Logic

The α and ω in science.

- Basis of mathematics.
- Also of engineering.
 - Particularly useful for verification (model-checking = checking a model against a logical formula).
 - But also used in other domains, e.g.: Prolog, Datalog, UML OCL (Object Constraint Language), ...

A myriad of logics:

- Propositional logic
- First-order logic
- Temporal logic
- ...
What is logic?

Logic = Syntax + Semantics + Proofs

Proofs
 • Manual, or
 • Automated: Proofs = Computations

Example:
 • Syntax: boolean formulas
 • Semantics: boolean functions
 • Proofs: is a formula satisfiable? valid (a tautology)?
 ▶ E.g., for boolean logic: an NP-complete problem (a representative for many combinatorial problems).

BOOLEAN LOGIC
(a.k.a. Propositional Logic or Propositional Calculus)
Syntax

Symbols:
- Constants: “false” and “true”, or 0, 1, or ⊥, ⊤
- Variable symbols (atomic propositions): p, q, ..., x, y, ...
- Boolean connectives: ∧ (and), ∨ (or), ¬ (not), → (implies), ≡ or ↔ (is equivalent to)
- Parentheses (): used to make syntax unambiguous

Expressions (formulas):

\[\phi ::= 0 \mid 1 \mid p \mid q \mid \ldots \mid x \mid y \mid \ldots \]
\[\mid \phi_1 \land \phi_2 \mid \phi_1 \lor \phi_2 \]
\[\mid \neg \phi' \]
\[\mid \phi_1 \rightarrow \phi_2 \mid \phi_1 \equiv \phi_2 \]

Syntax

Examples:

\[x \lor \neg x \]
\[x \rightarrow y \rightarrow z \text{ (ambiguous)} \]
\[x \rightarrow (y \rightarrow z) \]
\[(x \rightarrow y) \rightarrow z \]
\[(p \rightarrow q) \leftrightarrow (0 \lor \neg p \lor q) \]

¬ usually brings stronger, so \(\neg p \lor q \) means \((\neg p) \lor q\).

Similarly, \(p \land q \lor r \) usually means \((p \land q) \lor r\),
\(p \land q \rightarrow a \lor b \) usually means \((q \land q) \rightarrow (a \lor b)\),
etc.

When unsure, better use parentheses!
Alternative syntax

- ⇒ instead of →, but in modern logic notation, ⇒ is used for semantical entailment, as in “formula ϕ entails formula ϕ', or $\phi \Rightarrow \phi'$, meaning that ϕ' is true when ϕ is true”
- ⇔ instead of ↔
- + instead of \lor
- \cdot instead of \land (often omitted altogether)
- \overline{x} instead of $\neg x$

E.g.,

$$xy + \overline{z}$$

instead of

$$(x \land y) \lor (\neg z)$$

Semantics

The **meaning** of logical formulas.

E.g., what is the semantics of a boolean formula such as $p \rightarrow q$?

“If p, then q”, of course.

So, why do we even need to talk about semantics?
Semantics

What is the meaning of a boolean formula?

Different views (all equivalent):

- A “truth table”.
- A boolean function.
- A set containing the “solutions” ("models") of the formula.

Why not consider the syntax itself to be the semantics?

Semantics

Formula:

$$x \land (y \lor z)$$

Truth table:

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>z</th>
<th>result</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

An equivalent formula (different syntax, same semantics):

$$(x \land y) \lor (x \land z)$$
Semantics

Boolean function: a function $f : \mathbb{B}^n \rightarrow \mathbb{B}^m$, where $\mathbb{B} = \{0, 1\}$.

Formula:

$$x \land (y \lor z)$$

defines\(^1\) the boolean function: $f : \mathbb{B}^3 \rightarrow \mathbb{B}$ such that:

$$f(0, 0, 0) = 0$$
$$f(0, 0, 1) = 0$$

...

\(^1\)assuming an order on the variables: (1) x, (2) y, (3) z.

Semantics

A formula $\phi : x \land (y \lor z)$ defines\(^2\) a subset $\llbracket \phi \rrbracket \subseteq \mathbb{B}^3$:

$$\llbracket \phi \rrbracket = \{(1, 0, 1), (1, 1, 0), (1, 1, 1)\}$$

This is the set of “solutions”: all assignments to x, y, z which make the formula true.

To be independent from an implicit order on variables, we can also view $\llbracket \phi \rrbracket$ as a set of minterms:

$$\llbracket \phi \rrbracket = \{x\overline{y}z, x\overline{y}\overline{z}, xyz\}$$

We can also view $\llbracket \phi \rrbracket$ as a set of sets of atomic propositions:

$$\llbracket \phi \rrbracket = \{\{x, z\}, \{x, y\}, \{x, y, z\}\}$$

What is the type of $\llbracket \phi \rrbracket$ in this last case?

