¢2 > ¢1)
take discrete transition to ¢3: cannot because

c1>1ANea <1Acg > cpis UNSAT

therefore go not reachable
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