Semi-Algebraic Methods for Multi-Valued Logic

Minxi Gao and Robert K. Brayton
Electrical Engineering and Computer Sciences Dept.
University of California, Berkeley CA 94720
({minxi,brayton }Qeecs.berkeley.edu)

May 1, 2000

Abstract

We give several semi-algebraic methods for manipu-
lating multi-valued logic functions. The methods treat
binary and multi-valued variables uniformly. They
include methods for finding common sub-expressions,
semi-algebraic division, decomposing a multi-valued
network, and factoring an expression. Even in some
binary cases, the methods generalize algebraic mathods
for binary logic synthesis [2]. The algorithms have been
implemented in a system called MV-SIS for optimizing
multi-valued logic and tested for quality on a small set
of examples. Their speed and quality seem sufficient
for filling the role played by algebraic division in bi-
nary logic synthesis.

1 Introduction

Multi-valued (MV) logic synthesis can be useful in
the following applications:

1. initial manipulation of a hardware description be-
fore it is encoded into binary and processed by
standard logic synthesis programs; MV is a natu-
ral way to describe procedures at a higher level,

2. a front end to a software compiler, since software
lends itself naturally to the evaluation of multi-
valued variables in a single cycle,

3. in some asynchronous applications.

Although there has been a lot of work on multi-valued
logic manipulation and optimization, one set of tech-
niques missing so far is the algebraic methods which
are at the core of efficient binary logic synthesis.

Algebraic methods are used after first casting the
logic expression into a minimized sum-of-products.
Then the result is manipulated as an algebraic ex-
pression, ignoring the Boolean identities 27 = 0,22 =
z,2+Z = 1. The intuition is that if two functions have
a common subexpression or divisor, then often this can
be recognized from their minimized sum-of-products
expressions. This results in faster methods for manip-
ulating the logic, such as factoring and finding common
divisors. Although some optimality is lost, this can be
recovered by using Boolean methods later.

In this paper, we develop, more fully, algebraic type
methods for MV-logic. The basis for these ideas origi-
nate in the paper of Lavagno et. al. [3].

2 Notation

In general, a MV-logic function can have MV input
variables and an MV output. A function with a single
binary output is called an MV-function.

A function with &k output values can be represented
by k MV-functions or as a single function with k output
values or as multiple binary output functions where the
output values are encoded. All such representations
have multi-valued inputs.

An MV-network is a network of nodes; each node
represents a function with a single multi-valued output.
There is one MV variable associated with the output
of each node. An edge connects node 4 to node j if the
function at j depends explicitly on the variable associ-
ated with node 4, typically denoted, y;. The network
has a set of primary inputs and a set of nodes which
are designated as the outputs of the network. An in-
termediate format for representing such a network is

BLIF-MV used in the VIS system [1].

In general, a variable z; is multi-valued and takes on
values from the set P; = {0,1, ..., |P;| —1}. A literal of
an MV-variable z is associated with a subset of values
for that variable. For example, suppose = can take
on 5 values {0,1,2,3,4}. Then z1%2} and z{\24} are
literals of z. The interpretation of z{%2} is that it is a
binary logic function which is 1 if 2 has either the value
of 0 or 2, and 0 otherwise. Note that z{0:1:2:3:4} = 1
since all five possible values appear in the literal. A
product term or cube is a conjunction of literals
and evaluates to 1 if and only if each of the literals
evaluates to 1. Additionally, a cube can be thought
of as simply a set of values. We use the notation ¢ to
denote the cube consisting of all values not in the cube
¢. A sum-of-products (SOP) is the disjunction of a
set of product terms. It evaluates to 1 if any of the
products evaluates to 1. Note that a SOP is a function
with a single binary output and multiple multi-valued
input variables.

