

Fundamental Algorithms for System Modeling, Analysis, and Optimization

Edward A. Lee, Jaijeet Roychowdhury, Sanjit A. Seshia

UC Berkeley EECS 244 Fall 2016 Lecturer: Yu-Yun Dai Copyright © 2010-date, E. A. Lee, J. Roychowdhury, S. A. Seshia, All rights reserved

Boolean Algebra and Two-Level Logic Optimization

Thanks to S. Devadas, K. Keutzer, S. Malik, R. Rutenbar, R. Brayton, A. Kuehlmann for several slides

RTL Synthesis Flow

K. Keutzer

Sequential v.s. Combinational Synthesis/Logic Optimization

Logic Optimization

Outline of Topics

Basics of Boolean functions

- Prime, Implicants, cubes
- Tautology checking

Two-level logic optimization

- Quine-McCluskey Method
- Espresso

Multi-level logic optimization

Definitions – 1: What is a Boolean function?

Let $B = \{0, 1\}$ and $Y = \{0, 1\}$ Input variables: $X_1, X_2 \dots X_n$ Output variables: $Y_1, Y_2 \dots Y_m$ A logic function *f* (or 'Boolean' function, switching function) in **n** inputs and **m** outputs is a map

$$f: B^n \longrightarrow Y^m$$

Definition used in Logic Optimization

don't care – aka "X" Let $B = \{0, 1\}$ and $Y = \{0, 1, 2\}$ Input variables: $X_1, X_2 \dots X_n$ Output variables: $Y_1, Y_2 \dots Y_m$ A logic function ff (or 'Boolean' function, switching function) in **n** inputs and **m** outputs is a map ff $B^n \longrightarrow Y^m$

The Boolean n-Cube, Bⁿ

 $\bullet \qquad \mathcal{B} = \{0, 1\}$

• $\mathcal{B}^2 = \{0, 1\} \times \{0, 1\} = \{00, 01, 10, 11\}$

Boolean Functions

 $B = \{0, 1\}, x = (x_1, x_2, ..., x_n)$ x_1, x_2, \dots are variables $x_1, x_1', x_2, x_2', \dots$ are literals Each vertex of Bⁿ is mapped to 0, 1 or 2 (don't care) the onset of f is $\{x | f(x) = 1\} = f^{-1} = f^{-1}(1)$ the offset of *f* is $\{x | f(x)=0\} = f^{-1}(0)$ if $f^{1} = B^{n}$, f is the tautology, i.e. $f \equiv 1$ if $f^0 = B^n$ ($f^1 = \emptyset$), f is not satisfiable if f(x) = g(x) for all $x \in B^n$, then f and g are equivalent We write simply f instead of f^{1}

Literals

A literal is a variable or its negation

у, у'

It represents a logic function

Literal x_1 represents the logic function f, where $f = \{x | x_1 = 1\}$ Literal x_1 ' represents logic function g where $g = \{x | x_1 = 0\}$

Boolean Formulas -- Syntax

Boolean formulas can be represented by formulas defined as catenations of

- parentheses (,)
- literals x, y, z, x', y', z'
- Boolean operators + (OR), X (AND)
- complementation, e.g. (x + y)'

Examples

$$f = x_1 X x_2' + x_1' X x_2 = (x_1 + x_2) X (x_1' + x_2')$$

h = a + b X c = (a' X (b' + c'))'

We usually replace X by catenation, e.g. a X b \rightarrow ab

Logic functions

There are 2ⁿ vertices in input space Bⁿ

There are 2^{2^n} distinct logic functions.

• How many logic formulae?

Each subset of vertices is a distinct logic function:

 $\pmb{f} \subseteq \pmb{B^n}$

Operations on Logic Functions

(1)Complement: $f \longrightarrow \overline{f} (\neg f \text{ or } f')$ interchange ON and OFF-SETS

(2)Product (or intersection or logical AND) h = f · g (what happens to ON/OFF sets?)

(3) Sum (or union or logical OR): h = f + g (ON/OFF sets?)

