
Fundamental Algorithms

for System Modeling,

Analysis, and Optimization

Edward A. Lee, Jaijeet Roychowdhury,
Sanjit A. Seshia
UC Berkeley

EECS 244 Fall 2016

Lecturer: Yu-Yun Dai

Copyright © 2010-date, E. A. Lee, J. Roychowdhury,
S. A. Seshia, All rights reserved

Boolean Algebra and Two-Level Logic Optimization

Thanks to S. Devadas, K. Keutzer, S. Malik, R. Rutenbar, R. Brayton, A.

Kuehlmann for several slides

EECS 144/244, UC Berkeley: 2

RTL Synthesis Flow

RTL
Synthesis

HDL

netlist

logic
optimization

netlist

Library/

module

generators

physical
design

layout

HDL
Simulation/
Verification

K. Keutzer

a

b

s

q
0

1

d

clk

a

b

s

q
0

1

d

clk

FSM,

Verilog,

VHDL

Boolean circuit/network

Boolean circuit/network

Graph / Rectangles

EECS 144/244, UC Berkeley: 3

Sequential v.s. Combinational Synthesis/Logic Optimization

Optimize the size/delay/etc. of the combinational circuit

(viewed as a Boolean network)

L
A

T
C

H
E

S

L
A

T
C

H
E

S
Common Clock

Combinational

Circuit

(No feedback loops)

EECS 144/244, UC Berkeley: 4

Logic Optimization

logic
optimization

netlist

netlist

Library

tech
independent

tech
dependent

2-level
Logic opt

multilevel
Logic opt

Real

Library

Generic

Library

EECS 144/244, UC Berkeley: 5

Outline of Topics

Basics of Boolean functions

• Prime, Implicants, cubes

• Tautology checking

Two-level logic optimization

• Quine-McCluskey Method

• Espresso

Multi-level logic optimization

EECS 144/244, UC Berkeley: 6

Definitions – 1: What is a Boolean function?

Let B = {0, 1} and Y = {0, 1}

Input variables: X1, X2 … Xn

Output variables: Y1, Y2 … Ym

A logic function f (or ‘Boolean’ function,

switching function) in n inputs and

m outputs is a map

f: B
n

Y
m

EECS 144/244, UC Berkeley: 7

Definition used in Logic Optimization

Let B = {0, 1} and Y = {0, 1, 2}

Input variables: X1, X2 … Xn

Output variables: Y1, Y2 … Ym

A logic function ff (or ‘Boolean’

function, switching function) in n

inputs and m outputs is a map

ff: B
n

Y
m

don’t care – aka “X”

EECS 144/244, UC Berkeley: 8

The Boolean n-Cube, Bn

EECS 144/244, UC Berkeley: 9

Boolean Functions

B = {0, 1}, x = (x1, x2, …, xn)

x1, x2, … are variables

x1, x1’, x2, x2’, … are literals

Each vertex of B
n

is mapped to 0 , 1 or 2 (don’t care)

the onset of f is {x|f(x)=1} =f 1 = f -1(1)

the offset of f is {x|f(x)=0} =f 0 = f -1(0)

if f 1 = Bn, f is the tautology, i.e. f  1

if f 0 = Bn (f 1 = ), f is not satisfiable

if f(x) = g(x) for all x Bn, then f and g are equivalent

We write simply f instead of f 1

EECS 144/244, UC Berkeley: 10

Literals

Green – ON-set
Red – OFF-set

A literal is a variable or its negation

y, y’

It represents a logic function

Literal x1 represents the logic function f, where f = {x| x1 = 1}

Literal x1’ represents logic function g where g = {x| x1 = 0}

EECS 144/244, UC Berkeley: 11

Boolean Formulas -- Syntax

Boolean formulas can be represented by formulas defined

as catenations of

• parentheses (,)

• literals x, y, z, x’, y’, z’

• Boolean operators  (OR), X (AND)

• complementation, e.g. (x + y)’

Examples

f = x1 X x2‘ + x1‘ X x2 = (x1+x2) X (x1’+x2’)

h = a + b X c = (a’ X (b’ + c’))’

We usually replace X by catenation, e.g. a X bab

EECS 144/244, UC Berkeley: 12

Logic functions

There are 2n vertices in input space Bn

There are 22
n

distinct logic functions.

• How many logic formulae?

