
A Boolean Paradigm in Multi-Valued Logic Synthesis

 Alan Mishchenko Robert K. Brayton
 Department of ECE Department of EECS
 Portland State University University of California, Berkeley, CA
 alanmi@ece.pdx.edu brayton@eecs.berkeley.edu

Abstract
Optimization algorithms used in binary multi-level logic

synthesis, such as network simplification, logic extraction,
and resubstitution, have been treated independently and did
not share computational procedures. Using multi-valued
logic synthesis, some common conceptual and
computational cores underlying these algorithms can be
identified.

We present an overview of a Boolean paradigm1 in multi-
valued logic synthesis. The Boolean algorithms are
generalizations of the usual ones and can replace these and
the traditional algebraic algorithms, offering improved
trade-offs between computation speed and optimization
quality.

1 Introduction

Traditional technology-independent logic synthesis flow
exemplified by SIS [18] consists of transformations applied
to a multi-level binary logic network. The transformations
attempt to improve the sum of literal counts in factored
forms of binary nodes as well as other cost functions.

Multi-level logic synthesis research of the 1980’s [3][5]
led to so-called algebraic optimization algorithms. These
modify the SOP representation of the nodes in a restricted
way, without using the identities of Boolean algebra, such
as a ∧ a = a and a ∧ a = 0, nor do they give due to network
structure. Algebraic transformations work well for many
practical circuits but they are inferior in optimization
quality to Boolean transformations, which use the complete
scope of functional properties.

Improvements in algebraic techniques [8][10] and their
Boolean counterparts [9][20] were developed later but their
use has been restricted to experimental tools. This
restriction occurs because of their inherent complexity
and/or lack of good functional representations. This paper
presents a common view of a set of network optimization

1 In this paper, Boolean is contrasted with algebraic, and binary is
contrasted with multi-valued. As a result, it is possible to speak of a
Boolean paradigm in multi-valued logic synthesis. These concepts are
explained in the introduction.

algorithms used in multi-level logic synthesis. The
distinctive aspects of this approach are:
• It exposes some relations among the algorithms (node

simplification using internal don’t-cares, logic
extraction, decomposition-mapping, resubstitution, and
encoding).

• The algorithms considered are essentially Boolean;
they can make use of complete don’t-cares2 generated
during synthesis and could improve optimization
quality.

• A common computational core of the algorithms is
outlined and expressed in terms of Boolean
satisfiability.

In our experience, formulating optimization problems in
terms of multi-valued logic [4] has helped in exposing
relations among algorithms. Although the main algorithms
shown in Figure 1 are usually considered essentially
independent in the binary domain, it may be useful to view
these in the multi-valued logic domain with a common
theory and computational core (Boolean satisfiability).

Figure 1. Relationship among algorithms.

Exploring common features of these algorithms may open
new avenues for efficient implementation. The practical
complexity of these procedures depends on the use of don’t-
cares and the type of optimization performed. Ignoring
don’t-cares, limits optimization to the current functions at
the nodes but enables efficient heuristic solutions by
reducing most of the algorithms from general Boolean
satisfiability to graph coloring or other more efficient

2 Don’t cares in the MV domain are generalized to “partial cares” which
are a form of non-determinism.

SAT

full_simplify decomposition-
mapping

common logic
extraction

resubstitution

encoding

methods. The new paradigm involves exploration of
efficient runtime trade-offs between constraint-based SAT
or branch-and-bound procedures versus present methods.

A serious limitation of Boolean methods is their greater
computational complexity resulting in excessive runtime.
This limitation can be addressed potentially by developing
efficient partitioning algorithms and applying Boolean
methods to individual parts in an iterative fashion.
Experiments show that the loss of quality due to partitioning
for some optimization problems does not exceed a few
percent [7]. In other problems, controlling the size of
partitions may be used to trade optimization quality for
runtime.

The paper is organized as follows. Section 2 elaborates on
the use of internal don’t-cares. Section 3 discusses some
optimization algorithms in more detail. Section 4 relates
one of these, minimum disjoint decomposition of an MV
relation, to Boolean satisfiability. Section 5 concludes and
outlines future work.

For definitions of multi-valued functions, multi-valued
networks, and the flexibility derived for a node in the
network, please refer to [12].

