On Breakable Cyclic Definitions-

Jie-Hong R. Jiang, Alan Mishchenko, and Robert K. Brayton

Department of Electrical Engineering and Computer Sciences
University of California, Berkeley

ABSTRACT

In the course of hardware system design or real-time process
control, high-level specifications may contain simultaneous
definitions of concurrent modules whose information flow
forms cyclic dependencies without the separation of state-
holding elements. The temporal behavior of these cyclic
definitions may be meant to be combinational rather than
sequential. Most prior approaches to analyzing cyclic combi-
national circuits were built upon the formulation of ternary-
valued simulation at the circuit level. This paper shows the
limitation of this formulation and investigates, at the func-
tional level, the most general condition where cyclic defini-
tions are semantically combinational. It turns out that the
prior formulation is a special case of our treatment. Our
result admits strictly more flexible high-level specifications.
Furthermore, it allows a higher-level analysis of combina-
tionality, and, thus, no costly synthesis of a high-level de-
scription into a circuit netlist before combinationality analy-
sis can be performed. With our formulation, when the target
is software implementations, combinational cycles need not
be broken as long as the execution of the underlying system
obeys a sequencing execution rule. For hardware implemen-
tations, combinational cycles are broken and replaced with
acyclic equivalents at the functional level to avoid malfunc-
tioning in the final physical realization.

1. INTRODUCTION

Cyclic definitions occur commonly in high-level system
descriptions (e.g., due to resource sharing, module compo-
sition, etc.) as was observed in [22]. Checking if cyclic
definitions are semantically combinational is crucial in both
hardware and software synthesis for two reasons. First, the
analysis certifies the legitimacy of cyclic definitions. Sec-
ond, if the cyclic definitions of a system are inappropriate
but breakable, the analysis provides a means of rewriting
the system which breaks the cycles.

The analysis of cyclic combinational circuits was first for-
mulated by Malik [15], based on ternary-valued simulation [3,
4], at the circuit (or gate) level. Subsequent efforts [9, 21,
20, 16] were built upon this formulation and bore much the
same foundation. However, the quest for solutions to ana-
lyzing combinationality remains because the analysis at the
functional level was left open.

Combinationality analysis for cyclic circuits is an essen-
tial step in the compilation of synchronous languages [8],

*This work was supported in part by NSF grant CCR-
0312676, California Micro program, and our industrial spon-
sors, Fujitsu, Intel and Synplicity.

such as Esterel [1, 2], which allow simultaneous cyclic defi-
nitions. Before applying Malik’s approach for static analy-
sis’, a synchronous program typically needs to be translated
into a circuit netlist. Depending on how a program is writ-
ten, the same specification can be translated into different
netlists. Because the analysis based on ternary-valued simu-
lation heavily depends on circuit structures (more precisely,
on the arrangement of delay elements over circuit netlists)
as observed in [21, 20], a netlist may be declared not combi-
national even though there exists a functionally equivalent
one that behaves combinationally. This phenomenon corre-
sponds to the so-called schizophrenia problem in the compi-
lation of Esterel programs [2].

This paper proposes a functional-level analysis that avoids
the complication of translating programs into circuit netlists
and eliminates the discrepancy problem of analyzing equiv-
alent different netlists. Essentially, our formulation of com-
binationality is extended to an extreme at the functional
level. That is, there exists a combinational implementation
(where cyclic definitions might need to be broken) if and
only if the system in consideration passes our combination-
ality test. As will be clear, ternary-valued simulation, when
extended to the functional level, is a limited special case of
our formulation.

Although combinational circuits with feedback have their
potential savings in area [13], they are hard to manipulate
including timing analysis, logic minimization, etc. Breaking
cyclic dependencies is sometimes necessary to avoid later
complication since manipulating such circuits needs special
care to prevent destroying well-behaved combinationality.
Earlier efforts [9, 5] on breaking combinational cycles were
done for circuit netlists. In fact, to break combinational
cycles, there is no need to wait until circuit structures are
derived. In addition, analyzing combinationality at the func-
tional level broadens the generality.