The supercube of a set of cubes f (a SOP or an
“logic expression”), denoted o(f), is the smallest cube
containing f. It is the cube formed by taking the union
of all the values in all the cubes. Similarly, &(f) is the
cube consisting of the set of values not in o(f). Note

that in general, 6(f) # o(f) # o(f)-

The cofactor of a set of cubes d with respect to
a cube ¢, denoted d., is the set of cubes obtained by
eliminating cubes of d that do not intersect ¢, and then
adding to each remaining cube, those values not in the
cube ¢, i.e. the values in ¢.

Example 1 If ¢ and y each have 5 wvalues, d =
${07174}+y{1a274}+x{0}y{0’3} andc f— x{lvz}y{1a3}} then
d, = p10:13.4} 4 4 {0.1,2.4}

Definition 1 An expression f is cube-free if o(f) =
1.

Example 2 f = afl3}p12:3} 4 q{033p{13} s not cube-
free, o(f) = al01:3}p{1:2:3} £ 1,

Definition 2 An expression has a common cube if
for each variable, there is no literal (except the literal

1) appearing in the cubes of the expression that con-
tains all other literals of that variable in the expres-

sion.

Example 3 g = a{l3}p{123} 4 q{01315{13} pag
a common cube, al®V3Yp{1:23} " pecquse the literal
at®t3} contains al'3} and 11,23} contains 113},

Note that the expression, f = ail:3}p{12:3} 4 4{0:3}p{1,3}
has no common cube even though f C a{01:3}p{1,2,3}
We want to make a distinction here because if we
factor out al®13}pi1:23} from f to obtain f =
al01:31p{1.2,3} (q{1.2:31p{0,2,3} | ¢{0.23}5{0.13}) we ob-
tain a cube-free expression in the parenthesis, but it is
not simpler.

2.1 Factoring Out a Common cube

If there is a common cube of an expression, we can
factor it out and obtain a simpler expression in several

ways.

1. cofactor the expression by the common cube (e.g.
a{1:3}p{1,2,3} + a{0,1,3}p{1.3} —
af01:31p{123} ({1,2.3.4} 1 p{0.1,3,4}y)

2. remove all literals appearing in the common
at01:31pi1:2:3} ({13} 4 p{L:3h)),

In both cases the expression in the parenthesis is sim-
pler in some sense. In the first case, values (not in
the common cube) are added to the expression. In the
second case, extra values are added but only to make
the common cube literals equal 1 (for example in the
second case, we added values to af®3} namely {0,4}
to make the resulting literal 1). In this paper, we use
the second method of making an expression simpler
by factoring, in order to keep the number of values
in an expression minimal. In fact, the two cases repre-
sent upper and lower bounds for inserting values in the
factored results. The values not in the common cube
are called redundant values and we can use them
like don’t cares to obtain many cube-free expressions.
Thus, unlike the binary case, the cube-free expression
is not unique. This makes the problem of finding com-
mon divisors among two or more expressions more dif-
ficult than in the binary case.

Example 4 Consider the following two expressions.
f o= glon3k it 4 5{0}, {0
g = ${0’2’4}(y{1’2} + ${0’273}y{0})

At first glance, f and g seem to have no common divi-
sor. However, inside the parentheses of f, 2 and 4 are
redundant values for x, and inside the parentheses of
g, 1 and 3 are redundant values for x. If we choose to
include 2 in the first, and remove 3 in the second, we
get

f — 1'{0’1’3} (y{1’2} + x{oaz}y{o})
g — ${07274} (y{1’2} + ${072}y{0})7

yielding the common divisor of yi1:2} 4 £10:2}, {0}
3 Satisfiable Matrices

The work in [3] related the factorization of a function
of a single multi-valued variable with the existance of a
“satisfiable” matrix of MV-literals. We generalize the
definitions and procedures of [3]:

e In general all variables can be multi-valued.
e The elements in the matrix are MV-cubes.

e The rows and columns are not associated with bi-
nary co-kernel and kernel cubes.

Definition 3 Consider any rectangular arrangement
of a set of MV-cubes. It is satisfiable if for all values
of all variables, each value satisfies the following condi-
tion: Let I be the set of rows and J the set of columns
in M in which value v appears. Then value v satisfies
the value condition if it appears in all entries of M
gwen by {M; ;li € I,j € J}.