Each subset of vertices is a distinct logic function:

f  Bn

111

000

x3

x1

x2

000 1

001 0

010 1

011 0

100  1

101 0

110 1

111 0

“truth table”

EECS 144/244, UC Berkeley: 13

“Semantic” Description of Boolean Function

EXAMPLE: Truth table form of an incompletely

specified function

ff: B3 Y2

Y1: ON-SET1 = {000, 001, 100, 101, 110}

OFF-SET1 = {010, 011}

DC-SET1 = {111}

X1 X2 X3 Y1 Y2

0 0 0 1 1
0 0 1 1 0
0 1 0 0 1
0 1 1 0 1
1 0 0 1 0
1 0 1 1 2
1 1 0 1 1
1 1 1 2 1

EECS 144/244, UC Berkeley: 14

Operations on Logic Functions

(1)Complement: f f (¬ f or f ’)

interchange ON and OFF-SETS

(2)Product (or intersection or logical AND)

h = f · g (what happens to ON/OFF sets?)

(3)Sum (or union or logical OR):

h = f + g (ON/OFF sets?)

EECS 144/244, UC Berkeley: 15

Cubes

The AND of a set of literal functions (“conjunction” of literals) is a cube

(also view as a set of minterms)

C = xy’ is a cube

C = (x=1)(y=0)

x =1 y =0 xy’

z

y

x

EECS 144/244, UC Berkeley: 16

2-level Minimization: Minimizing SOP (DNF)

F1 = A B + A B D + A B C D

+ A B C D + A B + A B D

F1 = B + D + A C + A C

minimum representation

0 0 - - 1

0 1 - 1 1
0 1 0 0 1
1 1 1 0 1
1 0 - - 1
1 1 - 1 1

- 0 - - 1
- - - 1 1
0 - 0 - 1
1 - 1 - 1

Inputs Outputs

(number of cubes, literals)

EECS 144/244, UC Berkeley: 17

PLA’s - Multiple Output Functions

A PLA is a function f : Bn  Bm represented in SOP form:

f2 f3f1

n=3, m=3

a a b b c c
abc f1f2f3

10- 1 - -

-11 1 - -

0-0 - 1 -

111 - 1 1

00- - - 1

Personality Matrix

EECS 144/244, UC Berkeley: 18

PLA’s (cont.)

Each distinct cube appears just once in the AND-plane, and can be shared by (multiple) outputs in the OR-
plane, e.g., cube (abc).

Extensions from single output to multiple output minimization theory are straightforward.

Multi-level logic can be viewed mathematically as a connection of single output functions.

EECS 144/244, UC Berkeley: 19

Implicants

An implicant of a function f is a cube p that

does not intersect the OFF-SET of f

p  fON fDC

EECS 144/244, UC Berkeley: 20

Prime Implicants

An implicant of f is a cube p that does not

intersect the OFF-SET of f

p  fON fDC

A prime implicant of f is an implicant p such

that

(1) No other implicant q contains it

(i.e. p  q)

(2) p  fDC

A minterm is a fully specified implicant

e.g., 011, 111 (not 01-)

EECS 144/244, UC Berkeley: 21

Examples of Implicants/Primes

X1 X2 X3 Y1

0 0 0 1
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 2

000, 00- are implicants, but not primes (-0-)

How about 1-1 ? 0-0 ?

EECS 144/244, UC Berkeley: 22

Prime and Irredundant Covers

A cover is a set of cubes C such that

C  fON and C  fON  fDC

All of the ON-set is covered by C

C is contained in the ON-set and Don’t Care Set

A prime cover is a cover whose cubes are all prime implicants

An irredundant cover is a cover C such that removing any cube

from C results in a set of cubes that no longer covers the

function (ON-set)

A prime of f is essential (essential prime) if there is a minterm

(essential vertex) in that prime but in no other prime.

EECS 144/244, UC Berkeley: 23

Irredundant

Let F = {c1, c2, …, ck} be a cover for f.

f = i
k
=1 ci

A cube ci F is irredundant if F\{ci} ⊅ f

Example 2: f = ab + ac + bc

bc

ac
ab

c

a

b

bc

ac

Not covered

F\{ab} ⊅ f

EECS 144/244, UC Berkeley: 24

Example Covers

X1 X2 X3 Y1

0 0 0 1
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 2

0 0 -
1 0 - is a cover. Is it prime?
1 1 - Is it irredundant?