The AND of a set of literal functions ("conjunction" of literals) is a cube (also view as a set of minterms)

C = xy' is a cube C = (x=1)(y=0)

2-level Minimization: Minimizing SOP (DNF)

PLA's - Multiple Output Functions

A PLA is a function $f : B^n \rightarrow B^m$ represented in SOP form:

Personality Matrix

abc	\mathbf{f}_1 f	2 f 3
10-	1 -	
-11	1 -	
0-0	- 2	1 -
111		1 1
00-		- 1

PLA's (cont.)

Each distinct cube appears just once in the AND-plane, and can be shared by (multiple) outputs in the ORplane, e.g., cube (abc).

Extensions from single output to multiple output minimization theory are straightforward.

Multi-level logic can be viewed mathematically as a connection of single output functions.

Implicants

An *implicant* of *a function* f is a *cube* p that does not intersect the OFF-SET of f $p \subseteq f_{ON} \cup f_{DC}$

Prime Implicants

An *implicant* of **f** is a *cube* **p** that does not intersect the OFF-SET of **f**

 $p \ \subseteq \ f_{ON} \cup f_{DC}$

- A *prime implicant* of **f** is an implicant **p** such that
 - (1) No other implicant q contains it
 - (i.e. p ⊄ q)
 - (2) $p \not\subset f_{DC}$

A *minterm* is a fully specified implicant e.g., 011, 111 (not 01-)

Examples of Implicants/Primes

000, 00- are implicants, but not primes (-0-) How about 1-1 ? 0-0 ?

Prime and Irredundant Covers

A <u>cover</u> is a set of cubes C such that $C \supseteq f_{ON}$ and $C \subseteq f_{ON} \cup f_{DC}$

All of the ON-set is covered by C C is contained in the ON-set and Don't Care Set

A *prime cover* is a cover whose cubes are all prime implicants An *irredundant cover* is a cover **C** such that removing any cube from **C** results in a set of cubes that no longer covers the function (ON-set)

A prime of f is essential (essential prime) if there is a minterm (essential vertex) in that prime but in no other prime.

Irredundant

Let F = {c₁, c₂, ..., c_k} be a cover for f. $f = \sum_{i=1}^{k} c_i$ A cube c_i \in F is irredundant if F\{c_i} $\not \supset$ f

Example 2: f = ab + ac + bc

it prime? it irredundant?

Minimum Covers

Definition: A *minimum cover* is a cover of minimum *cardinality*

Theorem: There exists a minimum cover that is a prime and irredundant cover.

Why?

Minimum Covers

- Defn: A *minimum cover* is a cover of minimum cardinality
- Theorem: There exists a minimum cover that is a prime and irredundant cover.
- Given any cover C
 - (a) if redundant, not minimum
 - (b) if any cube q is not prime, replace q with prime $p \supseteq q$ and continue until all cubes prime; it is a minimum prime cover

What is a minimum prime and irredundant cover for the function?

What about - 0 -1 - -

Checking for Prime and Irredundant

We will use <u>Shannon (Boole's) Cofactor</u> and <u>Tautology Checking</u>!

• Let $f : B^n \to B$ be a Boolean function, and $x = (x_1, x_2, ..., x_n)$ the variables in the support of f. The cofactor f_a of f by a literal $a = x_i$ or $a = x_i$ ' is

$$f_{x_{i}}(x_{1}, x_{2}, ..., x_{n}) = f(x_{1}, ..., x_{i-1}, 1, x_{i+1}, ..., x_{n})$$

$$f_{x_{i}}(x_{1}, x_{2}, ..., x_{n}) = f(x_{1}, ..., x_{i-1}, 0, x_{i+1}, ..., x_{n})$$

 Tautology: find a truth assignment to the inputs making a given Boolean formula false

Shannon (Boolean) Cofactor

- The cofactor f_C of f by a cube C is f with the fixed values indicated by the literals of C, e.g. if $C=x_i x_j'$, then $x_i=1$, and $x_i=0$.
- If $C = x_1 x_4 x_6$, f_C is just the function f restricted to the subspace where $x_1 = x_6 = 1$ and $x_4 = 0$.