Example 5 The matriz of values

1,2 1,8 2,3

2,8 1,4 4
is not satisfiable, since it should have a 3 in all entries,
a2in (2,8) and a 1 in (2,1).

Note that this definition applies equally to binary as
well as MV-variables.

Similar to the procedure in [3], one can derive a
product of two expressions from a satisfiable matrix:

1. For each row ¢, form e, ;, the supercube of all
cubes in that row.

2. OR these together to form the row expression,

er =1 €ri

3. For each column j, form e, ;, the supercube of all
cubes in that column.

4. OR these together to form the column expression,

€. = Ej €c,j-

Theorem 1 If M is a satisfiable matriz, then
> i Mij = (er)(ec), i.e. the SOP M can be re-written
as a product of two expressions.

Proof. In fact, we claim that
M;j = eriNec,;-

Clearly M;; C e,; Ne.; because by definition, e, ; is
a cube containing all cubes in row ¢ and e, ; is a cube
containing every cube in column j. Now suppose that
M;; 2 eriNec;. Then there exists a variable with a
value v such that v € e,; Ne.; but v & M;;. How-
ever, v must be in M;;, for some k (since v € e, ;),
and also v € M,,; for some m (since v € e ;). There-
fore, by the value condition for a satisfiable matrix,
v € M;; (as well as v € M,y,;), a contradiction. Hence,
M;; D eriNec ;. O

3.1 Finding a Large Satisfiable Matrix

We give a method, given a set of cubes, for finding a
subset that can be rearranged into a (largest) satis-
fiable matrix. The method is based on pre-selecting
the number of rows in the matrix. Then the array is
found by a branch and bound technique. Entries are
selected in the matrix in column order, i.e. cubes are
selected one at a time for Myq, M1, ..., M12, ... in that
order. At each point, the entries selected are guaran-
teed, thus far, to satisfy the value condition against
the previously selected cubes.

3.1.1 Lower and Upper Bounds

We require that the selected cube ¢ for the next entry,
M;;, should satisfy a lower bound cube [¥ and two

ij ij
upper bound cubes, u;’ and u; , i.e.
IV CeCuf Nuy

We now define these bounds and prove that they char-

acterize a satisfiable matrix precisely. These bounds

are used in an efficient branch and bound algorithm.
Let (i,j) be the matrix position for the next entry

to be selected.

Lower Bound Cube: The cube [¥/ (which depends

on i, j) consists of the following set of values:

W = {u|3(k < j),v € M)
and (I(m < i),v € My ;)}

Note that for ¢ =1 or j = 1, this is the null set.
Upper Bound Cube 1: The cube u}’ (which de-
pends on i, j) consists of the following set of values:

ul = {ol3(k < j),v € Mig)
or (V(n #i,m < j),v & Mym)}
Note that for j = 1, this is set of all values.

Upper Bound Cube 2: The cube u¥ (which de-
pends on i, j) consists of the following set of values:

uéj = {v|3(n <i),v e M,;)
or (V(m < j)V(n < i),v &€ My m)}

Note that for j = 1, this is the set of all values.

Theorem 2 A matrix of cubes M is satisfiable if and
only if for each (i,7), M, ; satisfies 1 C M, ; Cuy N
uf

Proof. Omitted for brevity. O

We have also developed some additional techniques
that help prune the search and make the construction
of satisfiable matrices much faster.

4 Semi-Algebraic Division

One of the applications of the above search process is
to factor an expression, i.e. given an expression (sum-
of-products), d, which will serve as the divisor, and
another expression f to be factored, find the dividend,
e, i.e. a largest expression e, such that f = de+r. In

this equation, each side is a set of cubes and equality
means that the two sets are equal. de produces a set of
cubes of size |d| x |e|, i.e. the cross product of the two
sets. The product of two cubes is the cube containing
the intersection of the two sets of values for all the
variables.

We relax the definition of algebraic product for MV-
variables in that we do not require that the two expres-
sions d and e have disjoint sets of variables.

