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Sequential v.s. Combinational Synthesis/Logic Optimization

Optimize the size/delay/etc. of the combinational circuit

(viewed as a Boolean network)

L
A

T
C

H
E

S

L
A

T
C

H
E

S
Common Clock

Combinational 

Circuit

(No feedback loops)



EECS 144/244, UC Berkeley: 4

Logic Optimization

logic
optimization

netlist

netlist

Library

tech
independent

tech
dependent

2-level
Logic opt

multilevel
Logic opt

Real

Library

Generic

Library



EECS 144/244, UC Berkeley: 5

Outline of Topics

Basics of Boolean functions

• Prime, Implicants, cubes

• Tautology checking

Two-level logic optimization

• Quine-McCluskey Method

• Espresso

Multi-level logic optimization
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Definitions – 1: What is a Boolean function?

Let B = {0, 1} and Y = {0, 1}

Input variables:  X1, X2 … Xn

Output variables:  Y1, Y2 … Ym

A logic function f (or ‘Boolean’ function, 

switching function) in n inputs and         

m outputs is a map

f:  B
n

Y
m
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Definition used in Logic Optimization

Let B = {0, 1} and Y = {0, 1, 2}

Input variables:  X1, X2 … Xn

Output variables:  Y1, Y2 … Ym

A logic function ff (or ‘Boolean’ 

function, switching function) in n

inputs and m outputs is a map

ff:  B
n

Y
m

don’t care – aka “X”
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The Boolean n-Cube, Bn
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Boolean Functions

B = {0, 1}, x = (x1, x2, …, xn)

x1, x2, … are variables

x1, x1’, x2, x2’, … are literals

Each vertex of B
n

is mapped to 0 , 1 or 2 (don’t care)

the onset of f is {x|f(x)=1} =f 1 = f -1(1) 

the offset of f is {x|f(x)=0} =f 0 = f -1(0)

if f 1 = Bn, f is the tautology, i.e. f  1 

if f 0 = Bn (f 1 = ), f is not satisfiable

if f(x) = g(x) for all x Bn, then f and g are equivalent

We write simply f instead of f 1
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Literals

Green – ON-set
Red – OFF-set

A literal is a variable or its negation

y, y’

It represents a logic function

Literal x1 represents the logic function f, where f = {x| x1 = 1}

Literal x1’ represents logic function g where g = {x| x1 = 0}
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Boolean Formulas -- Syntax

Boolean formulas can be represented by formulas defined 

as catenations of

• parentheses ( , )

• literals x, y, z, x’, y’, z’

• Boolean operators  (OR), X (AND)

• complementation, e.g. (x + y)’

Examples

f = x1 X x2‘ + x1‘ X x2 = (x1+x2) X (x1’+x2’)

h = a + b X c = (a’ X (b’ + c’))’

We usually replace X by catenation, e.g. a X bab
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Logic functions 

There are 2n vertices in input space Bn

There are 22
n

distinct logic functions. 

• How many logic formulae?

Each subset of vertices is a distinct logic function: 

f  Bn

111

000

x3

x1

x2

000    1

001    0

010    1

011    0

100  1

101    0

110    1

111    0

“truth table”
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“Semantic” Description of Boolean Function

EXAMPLE: Truth table form of an incompletely 

specified function

ff:  B3 Y2

Y1:  ON-SET1   =   {000, 001, 100, 101, 110}

OFF-SET1 =   {010, 011}

DC-SET1 =   {111}

X1 X2 X3 Y1 Y2

0   0    0       1    1
0   0    1       1    0
0   1    0       0    1
0   1    1       0    1
1   0    0       1    0
1   0    1       1    2
1   1    0       1    1
1   1    1       2    1
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Operations on Logic Functions

(1)Complement:   f            f (¬ f or f ’)

interchange ON and OFF-SETS

(2)Product (or intersection or logical AND)

h = f · g (what happens to ON/OFF sets?) 