2 Internal Don’t-Cares in Logic Synthesis

The optimization algorithm, full_simplify, in SIS [18] uses
a subset of Observability Don’t-Cares (ODCs) called
Compatible Observability Don’t-Cares (CODCs) [17].
These together with Satisfiability Don’t-Cares (SDCs) are
computed for each node in a multi-level network and used
to simplify the node representations.

Recently it was shown that Complete ODCs [12] could be
used to improve optimization results. Complete ODCs are
not compatible, meaning that the set of don’t-cares
computed for a node is valid only as long as other nodes
remain unchanged. Experimental results [12] show that the
reasonable amount of computational overhead for Complete
ODCs is justified by the improved quality of node
simplification.

Generally, there are two cases, (1) when no flexibility is
used, and (2) when either CODCs or Complete ODCs are
used. In the first case, which is typically used,
computational complexity is lower and it is often possible to
achieve good results by applying a greedy algorithm. The
second case constitutes the main topic of this paper.

3 Optimization Algorithms

This section presents Boolean formulations of several
network optimization algorithms. The order, in which they
are considered, is chosen to facilitate presentation of a
common theme.

3.1 Network Optimization using Complete
Flexibility at a Node

An initial network is shown in Figure 2 (left). Global
functions F1(x),…, Fk(x) are expressed in terms of the
primary input (PI) variables x. Node η is the node under
consideration.

The flexibility at η is computed by cutting the network at
the output of η and introducing a new primary input
variable z to replace the output of η. Then the global
functions Fz

1(x,z),…, Fz
k(x,z) in terms the PIs and z are

computed for the new network, as shown in Figure 2 (right).
The condition that the original specification should

contain the behavior of the network modified by introducing
additional variable z is transformed into relation Rη(x,z)
representing the complete flexibility at node η in terms of
the PIs. This relation is then imaged into the local input
space of η to derive the complete flexibility used for node
optimization. In general, in the MV domain, this relation is
non-deterministic and contains partial cares, meaning that
under a given minterm, the output value of the node can
take any of the allowed subset of values. Details of this
algorithm are presented in [12].

Figure 2. Computation of complete flexibility at a node.

The remaining algorithms of encoding decomposition
extraction and substitution will be treated using this
flexibility.

3.2 Partial Encoding
The problem of partial encoding is to reduce the number

of values of a given multi-valued output node in a network
by using already existing nodes in the network, or by using
new but simple nodes.

This problem can be solved using a branch-and-bound
algorithm coupled with a specialized decision diagram
operators [13]. A partial encoding is optimal if as many
coding functions as possible can be used which belong to
functions already present in the network and hence can be
replaced by a single “wire”.

Instead of encoding the current function at a node, better
results can be obtained by partially encoding the complete
flexibility relation at a node shown in Figure 3 (left).
Generally, a partial encoding splits relation R into two

z
η

x

F z
1(x,z)

F z
k(x,z)

η

x

F1(x)

Fk(x)

relations R1 and R2 shown in Figure 3 (right) such that the
total number of binary code-bits does not increase3:

log2 |v2| + log2 |v1| ≤ log2 |v|.
When the number of binary code-bits remains the same, a
tie-breaking condition is that the total number of values
does not increase: |v2|+ |v1|≤ |v|. We call such encodings
value reducing partial encodings.

Figure 3. Encoding for value reduction.

In MV network optimization, we are interested in finding
a partial encoding that leads to a simplified representation
of blocks R1 and R2 compared to the original block R.

One approach to this problem restricts the MV relation R2
to a wire or to an MV cube depending on a subset of the x
variables. Thus we are looking for a new simple function to
be used in the partial encoding. The characteristic function
of the relation, R1(x,p), with respect to all possible cubes
selected for R2 can be computed using one binary variable
pki for each value appearing in the cube variables; pki is set
to 1 if value i is present in the literal of variable k of the
cube. A selection of values for the pki provides a particular
cube for R2. Note that R1 is derived from R, the complete
flexibility at the node.

The resulting partial encoding problem is thus
parameterized using variables p and the complete
flexibility. A solution is found as a set of assignments to p,
which reduces the number of values in relations R1.

