Fundamental Algorithms for System Modeling, Analysis, and Optimization

Edward A. Lee, Jaijeet Roychowdhury, Sanjit A. Seshia
UC Berkeley
EECS 244 Fall 2016
Lecturer: Yu-Yun Dai
Copyright © 2010-date, E. A. Lee, J. Roychowdhury, S. A. Seshia, All rights reserved

Boolean Algebra and Two-Level Logic Optimization

RTL Synthesis Flow

Sequential v.s. Combinational Synthesis/Logic Optimization

Logic Optimization

Outline of Topics

Basics of Boolean functions

- Prime, Implicants, cubes
- Tautology checking

Two-level logic optimization

- Quine-McCluskey Method

Espresso
Multi-level logic optimization

Definitions -1 : What is a Boolean function?

Let $B=\{0,1\}$ and $Y=\{0,1\}$
Input variables: $X_{1}, X_{2} \ldots X_{n}$
Output variables: $Y_{1}, Y_{2} \ldots Y_{m}$
A logic function f (or 'Boolean' function, switching function) in n inputs and m outputs is a map

$$
f: \mathrm{B}^{\mathrm{n}} \longrightarrow \mathrm{Y}^{\mathrm{m}}
$$

Definition used in Logic Optimization

```
don't care - aka "X"
```

Let $B=\{0,1\}$ and $Y=\{0,1,2\}$
Input variables: $X_{1}, X_{2} \ldots X_{n}$
Output variables: $\mathrm{Y}_{1}, \mathrm{Y}_{2} \ldots \mathrm{Y}_{\mathrm{m}}$
A logic function ff (or 'Boolean'
function, switching function) in n
inputs and m outputs is a map

$$
\mathrm{ff}: \mathrm{B}^{\mathrm{n}} \longrightarrow Y^{\mathrm{m}}
$$

The Boolean n-Cube, B^{n}

- $\mathcal{B}=\{0,1\}$
- $\mathcal{B}^{2}=\{0,1\} \times\{0,1\}=\{00,01,10,11\}$

Boolean Functions

$B=\{0,1\}, x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$
x_{1}, x_{2}, \ldots are variables
$x_{1}, x_{1}{ }^{\prime}, x_{2}, x_{2}{ }^{\prime}, \ldots$ are literals
Each vertex of B^{n} is mapped to 0,1 or 2 (don't care)
the onset of f is $\{x \mid f(x)=1\}=f^{1}=f^{-1}(1)$
the offset of f is $\{x \mid f(x)=0\}=f^{0}=f^{-1}(0)$
if $f^{1}=\mathrm{B}^{n}, f$ is the tautology, i.e. $f \equiv 1$
if $f^{0}=\mathrm{B}^{\mathrm{n}}\left(f^{1}=\varnothing\right), f$ is not satisfiable if $f(x)=g(x)$ for all $x \in B^{n}$, then f and g are equivalent We write simply f instead of f^{1}

Literals

A literal is a variable or its negation

$$
y, y^{\prime}
$$

It represents a logic function
Literal X_{1} represents the logic function f , where $f=\left\{\mathrm{x} \mid \mathrm{X}_{1}=1\right\}$
Literal x_{1} ' represents logic function g where $g=\left\{x \mid x_{1}=0\right\}$

$$
f=x_{1}
$$

$\mathrm{f}=\overline{\mathrm{x}}_{1}$

Green - ON-set
Red - OFF-set

Boolean Formulas -- Syntax

Boolean formulas can be represented by formulas defined as catenations of

- parentheses (,)
- literals $x, y, z, x^{\prime}, y^{\prime}, z^{\prime}$
- Boolean operators + (OR), X (AND)
- complementation, e.g. $(x+y)^{\prime}$

Examples

$$
\begin{aligned}
& f=x_{1} X x_{2}{ }^{\prime}+x_{1}{ }^{\prime} X x_{2}=\left(x_{1}+x_{2}\right) X\left(x_{1}{ }^{\prime}+x_{2}{ }^{\prime}\right) \\
& h=a+b X c=\left(a^{\prime} X\left(b^{\prime}+c^{\prime}\right)\right)^{\prime}
\end{aligned}
$$

We usually replace X by catenation, e.g. a $X b \rightarrow a b$

Logic functions

There are 2^{n} vertices in input space B^{n}

There are $\mathbf{2}^{2^{\mathbf{n}}}$ distinct logic functions.