EECS 144/244, UC Berkeley: 25

Minimum Covers

Definition: A minimum cover is a cover of

minimum cardinality

Theorem: There exists a minimum cover that is

a prime and irredundant cover.

Why?

EECS 144/244, UC Berkeley: 26

Minimum Covers

Defn: A minimum cover is a cover of minimum

cardinality

Theorem: There exists a minimum cover that is

a prime and irredundant cover.

Given any cover C

(a) if redundant, not minimum

(b) if any cube q is not prime, replace q with

prime p  q and continue until all cubes

prime; it is a minimum prime cover

EECS 144/244, UC Berkeley: 27

Example Covers

X1 X2 X3 Y1

0 0 0 1
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 2

0 0 -
1 0 - is a cover. Is it prime?
1 1 - Is it irredundant?

What is a minimum prime and
irredundant cover for the function?

EECS 144/244, UC Berkeley: 28

Example Covers

X1 X2 X3 Y1

0 0 0 1
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 2

0 0 -
1 0 - is a cover. Is it prime?
1 1 - Is it irredundant?

- 0 -
1 1 - is a cover. Is it prime?

Is it irredundant?
Is it minimum?

EECS 144/244, UC Berkeley: 29

Example Covers

X1 X2 X3 Y1

0 0 0 1
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 2

0 0 -
1 0 - is a cover. Is it prime?
1 1 - Is it irredundant?

- 0 -
1 1 - is a cover. Is it prime?

Is it irredundant?
Is it minimum?

What about
- 0 -
1 - -

EECS 144/244, UC Berkeley: 30

Checking for Prime and Irredundant

We will use Shannon (Boole’s) Cofactor and Tautology Checking!

• Let f : Bn  B be a Boolean function, and x= (x1, x2, …, xn) the

variables in the support of f. The cofactor fa of f by a literal a=xi or

a=xi‘ is

fxi
(x1, x2, …, xn) = f (x1, …, xi-1, 1, xi+1,…, xn)

fxi’
(x1, x2, …, xn) = f (x1, …, xi-1, 0, xi+1,…, xn)

• Tautology: find a truth assignment to the inputs making a given Boolean

formula false

EECS 144/244, UC Berkeley: 31

The cofactor fC of f by a cube C is f with the fixed values

indicated by the literals of C, e.g. if C=xi xj’, then xi =1,

and xj =0.

If C= x1 x4‘x6, fC is just the function f restricted to the

subspace where x1 =x6 =1 and x4 =0.

As a function, fC does not depend on x1,x4 or x6

(However, we still consider fC as a function of all n

variables, it just happens to be independent of

x1,x4 and x6).

x1f  fx
1

Example: f= ac + a’c’ , af = ac, fa=c

Shannon (Boolean) Cofactor

EECS 144/244, UC Berkeley: 32

Cofactor and Quantification

Let f : Bn  B be a Boolean function, and x= (x1, x2, …, xn) the variables in

the support of f.

• Positive cofactor fxi
(x1, x2, …, xn) = f (x1, …, xi-1, 1, xi+1,…, xn)

• Negative cofactor fxi’
(x1, x2, …, xn) = f (x1, …, xi-1, 0, xi+1,…, xn)

• Existential quantification over variable xi :∃xi.f = fxi
˅ fxi’

• Universal quantification over variable xi : ∀xi.f= fxi
˄fxi’

EECS 144/244, UC Berkeley: 33

Fundamental Theorem

Theorem 1 Let c be a cube and f a function. Then c  f  fc  1.

Proof. We use the fact that xfx = xf, and fx is independent of x.

If: Suppose fc  1. Then cf=fcc=c. Thus,

c  f.

f

c

EECS 144/244, UC Berkeley: 34

Proof (contd)

Only if. Assume c  f

Then c  cf = cfc. If fc 1, then  m  Bn, fc(m)=0.

Find m^: Let mi^=mi, if xic and xi’c.

or if mi=0, xi ‘ c

or mi=1, xi  c.

mi^=mi’ otherwise.

i.e. we make the literals of m^ agree with c, i.e. m^  c.

But then fc(m^) = fc(m) = 0,(fc is independent of

literals l  c)

Hence, c(m^)=1

and fc(m^) c(m^)= 0,

contradicting c  cfc.

m= 000

m^= 101

m

m^

C=xz

EECS 144/244, UC Berkeley: 35

Checking for Prime and Irredundant

• Let G={ci} be a cover of F=(fON, fDC, fOFF). Let D be a

cover for fDC.

ciG is redundant iff

ci (G\{ci})D  Gi (1)

(Since ci Gi and fONG fON + fDC then ci  ci fON +ci fDC

and ci fON G\{ci}. Thus fON G\{ci}.)