3.3 Non-Disjoint Decomposition and Encoding
The MV node to be decomposed is represented by its MV

complete flexibility relation F(x), shown in Figure 4 (left).
A bound set xB is selected and a disjoint decomposition is
performed, yielding a new block, B1, depending on xB , and
function F1 as shown in Figure 4 (center). The number of
values v1 of block B1 is simply assumed to be the product of
the number of values of all variables in xB

4. Next, we
compute the complete flexibility relation RB1(x,z) of block
B1 in the new network, where B1 and F1 have replaced F.
This flexibility depends on input variables xB and an output
variable z having the |v1| values of B1.

Now, we apply partial encoding to the flexibility relation
RB1(x,z). If a value-reducing encoding exists using a code
function that is a fanin variable xC, a partial encoding is
found. Variable xC remains in the support of B2 but also

3 We use |v| to denote the number of values that signal v has.
4 The column compatibility problem in B1 is not considered.

becomes part of the free set xF, as shown in Figure 4 (right),
leading to a non-disjoint decomposition.

Figure 4. Decomposition and encoding.

Because this transformation is value-reducing, the number
of values of |v2| of block B2 satisfies log2 |v2| + log2 |vC| ≤
log2 |v1| or |v2|+ |vC|≤ |v1|.

3.4 Resubstitution
The partial encoding technique can be used to search for a

decomposition with an arbitrary function G(xB) instead of
the particular case G(xB) = xC, shown in Figure 4. In this
case, the decomposition-through-encoding problem
becomes that of resubstitution.

Let G(xB) and F(x) be two functions in the MV network
such that xB ⊆ x. We extract block B1 depending on xB from
F as shown in Section 3.3 but now try G(xB) as one of the
decomposition functions for block B1. If a value-reducing
decomposition exists, the relation resulting from collapsing
B2 into F2 is compared with the original representation of F.
If the result is smaller, the resubstitution is accepted. If it is
not smaller, the decomposition using B1 is kept.

It may be possible to perform resubstitution directly by
trying G(xB) as a Boolean divisor of F. However, the above
approach shows some relations between resubstitution,
decomposition, and encoding.

3.5 Common Logic Extraction
Common logic has been traditionally extracted by

intersecting sets of kernels generated for logically related
Boolean nodes [5]. An improvement is a specialized
algorithm to manipulate double-cube and two-literal single-
cube divisors [16]. However, these approaches are
algebraic, limited to binary networks, and do not use
flexibilities inherent in the network structure.

We propose a Boolean formulation of logic extraction
based on matching common sub-functions (cofactors) in the
MDD representing several logically related Boolean nodes.
The matching procedure is similar to the one developed for
BDD minimization [19], and is also related to the
discussion of Section 4.

The idea is to find a set of functions (the merging set) that
may have good common Boolean divisors. These functions
are merged into a single MV node η, which replaces the
merging set of nodes.

The flexibility relation for η in the new network is derived
and represented as an MDD (Multi-Valued Decision

F1
v1 B1

xF

x
F2

xB
B2

xF

F
v2 xB

xC
vC

v1 R1 x
R

R2

v

v2

x

Diagram)5, with the last few variables in the order encoding
the values of the function (Figure 5). After variable
reordering on this MDD, we look at the cofactors
depending on a fixed number (say, four) of the last fanin
variables, which become the divisor variables.

Each cofactor is an MV relation. We can find a maximal
set of compatible cofactors using a technique similar to the
one presented in Section 4 for disjoint decomposition. The
compatible cofactors are merged to form a common divisor.

Figure 5. Extracting Boolean divisors of an MV relation.

If the divisor reduces the cost function, it is introduced
into the network as a new node6 and divided into η using
Boolean division. Several compatible cofactors can be
computed and tested in a sequence. Finally, η can be
partially encoded.

Note that the original nodes in the merging set can be
represented simply as literals of the variable representing η.
This set represents one way to encode η, but we have the
option of not using these and replacing them with new
functions that encode η, first using partial encoding, and
then possibly completing it to obtain a full binary encoding.

4 Disjoint Decomposition of an MV Relation
and SAT

We reformulate the problem of finding a support-reducing
disjoint decomposition of an MV relation as a SAT
instance. Such decomposition with the bound set xB exists
iff the n columns in the decomposition table with variables
xB on top can be colored with no more than n/2 colors.

