Metropolis TTL Platform: User’s Manual

Alessandro Pinto
University of California at Berkeley
545P Cory Hall, Berkeley, CA 94720

apinto@eecs.berkeley.edu

September 14, 2004

etropolis

Copyright (© 2001-2003 The Regents of the University of California.
All rights reserved.

Contents

1 mmunication 1 2

3

2.1 Interfaces with YAPI processes| 4
Abstract

This document describes the task transaction level (TTL) platform
provided by the Metropolis infrastructure. The platform is imple-
mented around a bounded FIFO and its communication protocol. Read-
ing and writing operation are token-based. A medium can be config-
ured with respect to the token size and the FIFO length. Four services
are provided to access data stored in a FIFO: claim_data, claim_space,
release_data, release_space.

1 Communication Model

The TTL platform provides the implementation of a communication chan-
nel for modeling systems at task transition level (TTL) [?]. The model was
originally developed by Philips and it is meant to refine the YAPI model.
TTL platform provides four methods to access data:

e claim _data is used to check if there is at least a tokens available in
a FIFO. This method is blocking;

e release _space is called after a token has been read from a FIFO.
This method tells the medium that the token has been received and
the space can be made available for other tokens;

e claim _space is used by a writer to check if there is enough space to
write a token in the FIFO. This method is also blocking;

e release _data is used to write a token on the output channel after
claim_space has return a positive answer.

A typical use of this method is the following: process claims data from
the input channel, claims space on the output channel and finally does its
computation. When the computation terminates, the result is written on
the output buffer using the release_data service and space is released on
the input channel.

In order to allow pipelining a number of initial tokens can be provided
for each channel.

2 The Bounded FIFO

The TTL platform defines interface methods to access data stored in a FIFO:

template(T)
public interface boundedfifooutinterface extends boundedfifointerface-<T>- {
eval int claim_space();
eval int query_space();
eval int guard_query_space(); // added by YW
update void release_data(T data);
update void release_data(T[] data);
}
template(T)
public interface boundedfifoininterface extends boundedfifointerface-<T>- {
eval T claim_data();
eval void claim_data(T[] data);
eval int query_data();
eval int guard_query_data();
update void release_space();

}

Interfaces are templates defining services to store and retrieve data. The
meaning of each function has been explained in section[I} The non-blocking
version of claim_space and claim_data are query_space and query_data.
They return respectively the number of available spaces and tokens in a
bounded FIFO.

The TTL bounded FIFO medium is described as follows:

template(T)
public medium boundedfifo implements boundedfifoininterface-<T>-,
boundedfifooutinterface-<T>-,
ttiwri,ttirdi {
parameter int tokensize;
parameter int numberoftokens;
T[] FIFO;
int rp,wp;
int ntokens;
int DataSize;

public boundedfifo(String n,int ts,int nt,int it, int ds){
super(n);

}
-

The boundedfifo medium is a template that implements the input and out-
put interfaces already defined. The constructor takes the following list of
parameters: the token size ts, the maximum number of tokens nt, the initial

3

number of tokens in the FIFO it and finally the data size ds. The internal
buffer FIFO is implemented as a circular buffer of which rp and wp are
respectively the read and write pointer.

2.1 Interfaces with YAPI processes

The TTL platform has been developed as a refinement of the YAPI plat-
form. YAPI processes communicate through unbounded FIFOs. In order
to be able to refine each yapi channel into a bounded FIFO, two adapta-
tion interfaces have to be implemented: one that implements a yapi write
using claim_space and release_data and another interface that implements
yapi read using claim_data and release_space. These two interfaces are
yapi2boundedfifo and boundedfi f o2yapi.

The two medium implementing these interfaces are respectively yapi2TT Lchannel
and TT L2yapichannel. Since a yapi process could write a big amount of
data in a single write, and since the data have to be transferred to the yapi
process that is waiting for the, a protocol to exchange data on using the
bounded FIFO has to be used.

TTL platform provides a netlist that assemble the two yapi interfaces,
the bounded FIFO and the medium that implements the data exchange pro-
tocol.

The netlist code looks as follows:

package metamodel.plt. TTLtemplate;
import metamodel.plt.yapitemplate.*;
template(T)
public netlist TTLmediumnetlist {
boundedfifo-<T>- bf;
rdwrthreshold rwitr;
yapichannel-<T>- channel;
yapi2TTLchannel-<T>- y2bf;
TTL2yapichannel-<T>- bf2y;
public TTLmediumnetlist(String n,yapichannel-<T>- ch,int ts,int nt,int it,int ds,stfunc f){
super(n);
channel = ch;
y2bf = new yapi2TTLchannel-<T>-(n+"y2bf" ts,nt,f);
bf2y = new TTL2yapichannel-<T>-(n+"bf2y" ts,nt,f);

rwtr = new rdwrthreshold(n+"rdwrth");
bf = new boundedfifo-<T>-(n+"bf",ts,nt,it, ds);

addcomponent(y2bf,this,n+"y2bf _inst");
addcomponent(bf2y,this,n+"bf2y_inst");

addcomponent(rwtr,this,n+"rdwrth_inst");
addcomponent(bf,this,n+"bf_inst");
addcomponent(ch,this,n+"yapirefch_inst");

connect(y2bftofifo,bf);
connect(bf2y,fromfifo,bf);
connect(y2bf,fromfifo,bf);
connect(bf2y,tofifo,bf);

connect(y2bf,rdwrth,rwtr);
connect(bf2y,rdwrth,rwtr);

refine(ch,this);

refineconnect(this,
getnthconnectionsrc(ch,yapioutinterface-<T>-,0),
getnthconnectionport(ch,yapioutinterface-<T>-,0),
y2bf);

refineconnect(this,
getnthconnectionsrc(ch,yapiininterface-<T>-,0),
getnthconnectionport(ch,yapiininterface-<T>-,0),
bf2y);

}
}

The constructor takes the following set of parameters: ch is the yapichannel
to refine, f is s special function to decide the properties of the communica-
tion protocol. All the other parameters are used to configure the bounded
FIFO. The netlist structure is shown in figure

The yapichannel ch is refined using the keyword re fine and connection
of the original processes to ch are redirected to the two interfaces y2bf and

bf2y.

TTLmediumnetlist

Figure 1: TTL netlist

	Communication Model
	The Bounded FIFO
	Interfaces with YAPI processes