Our results are established upon the following principle.
When cyclic definitions are to be broken or the synthesis
target is software, the combinationality analysis should be
generalized to an extreme and be performed at the highest
level possible (i.e., the functional level). On the other hand,
when the target is hardware synthesis and combinational
cycles are allowed to exist, then the analysis should be con-
servative enough to tolerate undesirable physical effects but
general enough to abstract away unnecessary details at the
appropriate level (i.e., the circuit, or gate level). We empha-
size this asymmetry in analyzing combinationality, which

'For dynamic or runtime analysis, translating a program to
a netlist may be avoided, e.g., see [6].

was overlooked in prior work.

For combinationality at the circuit level, we comment on
a recent development in the synthesis of cyclic combina-
tional circuits. Targeting area minimization, an attempt
was made in [17, 18] to synthesize cyclic combinational cir-
cuits by extending the formulation of ternary-valued simu-
lation at the functional level. Unfortunately, it was ignored
that functional-level analysis is not sufficient in guarantee-
ing well-behaved circuitry. This paper shows the pitfall and
suggests two cures. Essentially, additional conditions other
than purely functional ones need to be applied in order to
guarantee well-behaved circuitry.

The paper is organized as follows. After preliminaries and
notations are given in Section 2, our formulation of combi-
nationality at the functional level will be introduced in Sec-
tion 3. Section 4 discusses some issues about combination-
ality at the circuit level. Section 5 compares our formalism
with other related work. Finally, Section 6 concludes this
paper and lists some future research directions.

2. PRELIMINARIES

Unless otherwise noted, this paper assumes that variables
and functions in consideration are of type Boolean, B. More-
over, we concentrate on output-deterministic systems, whose
output valuation is uniquely determined under any input
assignment and under any current state designated by the
systems’ state-holding elements. As a notational conven-
tion, [S] denotes the set of all possible valuations of the set
S of variables. Also, |S| denotes the cardinality (or size) of
S.

A functional-level description of a system M consists of a
set Dy of atomic definitions. Each atomic definition is
of the form a; := ¢;, where a; and ¢; are a Boolean variable
and formula, respectively. In particular, for a circuit-level
description of a system, ¢; could be a formula of an identity
function representing a wire (with delay), or a formula of an
elementary Boolean function representing a primitive logic
gate (with delay) in the gate library for technology map-
ping. At first glance, the distinctions between functional-
and circuit-level descriptions are obscure; it seems to be a
matter of granularity. However, we distinguish these two
levels by saying that the valuations of atomic definitions take
no time at the functional level, but take time at the circuit
level. (We assume that every definition a;j := ¢; in Dxy is
deterministic, that is, variable a; valuates to a definite value
under any assignment on variables in formula ¢;. Thus, ¢;
is a total Boolean function.) Associated to D¢ is a defini-
tion graph 'Y, = (V¢, E%) characterizing the information
flow among atomic definitions. A vertex v; € V¢ represents
a left-hand variable a; of an atomic definition a; := ¢; in
Dy An directed edge (vj,vx) € E4 indicates that variable
a;j appears in the right-hand formula ¢, of atomic definition
ar = ¢r. The set Daq of atomic definitions is of cyclic
definition if T'%, is a cyclic graph.