- How many logic formulae?

Each subset of vertices is a distinct logic function:

$$
f \subseteq B^{n}
$$

"Semantic" Description of Boolean Function

EXAMPLE: Truth table form of an incompletely specified function

Operations on Logic Functions

(1) Complement: $\mathfrak{f} \longrightarrow \bar{f}\left(\neg f\right.$ or $\left.f^{\prime}\right)$ interchange ON and OFF-SETS
(2)Product (or intersection or logical AND) $\mathrm{h}=\mathrm{f} \cdot \mathrm{g}$ (what happens to ON/OFF sets?)
(3)Sum (or union or logical OR):

$$
\mathrm{h}=\mathrm{f}+\mathrm{g} \quad(\mathrm{ON} / \mathrm{OFF} \text { sets? } \text {) }
$$

Cubes

The AND of a set of literal functions ("conjunction" of literals) is a cube (also view as a set of minterms)

C = xy' is a cube

$$
C=(x=1)(y=0)
$$

$x=1$

$y=0$

$x y^{\prime}$

2-level Minimization: Minimizing SOP (DNF)

Inputs Outputs

$$
\begin{aligned}
\mathrm{F} 1 & =\bar{A} \bar{B}+\bar{A} B D+\bar{A} B \bar{C} \bar{D} \\
& +A B C \bar{D}+A \bar{B}+A B D
\end{aligned}
$$

0	0	-	-
0	1	-1	1
0	1	0	0
1	1	1	1
1	$0--$	1	
1	1	-1	1

$\mathrm{F} 1=\overline{\mathrm{B}}+\mathrm{D}+\overline{\mathrm{A}} \overline{\mathrm{C}}+\mathrm{AC}$
minimum representation (number of cubes, literals)

$$
\begin{array}{ll}
-0-2 & 1 \\
---1 & 1 \\
0-0-1 \\
1-1- & 1
\end{array}
$$

PLA's - Multiple Output Functions

A PLA is a function $f: B^{n} \rightarrow B^{m}$ represented in SOP form:

$$
n=3, m=3
$$

Personality Matrix

$$
\begin{array}{cc}
\mathrm{abc} & \mathbf{f}_{1} \mathrm{f}_{2} \mathrm{f}_{3} \\
\hline 10- & 1- \\
-11 & 1- \\
0-0 & - \\
111 & - \\
11 & - \\
00- & -
\end{array}
$$

PLA's (cont.)

Each distinct cube appears just once in the AND-plane, and can be shared by (multiple) outputs in the ORplane, e.g., cube (abc).

Extensions from single output to multiple output minimization theory are straightforward.
Multi-level logic can be viewed mathematically as a connection of single output functions.

Implicants

An implicant of a function \boldsymbol{f} is a cube \boldsymbol{p} that does not intersect the OFF-SET of f $\mathrm{p} \subseteq \mathrm{f}_{\mathrm{ON}} \cup \mathrm{f}_{\mathrm{DC}}$

Prime Implicants

An implicant of f is a cube p that does not intersect the OFF-SET of f
$\mathrm{p} \subseteq \mathrm{f}_{\mathrm{ON}} \cup \mathrm{f}_{\mathrm{DC}}$
A prime implicant of f is an implicant p such that
(1) No other implicant q contains it
(i.e. $p \not \subset q$)
(2) $p \not \subset f_{D C}$

A minterm is a fully specified implicant

$$
\text { e.g., 011, } 111 \text { (not 01-) }
$$

Examples of Implicants/Primes

X_{1}	X_{2}	X_{3}	Y_{1}
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	2

000, 00- are implicants, but not primes (-0 -)
How about 1-1? 0-0?

Prime and Irredundant Covers

A cover is a set of cubes C such that
$\mathrm{C} \supseteq \mathrm{f}_{\mathrm{ON}} \quad$ and $\mathrm{C} \subseteq \mathrm{f}_{\mathrm{ON}} \cup \mathrm{f}_{\mathrm{DC}}$

All of the ON-set is covered by C
C is contained in the ON-set and Don't Care Set

A prime cover is a cover whose cubes are all prime implicants
An irredundant cover is a cover C such that removing any cube from C results in a set of cubes that no longer covers the function (ON-set)
A prime of f is essential (essential prime) if there is a minterm (essential vertex) in that prime but in no other prime.