EECS 144/244, UC Berkeley: 36

Checking for Prime and Irredundant

• Let G={ci} be a cover of F=(fON, fDC, fOFF). Let D be a

cover for fDC.

ciG is redundant iff

ci (G\{ci})D  Gi (1)

(Since ci Gi and fONG fON + fDC then ci  ci fON +ci fDC

and ci fON G\{ci}. Thus fON G\{ci}.)

• A literal l  ci is prime if (ci\{ l }) (= (ci)l) is not an

implicant of F.

A cube ci is a prime of F iff all literals l  ci are prime.

Literal l  ci is not prime  (ci)l  fON + fDC
(2)

EECS 144/244, UC Berkeley: 37

Note: Both tests (1) and (2) can be checked by

tautology:

1) (Gi)ci  1 (implies ci redundant)

2) (FD)(ci)l
 1 (implies l not prime)

EECS 144/244, UC Berkeley: 38

Tautology Checking

F = acd + bcd + a’bd’ + a’c’d’ +c’d + ac’+ ad’ + b’cd’ + a’b’d + a’b’c

Is F = 1? NOT EASY!!!

1211

2111

0120

0200

F= 2201 == 1?
1202

1220

2010

0021

0012

EECS 144/244, UC Berkeley: 39

List of Cubes (Cover Matrix)

We often use a matrix notation to represent a cover:

Example: F = ac + cd =

a b c d a b c d

ac 1 2 1 2 or 1 - 1 -

cd 2 2 0 1 - - 0 1

Each row represents a cube

1 means that the positive literal appears in the cube

0 means that the negative literal appears in the cube

The 2 (or -) here represents that the variable does not appear in the cube.
It implicitly represents both 0 and 1 values.

EECS 144/244, UC Berkeley: 40

Operations on Lists of Cubes

AND operation:

 take two lists of cubes

 computes pair-wise AND between individual cubes and put result on new list

 represent cubes as pairs of computer words

 set operations are implemented as bit-vector operations

Algorithm AND(List_of_Cubes C1,List_of_Cubes C2) {

C = 

foreach c1 C1 {

foreach c2 C2 {

c = c1 c2

C = C  c

}

}

return C

}

EECS 144/244, UC Berkeley: 41

Operations on Lists of Cubes

OR operation:

 take two lists of cubes

 computes union of both lists

Naive implementation:

On-the-fly optimizations:

 remove cubes that are completely covered by other cubes

• complexity is O(m2); m is length of list

 merge adjacent cubes

 remove redundant cubes?

• complexity is O(2n); n is number of variables

• too expensive for non-orthogonal lists of cubes

Algorithm OR(List_of_Cubes C1, List_of_Cubes C2) {

return C1 C2

}

EECS 144/244, UC Berkeley: 42

Naive implementation of COMPLEMENT operation
 apply De’Morgan’s law to SOP

 complement each cube and use AND operation

 Example:

Naive implementation of TAUTOLOGY check
 complement function using the COMPLEMENT operator and check for emptiness

Operation on Lists of Cubes

Input non-orth. orthogonal

01-10 => 1---- => 1----

-0--- 00---

---0- 01-0-

----1 01-11

EECS 144/244, UC Berkeley: 43

Generic Tautology Check

Algorithm CHECK_TAUTOLOGY(List_of_Cubes C) {

if(C == ) return FALSE;

if(C == {-...-})return TRUE; // cube with all ‘-’

xi = SELECT_VARIABLE(C)

C0 = COFACTOR(C, xi’)

if(CHECK_TAUTOLOGY(C0) == FALSE) {

print xi = 0

return FALSE;

}

C1 = COFACTOR(C,xi)

if(CHECK_TAUTOLOGY(C1) == FALSE) {

print xi = 1

return FALSE;

}

return TRUE;

}

EECS 144/244, UC Berkeley: 44

Improvements

Variable ordering:

 pick variable that minimizes the two sub-cases (“-”s get replicated into both cases)

Quick decision at leaf:

 return TRUE if C contains at least one complete “-” cube among others (case 1)

 return FALSE if number of minterms in onset is < 2n (case 2)

 return FALSE if C contains same literal in every cube (case 3)