As a function, f_C does not depend on x_1, x_4 or x_6

(However, we still consider f_c as a function of all *n* variables, it just happens to be independent of x_1, x_4 and x_6).

 $x_1 f \neq f_{x_1}$ Example: f= ac + a'c' , af = ac, f_a=c

Cofactor and Quantification

- Let $f : B^n \to B$ be a Boolean function, and $x = (x_1, x_2, ..., x_n)$ the variables in the support of f.
- Positive cofactor $f_{x_i}(x_1, x_2, ..., x_n) = f(x_1, ..., x_{i-1}, 1, x_{i+1}, ..., x_n)$
- Negative cofactor $f_{x_{i'}}(x_1, x_2, ..., x_n) = f(x_1, ..., x_{i-1}, 0, x_{i+1}, ..., x_n)$
- Existential quantification over variable $x_i : \exists x_i . f = f_{x_i} \lor f_{x_{i'}}$
- Universal quantification over variable $x_i : \forall x_i \cdot f = f_{x_i} \wedge f_{x_{i'}}$

Fundamental Theorem

Theorem 1 Let c be a cube and f a function. Then $c \subseteq f \Leftrightarrow f_c \equiv 1$. Proof. We use the fact that $xf_x = xf$, and f_x is independent of x. If: Suppose $f_c \equiv 1$. Then $cf=f_cc=c$. Thus, $c \subseteq f$.

Proof (contd)

Only if. Assume $c \subseteq f$ Then $c \subseteq cf = cf_c$. If $f_c \neq 1$, then $\exists m \in B^n$, $f_c(m)=0$. Find m^: Let $m_i^{n}=m_i$, if $x_i \notin c$ and $x_i' \notin c$. or if $m_i=0$, $x_i \in c$ or $m_i=1$, $x_i \in c$.

m_i^=m_i' otherwise.

i.e. we make the literals of m^ agree with c, i.e. m^ \in c. But then $f_c(m^{\wedge}) = f_c(m) = 0$, (f_c is independent of literals $I \in c$) Hence, $c(m^{\wedge})=1$ and $f_c(m^{\wedge}) c(m^{\wedge})=0$, contradicting $c \subseteq cf_c$.

EECS 144/244, UC Berkeley: 34

Checking for Prime and Irredundant

Let G={c_i} be a cover of F=(f_{ON}, f_{DC}, f_{OFF}). Let D be a cover for f_{DC}.

 $c_i \subseteq G$ is redundant iff

 $C_{i} \subseteq (G \setminus \{C_{i}\}) \cup D \equiv G^{i}$ (1) $C_{i} \subseteq G \subseteq G^{i} \text{ and } f_{i} \subseteq G \subseteq f_{i} \neq f_{i} \text{ then } C_{i} \subseteq C_{i} f_{i}$

(Since $c_i \subseteq G^i$ and $f_{ON} \subseteq G \subseteq f_{ON} + f_{DC}$ then $c_i \subseteq c_i f_{ON} + c_i f_{DC}$ and $c_i f_{ON} \subseteq G \setminus \{c_i\}$. Thus $f_{ON} \subseteq G \setminus \{c_i\}$.)

Checking for Prime and Irredundant

- Let G={c_i} be a cover of F=(f_{ON}, f_{DC}, f_{OFF}). Let D be a cover for f_{DC}.
- $c_i \subseteq G$ is redundant iff

 $C_{i} \subseteq (G \setminus \{C_{i}\}) \cup D \equiv G^{i}$ ⁽¹⁾

(Since $c_i \subseteq G^i$ and $f_{ON} \subseteq G \subseteq f_{ON} + f_{DC}$ then $c_i \subseteq c_i f_{ON} + c_i f_{DC}$ and $c_i f_{ON} \subseteq G \setminus \{c_i\}$. Thus $f_{ON} \subseteq G \setminus \{c_i\}$.)

A literal I ∈ c_i is prime if (c_i\{ I }) (= (c_i)_I) is not an implicant of *F*.