Irredundant

Let $\mathrm{F}=\left\{\mathrm{c}_{1}, \mathrm{c}_{2}, \ldots, \mathrm{c}_{\mathrm{k}}\right\}$ be a cover for f .

$$
f=\sum_{i=1}^{k} c_{i}
$$

A cube $c_{i} \in F$ is irredundant if $F \backslash\left\{c_{i}\right\} \not \supset f$

Example 2: $\mathrm{f}=\mathrm{ab}+\mathrm{ac}+\mathrm{bc}$

a

$F\{a b\} \neq f$

Example Covers

$\mathrm{X}_{1} \mathrm{X}_{2} \mathrm{X}_{3}$	Y_{1}	0010	is a cover. Is it prime?
0	1		
001	1	11	Is it irredundant?
010	0		
011	0		
0	1		
101	1		
110	1		
111	2		

Minimum Covers

Definition: A minimum cover is a cover of minimum cardinality
Theorem: There exists a minimum cover that is a prime and irredundant cover.

Why?

Minimum Covers

Defn: A minimum cover is a cover of minimum cardinality
Theorem: There exists a minimum cover that is a prime and irredundant cover.
Given any cover C
(a) if redundant, not minimum
(b) if any cube q is not prime, replace q with prime $\mathrm{p} \supseteq \mathrm{q}$ and continue until all cubes prime; it is a minimum prime cover

Example Covers

$\mathrm{X}_{1} \mathrm{X}_{2}$	X_{3}	Y_{1}	
00	0	1	10 - is a cover. Is it prime?
00	1	1	11- Is it irredundant?
01	0	0	
01	1	0	
10	0	1	What is a minimum prime and
10	1	1	irredundant cover for the function?
$\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}$	0 1	1	

Example Covers

Example Covers

X_{1}	X_{2}	X_{3}	Y_{1}
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	2

00 -
10 - is a cover. Is it prime?
11 Is it irredundant?

- 0 -

11 - is a cover. Is it prime? Is it irredundant? Is it minimum?

What about

- 0 -

1--

Checking for Prime and Irredundant

We will use Shannon (Boole's) Cofactor and Tautology Checking!

- Let $f: B^{n} \rightarrow B$ be a Boolean function, and $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ the variables in the support of f. The cofactor f_{a} of f by a literal $a=x_{i}$ or $a=x_{i}{ }^{\text {' }}$ is

$$
\begin{aligned}
& f_{x_{i_{i}}}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=f\left(x_{1}, \ldots, x_{i-1}, 1, x_{i+1}, \ldots, x_{n}\right) \\
& f_{x_{i^{\prime}}}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=f\left(x_{1}, \ldots, x_{i-1}, 0, x_{i+1}, \ldots, x_{n}\right)
\end{aligned}
$$

- Tautology: find a truth assignment to the inputs making a given Boolean formula false

Shannon (Boolean) Cofactor

The cofactor f_{C} of f by a cube C is f with the fixed values indicated by the literals of C, e.g. if $C=x_{i} x_{j}^{\prime}$, then $x_{i}=1$, and $x_{j}=0$.
If $\mathrm{C}=\mathrm{x}_{1} \mathrm{x}_{4}{ }^{\prime} \mathrm{x}_{6}, \mathrm{f}_{\mathrm{C}}$ is just the function f restricted to the subspace where $x_{1}=x_{6}=1$ and $x_{4}=0$.
As a function, f_{C} does not depend on $\mathrm{x}_{1}, \mathrm{x}_{4}$ or x_{6}
(However, we still consider f_{c} as a function of all n variables, it just happens to be independent of $\mathrm{x}_{1}, \mathrm{x}_{4}$ and x_{6}).
$x_{1} f \neq f_{x_{1}}$
Example: $\mathrm{f}=\mathrm{ac}+\mathrm{a}^{\prime} \mathrm{c}^{\prime}, \mathrm{af}=\mathrm{ac}, \mathrm{f}_{\mathrm{a}}=\mathrm{c}$

Cofactor and Quantification

Let $\mathrm{f}: \mathrm{B}^{\mathrm{n}} \rightarrow \mathrm{B}$ be a Boolean function, and $\mathrm{x}=\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$ the variables in the support of f.