Example 6 Consider the product

(0{3} _+_ a{O}C{O’l’z})(a{0’1’2}c{1’3} _+_ b{1a273}c{0a3})

When this is multiplied out, we get

al0L2} 13} 4 pl123} .03} | 0} o1} 4 o{0}p{12:3} {0}

Although it did not happen in this example, null cubes
could be produced. Note that we use non-algebraic
properties in performing this product since the set of
values obtained for a variable is the intersection of the
two sets from each cube, e.g.

(al0Fct01.2h) (1012} {13} = {0} {1}

which is analogous to using zz = z for the binary case.

In our semi-algebraic division algorithms, we start
with a given divisor d and search for a satisfiable ma-
trix M formed from a subset of the cubes of f. The
row expression e, associated with M will be related
to d. We look at two types of semi-algebraic division
methods, exact and inexact. In exact division, we
require that du = e, where u is some cube. In inex-
act division the requirement is relaxed to e,; C d;
and thus e, C d.

In exact division, the column expression, e., is the
dividend, and the cubes of f not included in M =
(er)(ec) = due. form the remainder r. Each cube of d
is associated with a row.

In both types of division, each cube placed in a row
must be contained in the associated cube of d. Thus we
can restrict the search for cubes in that row to cubes
M;; C d;. In this way, the cubes of d serve to limit the
search and hence make it more efficient.

Example 7 (inexact division) Let d = a + b and
f = abx + aby + abx + aby
We get e, = ab+ab and e. = = + y.

Note that the divisor, d, just seeds the search; d does
not have to be necessarily a algebraic divisor of f.

Example 8 (ezact division) Let d = ab + @b and
f = abxz + abyz + abxz + abyz.
We get e, = z(ab + ab).

In general, we can use any expression to start the inex-
act process, even, for example, d = 1+ 1+ 1, in which
case d has no information and we are just looking for
a largest satisfiable matrix with 3 rows.

There are several applications where we want the
row expression e, = du. For example, in decompo-
sition, a common divisor d is extracted from a set
of functions and implemented as a separate function.
Then d is used to rewrite certain functions, f;, in terms
of a new variable y = d: f; = ye; +1; =de; +1;. It
would not be acceptable to have a result where each
row expression is not d ANDed with some cube u;, i.e.
fi = qie; + r;, where each ¢; C d, but ¢q; # du;. If
¢; # du; then d would not appear (algebraically!) in
each of the f;.

However, in an application like factoring, we use the
divisor in only one place.

Example 9 Consider the function,
al01:2} {3} 4 {03 A1} 4 p{1.23} {3} | ({0}p{1,2,3} {0,1,2}
Suppose we determine from looking at cubes 1 and 3
above that we want to divide by

{012} 4 p{1.2:3}
If we require that the row expression equal this, then

we get ¢13} as the dividend. However, if we only use
at02r 4 p{123} 45 ¢ seed and do inezact division,

1Since q; C d, there exists a function g; such that ¢; = g:d,
hence f; = dgie; + ri, so d is a Boolean divisor of f;. However, the
combination g;e; may be more complex than the original function

fi-

we can get a larger satisfiable matrix and achieve the
factorization

(a{07172}c{1a3} + b{17273})(c{3} _|_ a{O}C{O’1’2})

Again the row expression is contained in the original
divisor, but is not equal to du.

Because exact division is more constrained than in-
exact division, one can expect to find tighter bounds
on the entries in the matrix. We have derived such
bounds and have given a conjecture on the tightness of
these bounds. Although these bounds would make ex-
act division more efficient, the following direct method
seems even more promising.

4.1 A Direct Method for Exact Division

We briefly describe a direct (non-search) method (see
Appendix for more details). A set of candidate divi-
dend cubes S% is associated with each cube d; of the
divisor d. Unlike the binary case, a dividend cube is
not unique; given a cube d; of the divisor and a cube
¢j C d; of the function f, an associated set of dividend
cubes is given by?