$\llbracket \phi \rrbracket \subseteq \mathbb{B}^P = 2^P$ where P is the set of atomic propositions (\(=\) formula variables).

\(^2\)assuming an order on the variables: (1) x, (2) y, (3) z.

Stavros Tripakis (UC Berkeley)
EE 144/244, Fall 2015
Basic Concepts of Logic 11 / 34
Semantics: satisfaction relation

Satisfaction relation:

\[a \models \phi \]

means \(a \) is a “solution” (or model) of \(\phi \) (or “\(a \) satisfies \(\phi \)”).

So

\[a \models \phi \quad \text{iff} \quad a \in \left[\phi \right] \]

Semantics: satisfiability, validity

A formula \(\phi \) is **satisfiable** if \(\left[\phi \right] \) is non-empty, i.e., if there exists \(a \models \phi \).

A formula \(\phi \) is **valid** (a **tautology**) if for all \(a \), \(a \models \phi \), i.e., if \(\left[\phi \right] = 2^P \).
Limitations of propositional logic

>All humans are mortal.

How to write it in propositional logic?

We can associate one proposition p_i for every human i, with the meaning “human i is mortal”, and then state:

$$p_1 \land p_2 \land \cdots \land p_{7000000000}$$

But even this is not enough, since we also want to talk about future generations.
Expressing this in (first-order) predicate logic

$$\forall x : H(x) \to M(x)$$

x: variable

H, M: predicates (functions that return “true” or “false”)

$H(x)$: “x is human”.

$M(x)$: “x is mortal”.

\forall: “for all” quantifier.

First-Order Predicate Logic (FOL) – Syntax

Terms:

$$t ::= x \mid c \mid f(t_1, ..., t_n)$$

where x is any variable symbol, c is any constant symbol, and f is any function symbol of some arity n.

Formulas:

$$\phi ::= P(t_1, ..., t_n)$$

$$\mid (\phi \land \phi) \mid (\phi \lor \phi) \mid (\neg \phi) \mid \cdots$$

$$\mid (\forall x : \phi) \mid (\exists x : \phi)$$

where P is any predicate symbol of some arity n, and t_i are terms.

3 constants can also be seen as functions of arity 0
FOL – Syntax

Example:

$$\forall x : x > 0 \rightarrow x + 1 > 0$$

or, more pedantically:

$$\forall x : > (x, 0) \rightarrow > (+ (x, 1), 0)$$

- 0, 1: constants
- x: variable symbol
- $+$: function symbol of arity 2
- $>$: predicate symbol of arity 2

FOL – Syntax

Note:

- This is also a syntactically well-formed formula:
 $$x > 0 \rightarrow x + 1 > 0$$

- so is this:
 $$\forall x : x > y$$

- or this:
 $$\forall x : 2z > f(y)$$
Parse Tree of Formula

Formula: \(\forall x : x > 0 \rightarrow x + 1 > 0 \)

Parse tree:

Free and Bound Variables

Formula: \(\forall x : x > y \)

Parse tree:

\(y \) is free in the formula: no ancestor of the leaf node \(y \) is a node of the form \(\forall y \) or \(\exists y \).

\(x \) is bound in the formula: has ancestor \(\forall x \).
Scope of Variables

Formula: \((\forall x : x = x \land \exists x : P(x)) \land x > 0\)

Parse tree:

Renaming

Formula: \((\forall x : x = x \land \exists x : P(x)) \land x > 0 \leadsto (\forall y : y = y \land \exists z : P(z)) \land x > 0\)

Parse tree:
FOL – Semantics

In propositional logic, a “solution” (model) of a formula was simply an assignment of truth values to the propositional variables. E.g.,

\[(p := 1, q := 0) \models p \lor q \]

What are the “solutions” (models) of predicate logic formulas?

\[??? \models \forall x : P(x) \rightarrow \exists y : Q(x, y) \]

Cannot give meaning to the formula without first giving meaning to \(P, Q \).

FOL – Semantics

Let \(\mathcal{P} \) and \(\mathcal{F} \) be the sets of predicate and function symbols (for simplicity \(\mathcal{F} \) also includes the constants).

A model \(\mathcal{M} \) for the pair \((\mathcal{P}, \mathcal{F})\) consists of the following:

- A non-empty set \(\mathcal{U} \), the universe of concrete values.
- For each 0-arity symbol \(c \in \mathcal{F} \), a concrete value \(c_{\mathcal{M}} \in \mathcal{U} \).
- For each \(f \in \mathcal{F} \) with arity \(n \), a function \(f_{\mathcal{M}} : \mathcal{U}^n \rightarrow \mathcal{U} \).
- For each \(P \in \mathcal{P} \) with arity \(n \), a set \(P_{\mathcal{M}} \subseteq \mathcal{U}^n \).