(3)Sum (or union or logical OR):

h = f + g  (ON/OFF sets?)
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Cubes

The AND of a set of literal functions (“conjunction” of literals) is a cube 

(also view as a set of minterms)

C = xy’  is a cube

C = (x=1)(y=0)

x =1 y =0 xy’

z

y

x
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2-level Minimization: Minimizing SOP (DNF)

F1 =  A B + A B D + A B C D

+ A B C D + A B + A B D

F1 = B + D + A C + A C

minimum representation

0 0 - - 1

0 1 - 1 1
0 1 0 0   1
1 1 1 0   1
1 0 - - 1
1 1 - 1    1

- 0 - - 1
- - - 1 1
0 - 0 - 1
1 - 1 - 1

Inputs Outputs

(number of cubes, literals)
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PLA’s - Multiple Output Functions

A PLA is a function f : Bn  Bm represented in SOP form:

f2 f3f1

n=3, m=3

a a b b c c
abc  f1f2f3

10- 1 - -

-11  1 - -

0-0  - 1 -

111  - 1 1

00- - - 1

Personality Matrix



EECS 144/244, UC Berkeley: 18

PLA’s (cont.)

Each distinct cube appears just once in the AND-plane, and can be shared by (multiple) outputs in the OR-
plane, e.g., cube (abc).

Extensions from single output to multiple output minimization theory are straightforward.

Multi-level logic can be viewed mathematically as a connection of single output functions.
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Implicants

An implicant of a function f is a cube p that 

does not intersect the OFF-SET of f

p   fON fDC
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Prime Implicants

An implicant of f is a cube p that does not 

intersect the OFF-SET of f

p   fON fDC

A prime implicant of f is an implicant p such 

that

(1)  No other implicant q contains it             

(i.e. p  q)

(2)  p  fDC

A minterm is a fully specified implicant

e.g.,  011, 111 (not 01-)
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Examples of Implicants/Primes

X1 X2 X3 Y1

0   0    0       1 
0   0    1       1 
0   1    0       0 
0   1    1       0  
1   0    0       1 
1   0    1       1 
1   1    0       1  
1   1    1       2 

000, 00- are implicants, but not primes ( -0- )

How about 1-1 ?  0-0 ?
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Prime and Irredundant Covers

A cover is a set of cubes  C such that

C   fON and   C   fON  fDC

All of the ON-set is covered by C

C is contained in the ON-set and Don’t Care Set

A prime cover is a cover whose cubes are all prime implicants

An irredundant cover is a cover C such that removing any cube 

from C results in a set of cubes that no longer covers the 

function (ON-set)

A prime of f is essential (essential prime) if there is a minterm

(essential vertex) in that prime but in no other prime.
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Irredundant

Let F = {c1, c2, …, ck} be a cover for f.

f = i
k
=1 ci

A cube ci F is irredundant if F\{ci} ⊅ f

Example 2: f = ab + ac + bc

bc

ac
ab

c

a

b

bc

ac

Not covered

F\{ab} ⊅ f
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Example Covers

X1 X2 X3 Y1

0   0    0       1 
0   0    1       1 
0   1    0       0 
0   1    1       0  
1   0    0       1 
1   0    1       1 
1   1    0       1  
1   1    1       2 

0 0 -
1 0 - is a cover.  Is it prime?
1 1 - Is it irredundant?
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Minimum Covers

Definition: A minimum cover is a cover of 

minimum cardinality

Theorem: There exists a minimum cover that is 

a prime and irredundant cover.

Why?
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Minimum Covers

Defn: A minimum cover is a cover of minimum 

cardinality

Theorem: There exists a minimum cover that is 

a prime and irredundant cover.