¢; C k,’]‘ C U(Cj + CL)

Like the binary case, the sets are “intersected” to find
the subset of dividend cubes common to all {S%}. A
cube k is in this intersection if and only if there exists
aset J={j;,;i =1,...,|d|} such that

cj; Ck Col(ey +d;), Vi € J.

Since the above inequalities can be represented as a
cube Kj;; in a larger space, common intersection is
equivalent to pairwise intersection, i.e. a common cube
exists among {K; j,|¢ = 1,...,|d|} if and only if each
pair K;, j; Ki, j;, intersects. The algorithm allows a
cube ¢; to participate in several of the S% i.e. we allow
for duplication of cubes in f. The set of intersecting
cubes {k} is the resulting dividend.

There is an interesting connection with inexact di-
vision, namely let e; be the final cube in row i after

2In the binary case of algebraic division, the candidate dividend
cubes for d; are those cubes k;; where c; = d;k;; and c; € f, i.e.
kij = cja;. Thus for each c; C d;, ki,; is unique.

inexact division. Then
¢; Ckij Colc; +di) Colej+6)

Neither the direct method nor the improved search
for exact division using the tighter bounds have been
implemented yet. Since we believe that the direct
method will be the most efficient, this is being im-
plemented currently.

5 Factorization

The divisor d is used only to focus and limit the
search process for a satisfiable matrix. The row ex-
pression obtained from the satisfiable matrix need not
equal du. In this case we obtain f = de. + r which
can be an acceptable start for factoring f. Addition-
ally, just as in the binary case, it is not necessary to
get the best result at first; as a second step, e, with
its common cube extracted, can be used as the divi-
sor in a second division, leading possibly to a better
factorization. This is the basis of quick factor (QF),
used in SIS [4], where the first divisor is chosen to be
a level-zero kernel.

We implemented such a factoring process, MV-QF:

1. The first seed divisor is chosen to be the first pair
of cubes of f found that have a common cube, in
analogy to the method of [5].

2. The literals of this common cube are extracted
from the cube pair (by making it cube-free, ac-
cording to Method 2 in Section 2.1).

3. This cube-free expression is used as the first can-
didate divisor.

4. After this division is preformed, the common cube
of the dividend is extracted and used as the divisor
in a second division to get an partial factorization.

5. Each divison, quotient and remainder is factored
recursively to get the final factorization.

Example 10 (factorization produced by the MV-QF)

S3 = (a{o’l} _|_ 0{174} _|_ a{2}b{1’273}c{374})
(F2 4 f1022 gl1h) o {1d gl12} o

f{2} + d{072’475}g{11273} +
d{0,1,2,4,5}f{0,1}g{3} + d{2,3,4,5}e{0}g{2})

Note that even though the first divisor used in MV-
QF consisted of only two cubes, by using the column
expression (with its common cube extracted) as the
second divisor, we obtain a much stronger factoriza-
tion.

6 A Kerneling Process

We seek a type of kerneling process similar to that
used for binary functions [2, 5]. Kerneling, used in
decomposition, is an efficient way to identify common
divisors among a set of expressions. We follow a pro-
cess analogous to the two-cube divisor method of [5].
For the binary case, the two-cube divisors of an ex-
pression is the set

7(f) = {cube_free(c;, ¢;)|i # j,ci,c; € f}

Note that there are at most W two-cube divisors
of an expression f, where |f| is the number of cubes in
f. This is the method implemented as fast_extract in
SIS.

In the method we propose, a divisor is given a figure
of merit by keeping track of the number of times it or
its complement exact divides into all the expressions
being considered. In decomposition, the divisor with
the greatest merit is chosen, implemented as a sepa-
rate function, and substituted into all the expressions
in which it appears. The substitution is performed
using exact semi-algebraic division. Once a network
has been decomposed by this process, functions can be
selectively eliminated if their final figure of merit in
implementing the network is below a given theshhold.