Note:

- \(c, f, P \) are just symbols (syntactic objects).
- \(c_{\mathcal{M}}, f_{\mathcal{M}}, P_{\mathcal{M}} \) are semantical objects (values, functions, sets).
FOL – Semantics

Example:

\[\forall x : P(x) \rightarrow \exists y : Q(x, y) \]

Let \(M \) be such that

- \(U = \mathbb{N} \): the set of naturals.
- \(P_M = \{0, 2, \ldots\} \): the set of even naturals.
- \(Q_M = \{(0, 1), (1, 2), (2, 3), \ldots\} \): the set of pairs \((n, n + 1)\), for \(n \in \mathbb{N} \).

Then the statement above is true.

Of course, it could have been written “more clearly” (for a human):

\[\forall x : \text{Even}(x) \rightarrow \exists y : y = x + 1 \]

... but a computer (or a person who does not speak English) is equally clueless as to what \(P \) or \(\text{Even} \) means ...
FOL – Semantics

What is the meaning of $\forall x : x > y$?

Undefined if we know nothing about the value of y.

We need one more thing: environments (or “look-up tables” for variables).

Environment:

$$l : \text{VariableSymbols} \rightarrow \mathcal{U}$$

assigns a concrete value to every variable symbol.

Notation:

$$l[x \sim a]$$

is a new environment l' such that $l'(x) = a$ and $l'(y) = l(y)$ for any other variable y.

FOL – Semantics: Giving concrete values to terms

Once we have \mathcal{M} and l, every term evaluates to a concrete value in \mathcal{U}.

Example:

$$\mathcal{M} : \mathcal{U} = \mathbb{N}, "0" = 0, "1" = 1, ..., + = \text{addition function},$$

$$l : x \sim 2, y \sim 1$$

<table>
<thead>
<tr>
<th>term t</th>
<th>value $\mathcal{M}_l(t)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x + 1$</td>
<td>3</td>
</tr>
<tr>
<td>$x \cdot y$</td>
<td>2</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

For a term t, we denote this value by $\mathcal{M}_l(t)$.

Stavros Tripakis (UC Berkeley) EE 144/244, Fall 2015 Basic Concepts of Logic 30 / 34
Finally we can define the satisfaction relation for first-order predicate logic (\mathcal{M}: model, l: environment, ϕ: formula):

$$\mathcal{M}, l \models \phi$$

- $\mathcal{M}, l \models P(t_1, \ldots, t_n)$ iff $(\mathcal{M}_l(t_1), \ldots, \mathcal{M}_l(t_n)) \in P_M$
- $\mathcal{M}, l \models \phi_1 \land \phi_2$ iff $\mathcal{M}, l \models \phi_1$ and $\mathcal{M}, l \models \phi_2$
- $\mathcal{M}, l \models \neg \phi$ iff $\mathcal{M}, l \not\models \phi$
- $\mathcal{M}, l \models \forall x : \phi$ iff for all $a \in \mathcal{U}$: $\mathcal{M}, l[x \sim a] \models \phi$ holds
- $\mathcal{M}, l \models \exists x : \phi$ iff for some $a \in \mathcal{U}$: $\mathcal{M}, l[x \sim a] \models \phi$ holds

A FOL formula ϕ is **satisfiable** if there exist \mathcal{M}, l such that $\mathcal{M}, l \models \phi$ holds.

A formula ϕ is **valid** (a tautology) if for all \mathcal{M}, l, it holds $\mathcal{M}, l \models \phi$.

FOL – Semantics: Satisfiability, Validity

Examples:

1. \(\forall x : P(x) \rightarrow P(x) \)
 Valid.

2. \(x \geq 0 \land f(x) \geq 0 \land y \geq 0 \land f(y) \geq 0 \land x \neq y \)
 Satisfiable.
 Example model: \(U = \mathbb{N}, x \mapsto 0, y \mapsto 1, f(.) \mapsto 0, \neq \) is the “not equal to” relation on \(\mathbb{N} \): \(\neq \mapsto \{(0,1),(0,2),\ldots,(1,0),(1,2),\ldots\} \).

3. \(x + 2 = y \land f(\text{read(write}(A,x,3),y-2)) \neq f(y-x+1) \)
 Satisfiable with a non-standard interpretation of +, − or read, write.
 Unsatisfiable with the standard interpretation of those symbols (theories of arithmetic and arrays). Why?

Bibliography