The SAT formulation uses two types of MV variables:
• n variables ic , 1 ≤ i ≤ n, to encode the coloring of

columns. A columns may be colored with more than
one color. Value j belongs to the value set of variable
ci, if the corresponding column, i, can be colored with
the color j. The range of ci is n /2.

5 Actually, if we merge binary nodes and use their bits to encode the
values, then the MDD is exactly the Boolean relation of these binary
nodes.
6 Note that this node is multi-valued, in general, with at most, the number
of values in the merged MV node.

• m variables dij, one for each entry in the table that can
take more than one value. These variables represent
subsets of original values, which are in agreement
with the selected decomposition. The range of these
variables is the range ρ of the relation.

The SAT clauses are now derived in a relatively
straightforward way, as illustrated by the decomposition
table in Figure 6. The table has entries Sij, which are subsets
of the range ρ. To find a support-reducing decomposition
with two colors, we need four binary variables cj to encode
the coloring of the columns and, in general, 16 MV
variables dij with range ρ to encode the remaining subsets of
values in each entry of the table. However, some of the
original subsets may be single values, so no variable is
introduced for them, because the remaining subsets can only
be composed of the same value.

 C0 C1 C3 C2
cd\ab 00 01 10 11

00 S00 S01 S02 S03
01 S10 S11 S12 S13
10 S20 S21 S22 S23
11 S30 S31 S32 S33

Figure 6. Support-reducing decomposition as SAT problem.

In the resulting coloring, each column has a color because
in the satisfying assignment each MV variable takes at least
one value. Incompatibility between two columns is enforced
by the constraints depending on variables dij. For example,
columns C0 and C1 are incompatible if at least one pair of
MV variables di0 and di1 does not have a common value.
This leads to the condition:

)()(1010 ccdd iii
≠= ⇒∅∩∨

Finally, for all pairs of columns j and k, for which there
exists a row i, such that Sik ∩ Sij = ∅ , we immediately have
cj ≠ ck. The MV expression for a pair of columns can be
converted into the CNF form. The SAT instance is derived
by taking the product of the constraints corresponding to all
pairs of columns.

It is not surprising that we can formulate this as a SAT
problem; the question is for how large a problem it is
possible to perform decomposition this way.

Since SAT instances with 200 variables and 10,000
clauses are readily solved by present-day SAT solvers [14],
it is reasonable to apply this approach if the nodes being
decomposed are limited to about ten fanins.

There may be several cases, which can, in practice,
dramatically reduce the size of the SAT instance. First, for
any column, which is not compatible with any other column,
we just give its own color and do not introduce additional
variables. Second, if two columns can only be compatible
with each other, we give these columns their own color and

{
{

Cofactors

Value
encoding
variables

Divisor
variables

1

Rη

0

do not introduce variables associated with these columns.
Third, the decomposition problems we encounter may only
have a small percentage of entries, which have multiple
values so the number of variables dij may be limited.

An extension is to find a decomposition in terms of a set
of functions, like those representing gates from a gate
library during technology mapping. This problem is similar
to that discussed in [9] for binary functions.

5 Conclusions
This paper outlines a way of looking at several multi-level

logic operations and discusses commonalities among
network optimization, encoding, decomposition,
resubstitution, and common logic extraction. A SAT-based
formulation of one of these, decomposition, is given as an
example.

The paradigm is Boolean because it uses the functional
properties of nodes and is not limited to algebraic divisors
generated from an SOP representation.

The distinctive features are:
• A more general theory (MV logic vs. binary logic)

helps reveal some underlying relationships among the
procedures.

• An efficient implementation may be possible due to a
common computational cores based on a BDD
package and a SAT solver.

• The Boolean operations operate on general MV
relations that are derived from the network structure.

A optimization flow based on these methods could lead to
improved optimization quality since:

• The use of multi-valued logic leads to searching a
larger space of solutions.

• Boolean (not only algebraic) properties of nodes are
exploited.

• The complete sets of don’t-cares (partial cares) give
greater flexibility for optimizing the nodes of the
network.

• The SAT-based formulation is not limited to one
particular encoding or coloring.