Given any cover C

(a)  if redundant, not minimum

(b)  if any cube q is not prime, replace q with 

prime p  q and continue until all cubes 

prime; it is a minimum prime cover
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Example Covers

X1 X2 X3 Y1

0   0    0       1 
0   0    1       1 
0   1    0       0 
0   1    1       0  
1   0    0       1 
1   0    1       1 
1   1    0       1  
1   1    1       2 

0 0 -
1 0 - is a cover.  Is it prime?
1 1 - Is it irredundant?

What is a minimum prime and 
irredundant cover for the function?
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Example Covers

X1 X2 X3 Y1

0   0    0       1 
0   0    1       1 
0   1    0       0 
0   1    1       0  
1   0    0       1 
1   0    1       1 
1   1    0       1  
1   1    1       2 

0 0 -
1 0 - is a cover.  Is it prime?
1 1 - Is it irredundant?

- 0 -
1 1 - is a cover.   Is it prime?

Is it irredundant?
Is it minimum?
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Example Covers

X1 X2 X3 Y1

0   0    0       1 
0   0    1       1 
0   1    0       0 
0   1    1       0  
1   0    0       1 
1   0    1       1 
1   1    0       1  
1   1    1       2 

0 0 -
1 0 - is a cover.  Is it prime?
1 1 - Is it irredundant?

- 0 -
1 1 - is a cover.   Is it prime?

Is it irredundant?
Is it minimum?

What about
- 0 -
1 - -
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Checking for Prime and Irredundant

We will use Shannon (Boole’s) Cofactor and Tautology Checking!

• Let f : Bn  B be a Boolean function, and x= (x1, x2, …, xn) the 

variables in the support of f. The cofactor fa of f by a literal a=xi or 

a=xi‘ is

fxi
(x1, x2, …, xn) = f (x1, …,  xi-1, 1, xi+1,…, xn)

fxi’
(x1, x2, …, xn) = f (x1, …,  xi-1, 0, xi+1,…, xn) 

• Tautology:  find a truth assignment to the inputs making a given Boolean 

formula false



EECS 144/244, UC Berkeley: 31

The cofactor fC of f by a cube C is f with the fixed values 

indicated by the literals of C, e.g. if C=xi xj’, then xi =1, 

and xj =0.

If C= x1 x4‘x6, fC is just the function f restricted to the 

subspace where x1 =x6 =1 and x4 =0.

As a function, fC does not depend on x1,x4 or x6

(However, we still consider fC as a function of all n

variables, it just happens to be independent of 

x1,x4 and x6).

x1f  fx
1

Example: f= ac + a’c’ , af = ac, fa=c

Shannon (Boolean) Cofactor
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Cofactor and Quantification

Let f : Bn  B be a Boolean function, and x= (x1, x2, …, xn) the variables in 

the support of f.

• Positive cofactor fxi
(x1, x2, …, xn) = f (x1, …,  xi-1, 1, xi+1,…, xn)

• Negative cofactor fxi’
(x1, x2, …, xn) = f (x1, …,  xi-1, 0, xi+1,…, xn) 

• Existential quantification over variable xi :∃xi.f = fxi
˅ fxi’

• Universal quantification over variable xi : ∀xi.f= fxi
˄fxi’



EECS 144/244, UC Berkeley: 33

Fundamental Theorem

Theorem 1 Let c be a cube and f a function. Then c  f  fc  1.

Proof. We use the fact that xfx = xf, and fx is independent of x.

If: Suppose fc  1. Then cf=fcc=c. Thus, 

c  f.

f

c
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Proof (contd)

Only if. Assume c  f

Then c  cf = cfc. If fc 1, then  m  Bn, fc(m)=0. 

Find m^: Let mi^=mi, if xic and xi’c. 

or if mi=0, xi ‘ c 

or mi=1, xi  c.

mi^=mi’ otherwise.

i.e. we make the literals of m^ agree with c, i.e. m^  c. 