Example 11 Consider the following decomposed net-
work, where the numbers in the parentheses of the in-
put variables give the number of values for the variable.
The y; subexpressions were not in the original descrip-
tion, and are the result of the kerneling process followed
by selective elimination of expressions.

in a(3),b(4),c(5),d(6),e(2), £(3),9(4)
.out 53,56

93 = yl{l}(g{12}yil}+y§1}+d{01245}g{3})

S6 = (yél} + d{01245}f{01}g{3})a{01} 1 g2}
(@0 4 fPhydt 4y Pyt

yo = bl12e3 4 14

1 = al0t + yél}

yp = alo2a} (128} | pi2)

ys = (FI3 4 gltheltd 4 gl2345} {0} {2}

Note that even though only two-cube divisors were
initially extracted, the elimination process resulted in
larger subexpressions. The process works as follows.
We extract common subexpressions by finding pairs of
cubes, making them cube-free, and choosing the ones
that appear most often. This selected subset is evalu-
ated more precisely by performing exact semi-algebraic
division as described above. Binary and MV variables
are treated uniformly.

7 Conclusions

We have given several semi-algebraic methods for
multi-valued logic functions. The methods treat binary
and multi-valued variables uniformly. They include
methods for

¢ finding common sub-expressions,

¢ exact and inexact semi-algebraic division,
e factoring an expression, and

e decomposing a multi-valued network.

The algorithms have been implemented in a system
being developed, MV-SIS, where they were tested and
tuned for quality on a small set of examples. MV-
SIS also includes methods for simplifying an expres-
sion (such as extraction of network don’t cares and use
of ESPRESSO-MV) as well as most other operations
found in SIS, but extended to the MV case. Our initial
implementations show that the new algebraic methods
are fast and effectively fill the need for methods faster
than Boolean methods.

Even though all common subexpressions extracted
by the methods of this paper are MV-functions (bi-
nary output), multi-valued output functions can be

created, after extraction, by pairing one or more MV-
functions and treating the combination as a single
multi-valued output function. Groups of pairwise or-
thogonal MV-functions are equivalent to a single multi-
valued output function. We can optionally put more
weight on extracting functions that are orthogonal to
already extracted functions or choosing to extract,
at one time, a set of mutually orthogonal functions.
Groups of functions which are not mutually orthog-
onal can be interpreted as a single multi-valued out-
put function whose output values have been binary
encoded. Grouping several binary functions together
creates essentially a multi-output PLA which can be
minimized by Espresso-MV. However, finding the best
way to group functions remains an area for more re-
search. This problem has elements in common with in-
put encoding, output encoding, phase assignment and
bit pairing problems.

Acknowledgements

This work was supported by the SRC under contract
683.004 and through the California Micro program by
Fujitsu, Synopsys, and Cadence.

References

[1] R. K. Brayton, M. Chiodo, R. Hojati, T. Kam, K. Kodandapani,
R. P. Kurshan, S. Malik, A. L. Sangiovanni-Vincentelli, E. M.
Sentovich, T. Shiple, K. J. Singh, and H.-Y. Wang. BLIF-MV:
An Interchange Format for Design Verification and Synthesis.
Technical Report UCB/ERL M91/97, Electronics Research Lab,
Univ. of California, Berkeley, CA 94720, November 1991.

[2] R. K. Brayton and C. McMullen. The Decomposition and Fac-
torization of Boolean Expressions. In Proc. of the Intl. Sympo-
sium on Circuits and Systems, pages 49-54, May 1982.

[3] L Lavagno, S Malik, R Brayton, and A Sangiovanni-Vincentelli.
MIS-MV: Optimization of multi-level logic with multiple-valued
inputs. In Proceedings of the International Conference on
Computer-Aided Design, 1990.

[4] E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Mur-
gai, A. Saldanha, H. Savoj, P. R. Stephan, R. K. Brayton, and
A. L. Sangiovanni-Vincentelli. SIS: A System for Sequential Cir-
cuit Synthesis. Technical Report UCB/ERL M92/41, Electronics
Research Laboratory, Univ. of California, Berkeley, CA 94720,
May 1992.