• Functional decomposition can be performed
concurrently with technology mapping.

There is a lot of future work in this area since only the
ideas of the paradigm have been outlined. We need to
implement the proposed algorithms and simultaneously
refine the ideas to see which heuristics work best on an
extensive set of benchmarks.

Acknowledgements
The first author was partially supported by a research

grant from Intel Corporation. The second author
acknowledges the generous support of the SRC, GSRC and
the California Micro program with our industrial sponsors,
Cadence and Synplicity.

References
[1] R. K. Brayton. Compatible Observability Don’t-Cares Revisited.

Proc. ICCAD’01, pp. 618-623.
[2] R. K. Brayton, G. D. Hachtel, C. T. McMullen, A. L. Sangiovanni-

Vincentelli. Logic Minimization Algorithms for VLSI Synthesis.
Kluwer Academic Publishers, Dordrecht, 1984.

[3] R. Brayton, G. Hachtel, and A. Sangiovanni-Vincentelli. Multilevel
Logic Synthesis. Proc. IEEE, 78(2), February 1990, pp. 264-300.

[4] R. K. Brayton and S. P. Khatri. Multi-valued logic synthesis. Proc.
VLSI Design 1999, pp. 196-206.

[5] R. Brayton and C. McMullen. The Decomposition and Factorization
of Boolean Expressions. Proc. ISCAS ’82, pp. 49-54.

[6] R. E. Bryant. Graph-Based Algorithms for Boolean Function
Manipulation. IEEE Trans. Comp, C-35(8), August 1986, pp. 677-
691.

[7] J. Cong and W. Long. Theory and Algorithm for SPFD-Based Global
Rewiring. Proc. of IWLS ‘01, pp. 150-156.

[8] D.-J. Jongeneel, R. Otten, Y. Watanabe, R. K. Brayton. Area and
Search Space Control for Technology Mapping. Proc. DAC ’00, pp.
86-91.

[9] V. N. Kravets and K. A. Sakallah. M32: A Constructive Multilevel
Logic Synthesis System. Proc. DAC ’98, pp. 336-341.

[10] E. Lehman et al. Logic decomposition during technology mapping.
IEEE Trans. CAD, 16(8), 1997, pp. 813-833.

[11] J. P. Marques-Silva and K. A. Sakallah. GRASP: A Search
Algorithm for Propositional Satisfiability. IEEE Trans. Comp, 48(5),
pp. 506-521, May 1999.

[12] A. Mishchenko and R. Brayton. Simplification of Non-Deterministic
Multi-Valued Networks. Proc. of IWLS. June 2002, New Orleans.

[13] A. Mishchenko and T. Sasao. Encoding of Boolean Functions and
Its Application to LUT Cascade Synthesis. Proc. of IWLS. June
2002, New Orleans.

[14] M. W. Moskewicz et al. Chaff: Engineering an Efficient SAT Solver.
Proc. DAC’01, pp. 530-535.

[15] R. L. Rudell and A. Sangiovanni-Vincentelli. Multiple-Valued
Minimization for PLA Optimization. IEEE Trans. CAD, 6(5),
September 1987, pp. 727-750.

[16] J. Rajski, J. Vasudevamurthy, “The Test-Preserving Concurrent
Decomposition and Factorization of Boolean Expressions”, IEEE
Trans. CAD, Vol.11 (6), June 1992, pp.778-793.

[17] H. Savoj, R. K. Brayton, H. Touati. Extracting Local Don’t Cares for
Network Optimization. Proc. ICCAD, 1991, pp. 514-517.

[18] E. Sentovich et al. SIS: A System for Sequential Circuit Synthesis.
Tech. Rep. UCB/ERI, M92/41, ERL, Dept. of EECS, Univ. of
California, Berkeley, 1992.

[19] T. Shiple, R. Hojati, A. L. Sangiovanni-Vincentelli, R. K. Brayton.
Heuristic Minimization of BDDs Using Don’t Cares. Proc. DAC’
94, pp. 225-231.

[20] T. Stanion and C. Sechen. Boolean Division and Factorization Using
Binary Decision Diagrams. IEEE Trans. CAD, 13(9), pp. 1179-
1184, September 1994.