But then fc(m^) = fc(m) = 0,( fc is independent of 

literals l  c)

Hence, c(m^)=1 

and fc(m^) c(m^)= 0,

contradicting c  cfc.

m= 000

m^= 101

m

m^

C=xz
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Checking for Prime and Irredundant

• Let G={ci} be a cover of F=(fON, fDC, fOFF). Let D be a 

cover for fDC.

ciG is redundant iff

ci (G\{ci})D  Gi (1)

(Since ci Gi and fONG fON + fDC then ci  ci fON +ci fDC

and ci fON G\{ci}. Thus fON G\{ci}.)
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Checking for Prime and Irredundant

• Let G={ci} be a cover of F=(fON, fDC, fOFF). Let D be a 

cover for fDC.

ciG is redundant iff

ci (G\{ci})D  Gi (1)

(Since ci Gi and fONG fON + fDC then ci  ci fON +ci fDC

and ci fON G\{ci}. Thus fON G\{ci}.)

• A literal l  ci is prime if (ci\{ l }) ( = (ci)l ) is not an 

implicant of F.

A cube ci is a prime of F iff all literals l  ci are prime.

Literal l  ci is not prime  (ci)l  fON + fDC
(2)
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Note: Both tests (1) and (2) can be checked by 

tautology:

1) (Gi)ci  1          (implies ci redundant)

2) (FD)(ci)l
 1      (implies l not prime)
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Tautology Checking

F = acd + bcd + a’bd’ + a’c’d’ +c’d + ac’+ ad’ + b’cd’ + a’b’d + a’b’c

Is F = 1? NOT EASY!!!

1211

2111

0120

0200

F= 2201 == 1?
1202

1220

2010

0021

0012
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List of Cubes (Cover Matrix)

We often use a matrix notation to represent a cover:

Example: F = ac + cd =

a b c d             a b c d

ac 1 2 1 2    or       1 - 1 -

cd 2 2 0 1             - - 0 1

Each row represents a cube

1 means that the positive literal appears in the cube 

0 means that the negative literal appears in the cube

The 2 (or -) here represents that the variable does not appear in the cube. 
It implicitly represents both 0 and 1 values.
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Operations on Lists of Cubes

AND operation:

 take two lists of cubes

 computes pair-wise AND between individual cubes and put result on new list

 represent cubes as pairs of computer words

 set operations are implemented as bit-vector operations

Algorithm AND(List_of_Cubes C1,List_of_Cubes C2) {

C = 

foreach c1 C1 {

foreach c2 C2 {

c = c1 c2

C = C  c

}

}

return C

}
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Operations on Lists of Cubes

OR operation:

 take two lists of cubes

 computes union of both lists

Naive implementation:

On-the-fly optimizations:

 remove cubes that are completely covered by other cubes

• complexity is O(m2); m is length of list

 merge adjacent cubes

 remove redundant cubes? 

• complexity is O(2n); n is number of variables

• too expensive for non-orthogonal lists of cubes

Algorithm OR(List_of_Cubes C1, List_of_Cubes C2) {

return C1 C2

}
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Naive implementation of COMPLEMENT operation
 apply De’Morgan’s law to SOP 

 complement each cube and use AND operation

 Example:

Naive implementation of TAUTOLOGY check
 complement function using the COMPLEMENT operator and check for emptiness

Operation on Lists of Cubes 

Input                   non-orth.              orthogonal

01-10 =>  1---- => 1----

-0--- 00---

---0- 01-0-

----1      01-11
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Generic Tautology Check 

Algorithm CHECK_TAUTOLOGY(List_of_Cubes C) {

if(C == )      return FALSE;

if(C == {-...-})return TRUE; // cube with all ‘-’

xi = SELECT_VARIABLE(C)

C0 = COFACTOR(C, xi’)

if(CHECK_TAUTOLOGY(C0) == FALSE) {

print xi = 0

return FALSE;

}

C1 = COFACTOR(C,xi)

if(CHECK_TAUTOLOGY(C1) == FALSE) {

print xi = 1

return FALSE;

}

return TRUE;