- Positive cofactor $f_{x_{i}}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=f\left(x_{1}, \ldots, x_{i-1}, 1, x_{i+1}, \ldots, x_{n}\right)$
- Negative cofactor $f_{x_{i}}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=f\left(x_{1}, \ldots, x_{i-1}, 0, x_{i+1}, \ldots, x_{n}\right)$
- Existential quantification over variable $x_{i}: \exists x_{i} f=f_{x_{i}} \vee f_{x_{i}}$
- Universal quantification over variable $x_{i}: \forall x_{i} f=f_{x_{i}} \wedge f_{x_{i}^{\prime}}$

Fundamental Theorem

Theorem 1 Let c be a cube and f a function. Then $\mathrm{c} \subseteq f \Leftrightarrow \mathrm{f}_{\mathrm{c}} \equiv 1$.
Proof. We use the fact that $x f_{x}=x f$, and f_{x} is independent of x.
If: Suppose $f_{c} \equiv 1$. Then $c f=f_{c} c=c$. Thus,
$\mathrm{c} \subseteq \mathrm{f}$.

Proof (contd)

Only if. Assume $\mathrm{c} \subseteq f$
Then $c \subseteq c f=c f_{c}$. If $f_{c} \neq 1$, then $\exists \mathrm{m} \in B^{n}, f_{c}(m)=0$.
Find m^{\wedge} : Let $m_{i}^{\wedge}=m_{i}$, if $x_{i} \notin C$ and $x_{i}^{\prime} \notin c$.

$$
\begin{aligned}
& \text { or if } m_{i}=0, x_{i} \in c \\
& \text { or } m_{i}=1, x_{i} \in c .
\end{aligned}
$$

$m_{i}^{\wedge}=m_{i}^{\prime}$ otherwise.
i.e. we make the literals of m^{\wedge} agree with c, i.e. $\mathrm{m}^{\wedge} \in \mathrm{c}$.

But then $f_{c}\left(m^{\wedge}\right)=f_{c}(m)=0,\left(f_{c}\right.$ is independent of literals $I \in c$)
Hence, $c\left(m^{\wedge}\right)=1$
and $f_{c}\left(m^{\wedge}\right) c\left(m^{\wedge}\right)=0$,
contradicting $\mathrm{c} \subseteq \mathrm{cf}_{\mathrm{c}}$.

Checking for Prime and Irredundant

- Let $G=\left\{\mathrm{c}_{\mathrm{i}}\right\}$ be a cover of $F=\left(\mathrm{f}_{\mathrm{ON}}, \mathrm{f}_{\mathrm{DC}}, \mathrm{f}_{\mathrm{OFF}}\right)$. Let D be a cover for $f_{D C}$.
$\mathrm{c}_{\mathrm{i}} \subseteq \mathrm{G}$ is redundant iff

$$
\begin{equation*}
c_{i} \subseteq\left(G \backslash\left\{c_{i}\right\}\right) \cup D \equiv G^{i} \tag{1}
\end{equation*}
$$

(Since $\mathrm{c}_{\mathrm{i}} \subseteq \mathrm{G}^{\mathrm{i}}$ and $\mathrm{f}_{\mathrm{ON}} \subseteq \mathrm{G} \subseteq \mathrm{f}_{\mathrm{ON}}+\mathrm{f}_{\mathrm{DC}}$ then $\mathrm{c}_{\mathrm{i}} \subseteq \mathrm{c}_{\mathrm{i}} \mathrm{f}_{\mathrm{ON}}+\mathrm{c}_{\mathrm{i}} \mathrm{f}_{\mathrm{DC}}$ and $\mathrm{c}_{\mathrm{i}} \mathrm{f}_{\mathrm{ON}} \subseteq \mathrm{G} \backslash\left\{\mathrm{c}_{\mathrm{i}}\right\}$. Thus $\mathrm{f}_{\mathrm{ON}} \subseteq \mathrm{G} \backslash\left\{\mathrm{c}_{\mathrm{i}}\right\}$.)