A cube c_i is a prime of *F* iff all literals $I \in c_i$ are prime. Literal $I \in c_i$ is not prime $\Leftrightarrow (c_i)_I \subseteq f_{ON} + f_{DC}$ (2) Note: Both tests (1) and (2) can be checked by tautology:

- 1) $(G^i)_{C_i} \equiv 1$ (implies c_i redundant)2) $(F \cup D)_{(C_i)_i} \equiv 1$ (implies I not prime)

Tautology Checking

F = acd + bcd + a'bd' + a'c'd' + c'd + ac' + ad' + b'cd' + a'b'd + a'b'cIs F = 1? NOT EASY!!!

	1211	
	2111	
	0120	
	0200	
F=	2201	== 1?
	1202	
	1220	
	2010	
	0021	
	0012	

List of Cubes (Cover Matrix)

We often use a matrix notation to represent a cover:

Example: F = ac + cd =

	а	b	С	d		а	b	С	d
$ac \rightarrow$	1	2	1	2	or	1	_	1	_
ād→	2	2	0	1		_	_	0	1

Each row represents a cube

1 means that the positive literal appears in the cube

0 means that the negative literal appears in the cube

The 2 (or -) here represents that the variable does not appear in the cube.

It implicitly represents both 0 and 1 values.

Operations on Lists of Cubes

AND operation:

- take two lists of cubes
- computes pair-wise AND between individual cubes and put result on new list
- represent cubes as pairs of computer words
- set operations are implemented as bit-vector operations

```
Algorithm AND (List_of_Cubes C<sub>1</sub>,List_of_Cubes C<sub>2</sub>) {

C = \emptyset

foreach c_1 \in C_1 {

foreach c_2 \in C_2 {

c = c_1 \cap c_2

C = C \cup c

}

return C
```

Operations on Lists of Cubes

OR operation:

- take two lists of cubes
- computes union of both lists

Naive implementation:

```
Algorithm OR(List_of_Cubes C<sub>1</sub>, List_of_Cubes C<sub>2</sub>) { return C<sub>1</sub> \cup C<sub>2</sub> }
```

On-the-fly optimizations:

- remove cubes that are completely covered by other cubes
 - complexity is O(m²); m is length of list
- merge adjacent cubes
- remove redundant cubes?
 - complexity is O(2ⁿ); n is number of variables
 - too expensive for non-orthogonal lists of cubes

Operation on Lists of Cubes

Naive implementation of COMPLEMENT operation

- apply De'Morgan's law to SOP
- complement each cube and use AND operation

Naive implementation of TAUTOLOGY check

• complement function using the COMPLEMENT operator and check for emptiness

EECS 144/244, UC Berkeley: 43

```
Algorithm CHECK TAUTOLOGY (List of Cubes C) {
  if (C == \emptyset) return FALSE;
  if (C == \{-\ldots-\}) return TRUE; // cube with all '-'
  X_{i} = SELECT VARIABLE (C)
  C_0 = COFACTOR(C, x_i')
  if (CHECK_TAUTOLOGY (C<sub>0</sub>) == FALSE) {
     print x_i = 0
     return FALSE;
  C_1 = COFACTOR(C, X_i)
  if (CHECK_TAUTOLOGY (C_1) == FALSE) {
     print x_i = 1
     return FALSE;
  return TRUE;
```

Generic Tautology Check

Improvements

Variable ordering:

• pick variable that minimizes the two sub-cases ("-"s get replicated into both cases)

Quick decision at leaf:

- return TRUE if C contains at least one complete "-" cube among others (case 1)
- return FALSE if number of minterms in onset is < 2ⁿ (case 2)
- return FALSE if C contains same literal in every cube (case 3)

Example

The Quine-McCluskey Method: Exact Minimization

Given G' and D (covers for $F=(f_{ON}, f_{DC}, f_{OFF})$). and f_{DC}), find a minimum cover G of primes where:

 $f \subseteq G \subseteq f_{ON} + f_{DC}(G \text{ is a prime cover of } F)$ Step 1: List all minterms in ON-SET and DC-SET Step 2: Use a prescribed sequence of steps to find all the prime implicants of the function Step 3: Construct the prime implicant table Step 4: Find a minimum set of prime implicants that cover all the minterms

Example

cover. (also w+ \sim x \sim z)

Generating Primes - single output func.