}
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Improvements

Variable ordering:

 pick variable that minimizes the two sub-cases (“-”s get replicated into both cases)

Quick decision at leaf:

 return TRUE if C contains at least one complete “-” cube among others (case 1)

 return FALSE if number of minterms in onset is < 2n  (case 2)

 return FALSE if C contains same literal in every cube (case 3)
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x1

x1’

x2

x2’

x3’

x4’

x4
x3

No tautology(case 3)

No tautology(case 3)

tautology(case 1)

tautology(case 1)

tautology(case 1)

Example

-1-0

--10

1-11

0---

-1-0

--10

--11

-1-0

--10

----

---0

--10

--11

--10

--11

---0

---0

---1

----

----
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The Quine-McCluskey Method: Exact Minimization

Given G’ and D (covers for F=(fON, fDC, fOFF). 
and fDC), find a minimum cover G of primes 
where:

f  G  fON+ fDC(G is a prime cover of F )

Step 1: List all minterms in ON-SET and DC-SET

Step 2: Use a prescribed sequence of steps to find 

all the prime implicants of the function

Step 3: Construct the prime implicant table

Step 4: Find a minimum set of prime implicants that 

cover all the minterms
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Example

Primes: ~y + w + ~x~z

Covering Table

Solution: {1,2}  ~y + w is minimum prime 

cover. (also w+ ~x~z)

F xyzw xyzw xyzw xyzw

D yz xyw xyzw xyw xyzw

= + + +

= + + + +

dd

ddd

dd

dd

00

1

11

01

~x~y ~xy xy x~y

~z~w

~zw

zw

z~w

~x~z ~y

w
Karnaugh map

010

011

110

101

~y w ~x~z

x~y~z w

~x y z w     

~x y~z w     

~x~y~z~w
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Generating Primes - single output func.

Tabular method
(based on consensus operation):

Start with all minterm canonical form of F

Group pairs of adjacent minterms into cubes 

Repeat merging cubes until no more merging 
possible; mark () + remove all covered 
cubes. 

Result: set of primes of f.

Example:   

F = x’ y’ + w x y + x’ y z’ + w 

y’ z

w’ x’ y’ z’ 

w’ x’ y’ z   
w’ x’ y z’ 
w x’ y’ z’ 

w x’ y’ z    
w x’ y z’ 
w x y z’ 
w x y’ z     
w x y z      

w’ x’ y’ 
w’ x’ z’ 
x’ y’ z’ 
x’ y’ z   
x’ y z’ 
w x’ y’ 
w x’ z’ 
w y’ z

w y z’
w x y

w x z

x’ y’
x’ z’

F = x’ y’ + w x y + x’ y z’ + w y’ z

Courtesy: Maciej Ciesielski, UMASS
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Generating Primes – multiple outputs

Procedure similar to single-output function, except:

 include also the primes of the products of individual functions

Example:
x y z

0 – 0

0 1 1

1 – 1

f1 f2
0 1

1 1

1 0

Can also represent it as: 

x y z

0 – 0

0 1 –

– 1 1

1 – 1

f1 f2
0 1

0 1

1 0

1 0
x

y
z

000 100

110010

111011

001

000 100

110
010

111011

001

f1
f2

101 101
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Generating Primes - example

Modification (w.r.t single output function):
 When two adjacent implicants are merged, the output parts are intersected

000 | 01    

010 | 01    

011 | 11

101 | 10    

111 | 10    

0 – 0 | 01

0 1 – | 01

– 1 1 | 10

1 – 1 | 10

x y z

0 – 0

0 1 1

1 – 1

f1 f2
0 1

1 1

1 0

There are five primes listed for

this two-output function.