Checking for Prime and Irredundant

- Let $G=\left\{\mathrm{c}_{\mathrm{i}}\right\}$ be a cover of $F=\left(\mathrm{f}_{\mathrm{ON}}, \mathrm{f}_{\mathrm{DC}}, \mathrm{f}_{\mathrm{OFF}}\right)$. Let D be a cover for $f_{D C}$.
$\mathrm{c}_{\mathrm{i}} \subseteq \mathrm{G}$ is redundant iff

$$
\begin{equation*}
c_{i} \subseteq\left(G \backslash\left\{c_{i}\right\}\right) \cup D \equiv G^{i} \tag{1}
\end{equation*}
$$

(Since $\mathrm{c}_{\mathrm{i}} \subseteq \mathrm{G}^{\mathrm{i}}$ and $\mathrm{f}_{\mathrm{ON}} \subseteq \mathrm{G} \subseteq \mathrm{f}_{\mathrm{ON}}+\mathrm{f}_{\mathrm{DC}}$ then $\mathrm{c}_{\mathrm{i}} \subseteq \mathrm{c}_{\mathrm{i}} \mathrm{f}_{\mathrm{ON}}+\mathrm{c}_{\mathrm{i}} \mathrm{f}_{\mathrm{DC}}$ and $\mathrm{c}_{\mathrm{i}} \mathrm{f}_{\mathrm{ON}} \subseteq \mathrm{G} \backslash\left\{\mathrm{c}_{\mathrm{i}}\right\}$. Thus $\mathrm{f}_{\mathrm{ON}} \subseteq \mathrm{G} \backslash\left\{\mathrm{c}_{\mathrm{i}}\right\}$.)

- A literal $I \in c_{i}$ is prime if $\left.\left(c_{i} \backslash I\right\}\right)\left(=\left(c_{i}\right)_{1}\right)$ is not an implicant of F.
A cube c_{i} is a prime of F iff all literals $I \in c_{i}$ are prime.
Literal $I \in \mathrm{C}_{\mathrm{i}}$ is not prime $\Leftrightarrow\left(\mathrm{c}_{\mathrm{i}}\right)_{I} \subseteq \mathrm{f}_{\mathrm{ON}}+\mathrm{f}_{\mathrm{DC}}$

Note: Both tests (1) and (2) can be checked by tautology:

1) $\quad\left(\mathrm{G}^{i}\right)_{\mathrm{c}_{\mathrm{i}}} \equiv 1 \quad$ (implies c_{i} redundant)
2) $\quad(\mathrm{F} \cup \mathrm{D})_{\left(\mathrm{C}_{\mathrm{i}}\right)} \equiv 1 \quad$ (implies I not prime)

Tautology Checking

```
F = acd + bcd + a'bd' + a'c'd' +c'd + ac'+ ad' + b'cd' + a'b'd + a'b'c
Is F=1? NOT EASY!!!
    1211
    2111
    0 1 2 0
    0200
F= 2201 == 1?
    1202
    1220
    2010
    0021
    0012
```


List of Cubes (Cover Matrix)

We often use a matrix notation to represent a cover:
Example: $\mathrm{F}=\mathrm{ac}+\overline{\mathrm{c}} \mathrm{d}=$

$$
\begin{array}{lllll}
& & & b & c \\
& d \\
\mathrm{ac} \rightarrow 1 & 2 & 1 & 2 \\
\bar{c} d \rightarrow & 2 & 2 & 0 & 1
\end{array}
$$

$$
\begin{array}{cccc}
a & b & c & d \\
1 & - & 1 & - \\
- & - & 1
\end{array}
$$

Each row represents a cube
1 means that the positive literal appears in the cube
0 means that the negative literal appears in the cube
The 2 (or -) here represents that the variable does not appear in the cube. It implicitly represents both 0 and 1 values.