[5] J. Vasudevamurthy and J. Rajski. A Method for Concurrent
Decomposition and Factorization of Boolean Expressions. In
Proc. of the Intl. Conf. on Computer-Aided Design, pages 510—
513, November 1990.

Appendix: Direct Method for Exact Division

Problem 1 Given a set of cubes F' and an divisor
{K;,1 <i < n}, find the largest quotient {J;,1 < i <
m}.

We give a method for finding a solution for n = 2 and
generalize it later to n > 2.

1. Find all candidate cubes for K; and K,: any cube
Cr C K; is a candidate cube for K;:

K;: C11,C12,,C10y,C1i C K1, 1 <0 <y
Ky : C31,Co,...,Cap,,02 C Ka,1 <i<ny

There may be common cubes for K; and K5. In this
case, we can duplicate the cubes in F' : C + C = C.
This is analogous to the binary case: x + x = .

2. For each candidate cube Cj;,
cokernel cube (;; that has a lower and an upper bound

compute a candidate

on the values it can take. For each literal k,
CH CQ C (Cij + Kyt (1)

Qij; is a cokernel for K; and Cj; iff (1) is satisfied for
each literal k.
Express 0;; in positional notation where we denote
¥ as the value | of variable k in cube Q;;:

1 if ijl =1
f:]l = 0 if (Cz] + Ki)kl =0

2 otherwise
3. The cokernel cubes for K; and for K5 form a bi-
partition By and B;. We want to find the maximum
compatability of it. We define J = § if either Q¥ =1
and Q5 =0 or Q¥ = 0 and Q4 =1 for any k,I. A
cokernel cube (0, from B; is compatible with a cube ()2
from By iff J # (. If J # 0, we compute J = Q1 x Q2
such that:

QF =1,08 =1
=2, Qi =1
Qi =108 =2

T = Q QY =1 =

=0, =2
Q' =2,05 =0
Qi =2,Q5 =2

JH = QM 4 Qb = 0 <=

X1 Xo X3

@ 1111 1020 1102

Q=2 1111 1000 1102

J 1111 1000 1100
So J = X;O}Xéo’l} and this is the desired cokernel
cube. We want J* = 0 if Q¥ = Q4 = 2 in order to
minimize the number of literal values in the selected

Example:

cokernel cube.

4. For n > 2, the solution is the same except for the x
operation, which generalizes to finding the maximum
compatible n cokernel cubes from n partitions. It is
equivalent to finding a maximum clique within the val-
ues of each literal. Here we use the fact that if n cubes
interesect pairwise, then there is a single cube com-
mon to all n cubes. By finding all bipartite cliques of
size n, and marking all cliques that have no points in
common (the cliques are independent), we can solve
a maximum independent set problem to find the best
matching.

Example 12 Consider:
F = o012} 48} 11283 48} 4 0} o1} 4 o f0)p{1-23) 10}
— (0{3} _+_ a{o}c{0a172})(a{07172}c{1’3} ._I,_ b{17273}c{053})

where ¢t3} 4+ a{93 {012} is the given divisor. Then
Candidate cubes:

e} {0123 {3} p{1.2:3} (3}

al0r (012} . {0} {1} o {03p{1,2:3} ({0}

Corresponding cokernel cubes:

3} . 1012} 651 p{1,2,3} 5

a0} {012} ¢ S5 6Sa S5p{1,2,3} ¢S

where {3} C S; C {0,1,2,3},{3} C S» C
{0,1,2,3},{0} € S; C {0,1,2,3},{1} C S84 C
{173}’ {0} g 55 g {07 17273}7{0} g Sﬁ g {053}'

Take the cokernel cubes in common (e.g., make S1 and
S4 compatible), we get:

3} 1012} 11,3} p{1,2,3} 10,3}

al0rel01,2} . g {0,1,2} (1,8} p{1,2,3}£{0,3}

So the cokernel cubes obtained are: al®1:2tci1:3} gnd
bi1:2:3} 103} This is what we would get by using the
satisfiability matrix method.