EECS 144/244, UC Berkeley: 45

x1

x1’

x2

x2’

x3’

x4’

x4
x3

No tautology(case 3)

No tautology(case 3)

tautology(case 1)

tautology(case 1)

tautology(case 1)

Example

-1-0

--10

1-11

0---

-1-0

--10

--11

-1-0

--10

---0

--10

--11

--10

--11

---0

---0

---1

EECS 144/244, UC Berkeley: 46

The Quine-McCluskey Method: Exact Minimization

Given G’ and D (covers for F=(fON, fDC, fOFF).
and fDC), find a minimum cover G of primes
where:

f  G  fON+ fDC(G is a prime cover of F)

Step 1: List all minterms in ON-SET and DC-SET

Step 2: Use a prescribed sequence of steps to find

all the prime implicants of the function

Step 3: Construct the prime implicant table

Step 4: Find a minimum set of prime implicants that

cover all the minterms

EECS 144/244, UC Berkeley: 47

Example

Primes: ~y + w + ~x~z

Covering Table

Solution: {1,2}  ~y + w is minimum prime

cover. (also w+ ~x~z)

F xyzw xyzw xyzw xyzw

D yz xyw xyzw xyw xyzw

= + + +

= + + + +

dd

ddd

dd

dd

00

1

11

01

~x~y ~xy xy x~y

~z~w

~zw

zw

z~w

~x~z ~y

w
Karnaugh map

010

011

110

101

~y w ~x~z

x~y~z w

~x y z w

~x y~z w

~x~y~z~w

EECS 144/244, UC Berkeley: 48

Generating Primes - single output func.

Tabular method
(based on consensus operation):

Start with all minterm canonical form of F

Group pairs of adjacent minterms into cubes

Repeat merging cubes until no more merging
possible; mark () + remove all covered
cubes.

Result: set of primes of f.

Example:

F = x’ y’ + w x y + x’ y z’ + w

y’ z

w’ x’ y’ z’ 

w’ x’ y’ z 
w’ x’ y z’ 
w x’ y’ z’ 

w x’ y’ z 
w x’ y z’ 
w x y z’ 
w x y’ z 
w x y z 

w’ x’ y’ 
w’ x’ z’ 
x’ y’ z’ 
x’ y’ z 
x’ y z’ 
w x’ y’ 
w x’ z’ 
w y’ z

w y z’
w x y

w x z

x’ y’
x’ z’

F = x’ y’ + w x y + x’ y z’ + w y’ z

Courtesy: Maciej Ciesielski, UMASS

EECS 144/244, UC Berkeley: 49

Generating Primes – multiple outputs

Procedure similar to single-output function, except:

 include also the primes of the products of individual functions

Example:
x y z

0 – 0

0 1 1

1 – 1

f1 f2
0 1

1 1

1 0

Can also represent it as:

x y z

0 – 0

0 1 –

– 1 1

1 – 1

f1 f2
0 1

0 1

1 0

1 0
x

y
z

000 100

110010

111011

001

000 100

110
010

111011

001

f1
f2

101 101

EECS 144/244, UC Berkeley: 50

Generating Primes - example

Modification (w.r.t single output function):
 When two adjacent implicants are merged, the output parts are intersected

000 | 01 

010 | 01 

011 | 11

101 | 10 

111 | 10 

0 – 0 | 01

0 1 – | 01

– 1 1 | 10

1 – 1 | 10

x y z

0 – 0

0 1 1

1 – 1

f1 f2
0 1

1 1

1 0

There are five primes listed for

this two-output function.

- What is the min cover ?

f2

000 100

110

010

111011

001

000 100

110

010

111011

001

f1

101 101

EECS 144/244, UC Berkeley: 51

Minimize multiple-output cover - example

List multiple-output primes

f1 f2

000 100

110

010

111011

001

000 100

110

010

111011

001
101 101

p1 = 0 1 1 | 11

p2 = 0 – 0 | 01

p3 = 0 1 – | 01

p4 = – 1 1 | 10

p5 = 1 – 1 | 10

000 | 01

010 | 01

011 | 01

011 | 10

101 | 10

111 | 10

listed twice

0 1 0 0 0

0 1 1 0 0

1 0 1 0 0

1 0 0 1 0

0 0 0 0 1

0 0 0 1 1

p1 p2 p3 p4 p5

Min cover has 3 primes:

F = { p1, p2, p5 }

• Create a covering table, solve

EECS 144/244, UC Berkeley: 52

Covering Table

Definition: An essential prime is any prime that uniquely covers a minterm

of f.