Operations on Lists of Cubes

AND operation

- take two lists of cubes
- computes pair-wise AND between individual cubes and put result on new list
- represent cubes as pairs of computer words
- set operations are implemented as bit-vector operations

```
Algorithm AND(List_of_Cubes C1,List_of_Cubes C2) {
    C = \varnothing
    foreach C c & C {
        foreach C2 \in C2 {
            c}=\mp@subsup{C}{1}{}\cap\mp@subsup{C}{2}{
            C = C U C
        }
    }
    return C
}
```


Operations on Lists of Cubes

OR operation:

- take two lists of cubes
- computes union of both lists

Naive implementation:

Algorithm OR(List_of_Cubes C_{1}, List_of_Cubes C_{2}) \{
return $C_{1} \cup C_{2}$
\}

On-the-fly optimizations:

- remove cubes that are completely covered by other cubes
- complexity is $\mathrm{O}\left(\mathrm{m}^{2}\right)$; m is length of list
- merge adjacent cubes
- remove redundant cubes?
- complexity is $\mathrm{O}\left(2^{n}\right) ; \mathrm{n}$ is number of variables
- too expensive for non-orthogonal lists of cubes

Operation on Lists of Cubes

Naive implementation of COMPLEMENT operation

- apply De'Morgan's law to SOP
- complement each cube and use AND operation
- Example:

Input	non-orth	orthogonal
01-10 =>	1----	=> 1----
	-0---	00---
	---0-	01-0-
	----1	01-11

Naive implementation of TAUTOLOGY check

- complement function using the COMPLEMENT operator and check for emptiness

Generic Tautology Check

```
Algorithm CHECK_TAUTOLOGY(List_of_Cubes C) {
    if(C == \varnothing) return FALSE;
    if(C == {-...-})return TRUE; // cube with all '-'
    x i = SELECT_VARIABLE (C)
    Co = COFACTOR(C, }\mp@subsup{\textrm{x}}{\textrm{i}}{\prime}\mp@subsup{}{}{\prime}
    if(CHECK_TAUTOLOGY(Co) == FALSE) {
        print xi = 0
        return FALSE;
    }
    C
    if(CHECK_TAUTOLOGY(C) == FALSE) {
        print x ( = 1
        return FALSE;
    }
    return TRUE;
}
```


Improvements

Variable ordering:

- pick variable that minimizes the two sub-cases ("-"s get replicated into both cases)

Quick decision at leaf:

- return TRUE if C contains at least one complete "-" cube among others (case 1)
- return FALSE if number of minterms in onset is $<2^{n}$ (case 2)
- return FALSE if C contains same literal in every cube (case 3)

Example

The Quine-McCluskey Method: Exact Minimization

Given G^{\prime} and D (covers for $F=\left(\mathrm{f}_{\mathrm{ON}}, \mathrm{f}_{\mathrm{DC}}, \mathrm{f}_{\mathrm{OFF}}\right)$. and $f_{D C}$), find a minimum cover G of primes where:
$\mathrm{f} \subseteq \mathrm{G} \subseteq \mathrm{f}_{\mathrm{ON}}{ }^{+} \mathrm{f}_{\mathrm{DC}}(\mathrm{G}$ is a prime cover of F$)$
Step 1: List all minterms in ON-SET and DC-SET
Step 2: Use a prescribed sequence of steps to find all the prime implicants of the function
Step 3: Construct the prime implicant table Step 4: Find a minimum set of prime implicants that cover all the minterms

Example

$$
\begin{aligned}
& F=\bar{x} \bar{y} z \bar{w}+\bar{x} y \bar{z} w+x \bar{y} \bar{z} w+\bar{x} y z w \\
& D=\bar{y} z+x y w+\bar{x} y z w+x \bar{y} w+\bar{x} y \bar{z} w
\end{aligned}
$$

Generating Primes - single output func.

Tabular method

(based on consensus operation):

Start with all minterm canonical form of F Group pairs of adjacent minterms into cubes Repeat merging cubes until no more merging possible; mark $(\sqrt{ })+$ remove all covered cubes.
Result: set of primes of f.

Example:

$$
F=x^{\prime} y^{\prime}+w x y+x^{\prime} y z^{\prime}+w
$$

$$
y^{\prime} z
$$

Generating Primes - multiple outputs

Procedure similar to single-output function, except:

- include also the primes of the products of individual functions

Example:

Can also represent it as:

Generating Primes - example

Modification (w.r.t single output function):

- When two adjacent implicants are merged, the output parts are intersected

$x y z$	$f_{1} f_{2}$		000\|01 ل	0-0\|01
0-0	01	\longrightarrow	010\|01 ل	01-101
011	11		071111	- $-11 \mid 10$
1-1	10		$\begin{array}{l\|ll} 101 \mid 10 & \sqrt{ } \\ 111 & 10 & \sqrt{ } \\ \hline \end{array}$	1-1\|10

There are five primes listed for this two-output function.