- What is the min cover ?

f2

000 100

110

010

111011

001

000 100

110

010

111011

001

f1

101 101
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Minimize multiple-output cover - example

List multiple-output primes

f1 f2

000 100

110

010

111011

001

000 100

110

010

111011

001
101 101

p1 =  0 1 1 | 11

p2 =  0 – 0 | 01

p3 =  0 1 – | 01

p4 =  – 1 1 | 10

p5 =  1 – 1 | 10

000 | 01

010 | 01

011 | 01

011 | 10

101 | 10

111 | 10

listed twice

0  1  0  0  0 

0  1  1  0  0

1  0  1  0  0

1  0  0  1  0

0  0  0  0  1

0  0  0  1  1

p1 p2 p3 p4 p5

Min cover has 3 primes:

F = { p1, p2, p5 }

• Create a covering table, solve
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Covering Table

Definition: An essential prime is any prime that uniquely covers a minterm

of f.

010

011

110

101

~y w ~x~z

X~y~zw

~xyzw

~xy~zw

~x~y~z~w

Primes of f+d

Minterms of f

Essential prime

Row singleton

(essential minterm)
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Row and Column Dominance

Definition: A row i1 whose set of primes is contained in the set of primes of 
row i2 is said to dominate i2.

Example:

i1 011010

i2 011110

i1 dominates i2

We can remove row i2, because we have to choose a prime to cover i1, 
and any such prime also covers i2. So i2 is automatically covered.
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Row and Column Dominance

Definition: A column j1 whose rows are a superset of another column j2 is 
said to dominate j2.

Example:

j1 dominates j2

We can remove column j2 since j1 covers all those rows and more. We 
would never choose j2 in a minimum cover since it can always be 
replaced by j1.

j1       j2

1 0

0 0

1 1

0 0

1 1
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Pruning the Covering Table

1. Remove all rows covered by essential primes (columns in row 
singletons). Put these primes in the cover G.

2. Group identical rows together and remove dominated rows.

3. Remove dominated columns. For equal columns, keep one prime to 
represent them.

4. Newly formed row singletons define n-ary essential primes.

5. Go to 1 if covering table decreased. 

The resulting reduced covering table is called the cyclic core. This has to

be solved (unate covering problem). A minimum solution is added to G -

the set of n-ary essential primes. The resulting G is a minimum cover.
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Example

0001110

0001101

0000110

0001011

0011100

0110000

1100001

1000000

01110

01101

00110

01011

11100

10000

34567

n-ary Essential Prime 

and

Column Dominance

G=P1 + P3

111

110

011

101

456

110

011

101

456

Essential Prime and 

Column Dominance

G=P1

Row dominanceCyclic 

Core
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11
1111

11

0

A

1

C

Solving the Cyclic Core

Best known method (for unate covering) is branch and bound with some

clever bounding heuristics. 

Independent Set Heuristic:

Find a maximum set of “independent” rows I. Two rows Bi1 
,Bi2 

are 

independent if j such that Bi1j 
=Bi2j

=1. (They have no column in 

common)

Example: Covering matrix B rearranged with independent sets first.

Independent set   = I 

of rowsB=
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Lemma:

|Solution of Covering|  |I|

11
1111

11

0

A

1

C

Solving the Cyclic Core
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Heuristic

Let I={I1, I2, …, Ik} be the independent set of rows

choose j  Ii which covers the most rows of A. Put j  J

eliminate all rows covered by column j

I  I\{Ii}

go to 1 if |I|  0

If B is empty, then done (in this case we have the guaranteed minimum 

solution - IMPORTANT)

If B is not empty, choose an independent set of B and go to 1

11
1111

11
0

A

1

C
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Espresso Algorithm: Heuristic Minimization

ESPRESSO (fON, fDC) {

F is ON-SET, DC is Don’t Care Set

1. R = U  - (F  DC)            U is universe cube

2. n = |F|

3. F = Reduce (F, DC);  // reduce implicants in F 
to non-prime cubes

4. F = Expand (F, R); // expand cubes to prime 
implicants

5. F = Irredundant (F, DC); // extract minimal 
cover of prime implicants

6. If |F| < n  goto 2, else, post-process & exit

}
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