Tabular method

(based on *consensus* operation):

Start with all minterm canonical form of *F* Group *pairs* of adjacent minterms into cubes Repeat merging cubes until no more merging possible; mark ($\sqrt{}$) + remove all covered cubes.

Result: set of primes of f.

Example: *F* = *x*' *y*' + *w x y* + *x*' *y z*' + *w v*' *z*

F = x'y' + wxy + x'yz' + wy'z

Courtesy: Maciej Ciesielski, UMASS

Generating Primes – multiple outputs

Procedure similar to *single-output* function, except:

include also the primes of the products of individual functions
 Example:

Generating Primes - example

Modification (w.r.t single output function):

• When two adjacent implicants are merged, the output parts are intersected

There are five primes listed for this two-output function.

- What is the min cover ?

Minimize multiple-output cover - example

Covering Table

Definition: An essential prime is any prime that uniquely covers a minterm of f.

Row and Column Dominance

Definition: A row i_1 whose set of primes is contained in the set of primes of row i_2 is said to dominate i_2 .

Example:

i₁ 011010 i₂ 011110

 i_1 dominates i_2

We can remove row i_2 , because we have to choose a prime to cover i_1 , and any such prime also covers i_2 . So i_2 is automatically covered.

Row and Column Dominance

Definition: A column j_1 whose rows are a superset of another column j_2 is said to dominate j_2 .

We can remove column j_2 since j_1 covers all those rows and more. We would never choose j_2 in a minimum cover since it can always be replaced by j_1 .

Pruning the Covering Table

- 1. Remove all rows covered by essential primes (columns in row singletons). Put these primes in the cover G.
- 2. Group identical rows together and remove dominated rows.
- 3. Remove dominated columns. For equal columns, keep one prime to represent them.
- 4. Newly formed row singletons define n-ary essential primes.
- 5. Go to 1 if covering table decreased.

The resulting reduced covering table is called the cyclic core. This has to be solved (unate covering problem). A minimum solution is added to G - the set of n-ary essential primes. The resulting G is a minimum cover.

Example

Solving the Cyclic Core

Best known method (for unate covering) is branch and bound with some clever bounding heuristics.

Independent Set Heuristic:

Find a maximum set of "independent" rows I. Two rows B_{i1},B_{i2} are independent if ∄j such that B_{i1j}=B_{i2j}=1. (They have no column in common)

Example: Covering matrix B rearranged with independent sets first.

Independent set = I of rows

Solving the Cyclic Core

Lemma: $|Solution of Covering| \ge |I|$

Heuristic

Let $I=\{I_1, I_2, ..., I_k\}$ be the independent set of rows choose $j \in I_i$ which covers the most rows of A. Put $j \rightarrow J$ eliminate all rows covered by column j $I \leftarrow I \setminus \{I_i\}$ go to 1 if |I| > 0

If B is empty, then done (in this case we have the guaranteed minimum solution - IMPORTANT)

If B is not empty, choose an independent set of B and go to 1

Espresso Algorithm: Heuristic Minimization

ESPRESSO (f_{ON}, f_{DC}) { F is ON-SET, DC is Don't Care Set 1. $R = U - (F \cup DC)$ U is universe cube 2. n = |F|
3. F = *Reduce* (F, DC); // reduce implicants in F to non-prime cubes 4. F = Expand (F, R); // expand cubes to prime implicants 5. **F** = *Irredundant* (**F**, **DC**); // extract minimal cover of prime implicants 6. If **F** < n goto 2, else, post-process & exit

Bibliography

- <u>https://webdocs.cs.ualberta.ca/~amaral/courses/329/webslides/Topic5-QuineMcCluskey/sld001.htm</u>
- R.K. Brayton, C. McMullen, G.D. Hachtel and A. Sangiovanni-Vincentelli, <u>Logic Minimization Algorithms for VLSI Synthesis</u>. Kluwer Academic Publishers, 1984.