- What is the min cover?

Minimize multiple-output cover - example

List multiple-output primes

- Create a covering table, solve

$$
\begin{aligned}
& \mathrm{p}_{1}=011 \mid 11 \\
& \mathrm{p}_{2}=0-0 \mid 01 \\
& \mathrm{p}_{3}=01-\mid 01 \\
& \mathrm{p}_{4}=-11 \mid 10 \\
& \mathrm{p}_{5}=1-1 \mid 10
\end{aligned}
$$

Min cover has 3 primes:

$$
F=\left\{p_{1}, p_{2}, p_{5}\right\}
$$

Covering Table

Definition: An essential prime is any prime that uniquely covers a minterm of f.

Row and Column Dominance

Definition: A row i_{1} whose set of primes is contained in the set of primes of row i_{2} is said to dominate i_{2}.

Example:

```
i
i
i
```

We can remove row i_{2}, because we have to choose a prime to cover i_{1}, and any such prime also covers i_{2}. So i_{2} is automatically covered.

Row and Column Dominance

```
Definition: \(A\) column \(j_{1}\) whose rows are a superset of another column \(\mathrm{j}_{2}\) is said to dominate \(\mathrm{j}_{2}\).
```

```
Example
    j
1 0
0
j j dominates j2 
0
1 1
```

We can remove column j_{2} since j_{1} covers all those rows and more. We would never choose j_{2} in a minimum cover since it can always be replaced by j_{1}.

Pruning the Covering Table

1. Remove all rows covered by essential primes (columns in row singletons). Put these primes in the cover G.
2. Group identical rows together and remove dominated rows.
3. Remove dominated columns. For equal columns, keep one prime to represent them.
4. Newly formed row singletons define n-ary essential primes.
5. Go to 1 if covering table decreased.

The resulting reduced covering table is called the cyclic core. This has to be solved (unate covering problem). A minimum solution is added to Gthe set of n-ary essential primes. The resulting G is a minimum cover.

Example

Solving the Cyclic Core

Best known method (for unate covering) is branch and bound with some clever bounding heuristics.

Independent Set Heuristic:

Find a maximum set of "independent" rows I . Two rows $\mathrm{B}_{\mathrm{i}_{1}}, \mathrm{~B}_{\mathrm{i}_{2}}$ are independent if $\nexists j$ such that $B_{i_{11} j}=B_{i_{2} j}=1$. (They have no column in common)
Example: Covering matrix B rearranged with independent sets first.

Solving the Cyclic Core

Lemma:

|Solution of Covering| $\geq|I|$

Heuristic

Let $I=\left\{I_{1}, I_{2}, \ldots, I_{k}\right\}$ be the independent set of rows choose $j \in I_{i}$ which covers the most rows of A. Put $j \rightarrow J$
eliminate all rows covered by column j
$I \leftarrow I \backslash\left\{I_{i}\right\}$

go to 1 if $|I|>0$
If B is empty, then done (in this case we have the guaranteed minimum
solution - IMPORTANT)
If B is not empty, choose an independent set of B and go to 1

Espresso Algorithm: Heuristic Minimization

ESPRESSO ($\mathrm{f}_{\mathrm{ON}}, \mathrm{f}_{\mathrm{DC}}$) \{

F is ON-SET, DC is Don't Care Set

1. $R=U-(F \cup D C) \quad U$ is universe cube
2. $\mathrm{n}=|\mathrm{F}|$
3. $\mathrm{F}=$ Reduce (F, DC); // reduce implicants in F to non-prime cubes
4. $\mathrm{F}=$ Expand (F, R); // expand cubes to prime implicants
5. $\mathrm{F}=$ Irredundant (F, DC); // extract minimal cover of prime implicants
6. If $|F|<n$ goto 2, else, post-process \& exit
\}

Bibliography

- https://webdocs.cs.ualberta.ca/~amaral/courses/329/webslides/Topic5QuineMcCluskey/sld001.htm
- R.K. Brayton, C. McMullen, G.D. Hachtel and A. SangiovanniVincentelli, Logic Minimization Algorithms for VLSI Synthesis. Kluwer Academic Publishers, 1984.