010

011

110

101

~y w ~x~z

X~y~zw

~xyzw

~xy~zw

~x~y~z~w

Primes of f+d

Minterms of f

Essential prime

Row singleton

(essential minterm)

EECS 144/244, UC Berkeley: 53

Row and Column Dominance

Definition: A row i1 whose set of primes is contained in the set of primes of
row i2 is said to dominate i2.

Example:

i1 011010

i2 011110

i1 dominates i2

We can remove row i2, because we have to choose a prime to cover i1,
and any such prime also covers i2. So i2 is automatically covered.

EECS 144/244, UC Berkeley: 54

Row and Column Dominance

Definition: A column j1 whose rows are a superset of another column j2 is
said to dominate j2.

Example:

j1 dominates j2

We can remove column j2 since j1 covers all those rows and more. We
would never choose j2 in a minimum cover since it can always be
replaced by j1.

j1 j2

1 0

0 0

1 1

0 0

1 1

EECS 144/244, UC Berkeley: 55

Pruning the Covering Table

1. Remove all rows covered by essential primes (columns in row
singletons). Put these primes in the cover G.

2. Group identical rows together and remove dominated rows.

3. Remove dominated columns. For equal columns, keep one prime to
represent them.

4. Newly formed row singletons define n-ary essential primes.

5. Go to 1 if covering table decreased.

The resulting reduced covering table is called the cyclic core. This has to

be solved (unate covering problem). A minimum solution is added to G -

the set of n-ary essential primes. The resulting G is a minimum cover.

EECS 144/244, UC Berkeley: 56

Example

0001110

0001101

0000110

0001011

0011100

0110000

1100001

1000000

01110

01101

00110

01011

11100

10000

34567

n-ary Essential Prime

and

Column Dominance

G=P1 + P3

111

110

011

101

456

110

011

101

456

Essential Prime and

Column Dominance

G=P1

Row dominanceCyclic

Core

EECS 144/244, UC Berkeley: 57

11
1111

11

0

A

1

C

Solving the Cyclic Core

Best known method (for unate covering) is branch and bound with some

clever bounding heuristics.

Independent Set Heuristic:

Find a maximum set of “independent” rows I. Two rows Bi1
,Bi2

are

independent if j such that Bi1j
=Bi2j

=1. (They have no column in

common)

Example: Covering matrix B rearranged with independent sets first.

Independent set = I

of rowsB=

EECS 144/244, UC Berkeley: 58

Lemma:

|Solution of Covering|  |I|

11
1111

11

0

A

1

C

Solving the Cyclic Core

EECS 144/244, UC Berkeley: 59

Heuristic

Let I={I1, I2, …, Ik} be the independent set of rows

choose j  Ii which covers the most rows of A. Put j  J

eliminate all rows covered by column j

I  I\{Ii}

go to 1 if |I|  0

If B is empty, then done (in this case we have the guaranteed minimum

solution - IMPORTANT)

If B is not empty, choose an independent set of B and go to 1

11
1111

11
0

A

1

C

EECS 144/244, UC Berkeley: 60

Espresso Algorithm: Heuristic Minimization

ESPRESSO (fON, fDC) {

F is ON-SET, DC is Don’t Care Set

1. R = U - (F  DC) U is universe cube

2. n = |F|

3. F = Reduce (F, DC); // reduce implicants in F
to non-prime cubes

4. F = Expand (F, R); // expand cubes to prime
implicants

5. F = Irredundant (F, DC); // extract minimal
cover of prime implicants

6. If |F| < n goto 2, else, post-process & exit

}

EECS 144/244, UC Berkeley: 61

Bibliography

• https://webdocs.cs.ualberta.ca/~amaral/courses/329/webslides/Topic5-

QuineMcCluskey/sld001.htm

• R.K. Brayton, C. McMullen, G.D. Hachtel and A. Sangiovanni-

Vincentelli, Logic Minimization Algorithms for VLSI Synthesis. Kluwer

Academic Publishers, 1984.

https://webdocs.cs.ualberta.ca/~amaral/courses/329/webslides/Topic5-QuineMcCluskey/sld001.htm
http://www.amazon.com/Minimization-Algorithms-Synthesis-International-Engineering/dp/0898381649