Given a system M (without state-holding elements, i.e.,
registers or latches), three sets of variables are distinguished:
the set I of primary-input variables, O of primary-output
variables, and X of all the other (internal) variables. No-
tice that the primary-input variables are the definition-free
variables, and vice versa. A subset C C X U O is selected
as a cutset such that the information flow among D be-
comes acyclic if C were exposed as primary-input variables
in addition to the original ones. That is, the corresponding

vertices of the cutset variables form a feedback vertex set in
I'4,. It turns out that any such C out of X U O provides
enough information in analyzing the combinationality (its
precise definition will be given later) of M at the functional
level. Selecting a minimal® cutset helps simplify the anal-
ysis. (Previous studies, e.g. [7], on computing minimum
feedback vertex sets [12] can be applied.) Furthermore, as
will be proved, the analysis is independent of the choice of
C as long as C is minimal. With a chosen cutset C, the
behavior of M can be captured by two sets of definitions:
the definitions of ¢; € C, i.e., ¢j := §;, and the definitions of
or € O, i.e., o := wg. Here, I and C are the only variable
occurrences in formulae £;’s and wy’s. These formulae are
obtained by a sequence of recursive substitutions of the defi-
nitions in D4 until the formulae for variables in CUQO have
I UC as the only variable occurrences. Thus, the original
intermediate definitions of M are collapsed away. We call §;
the excitation function of ¢; € C, and wy the observa-
tion function of o5 € O. (Cutset variables here are anal-
ogous to state variables of a state transition system, while
excitation functions are analogous to transition functions.)

EXAMPLE 1. Let Dy = {a := ~zaVe, b:=-z(aV-b)V
¢, ¢ := b, y:= ~x(-naVab)V z(a—cV nac)}, I = {z},
and O = {y}. Suppose we choose C to be {a, b}. Then,
rewriting Daqg with respect to C, we have

a = -zaVuzb
b = -z(aV-b)Vzxb
y = -z(-aVab)V z(a-bV -ab)

The above right-hand formulae for a and b are the excitation
functions; the formula for y is the observation function.

Combinationality analysis for cyclic definitions of systems
with state-holding elements can be approximated as follows.
Expose the outputs of state-holding elements as the primary
inputs; expose the inputs of state-holding elements as the
primary outputs. If the unreachable state set of the system
is available, it can be used as the don’t care condition in
the combinationality analysis. Also, if the state equivalence
relation is known, it can be used as a nondeterministic flex-
ibility in the valuation of state-holding elements. Therefore,
we mainly focus on systems without state-holding elements.
The exact analysis for systems with state-holding elements
is postponed to Section 3.6. Unless otherwise noted, we shall
assume systems in consideration are without state-holding
elements.

If a system consists of acyclic definitions, then it is com-
binational. However, the converse is not true: A combina-
tional system may have breakable cyclic definitions. Hence,
only systems with cyclic definitions are of our interest. Let
M be such a system with cutset C. Given an input as-
signment for M, then the valuation of the cutset variables
evolves with time. The evolution can be captured by state
evolution graphs (SEGs), analogous to state transition
graphs for state transition systems. However, unlike a state
transition graph, an SEG I'i, c; = (Vi, Ef) exists with
respect to a particular fixed input assignment 7 € [I]. A
vertex v € Vi corresponds to an intermediate valuation
(or, a state) § € [C] of the cutset variables (in the sequel,

2A cutset C is minimal if removing any element from C
makes the resultant information flow cyclic.

we shall not distinguish between a vertex and the state it
represents); each directed edge (vs,,vs,) € Ef corresponds
to an evolution_of intermediate valuations from 3; to 3.
That is, §2 = &(,81), where £ : [I] x [C] — [C] is the
vector of excitation functions of C'. Therefore, the evolution
is deterministic at the functional level. (By contrast, the
evolution may be nondeterministic due to races, hazards,
glitches, etc., at the circuit level.) On the other hand, the
vector & : [I] x [C] — [O] of observation functions imposes
a labelling over [C] with respect to some 7 € [I].
Below we define and explore some basics about SEGs.

DEFINITION 1. A walk W of length k, denoted as len(W) =

k, on an SEG T c; = (Vi°, Ef) is a sequence vz,, Vay, . . -, Vg,
of vertices with (vs;,_,,vs;) € E;. A path is a walk without
repeated vertices. A loop of length k is a walk of length k
without repeated edges and with vz, = vs, .

In this paper, we use the term “loops” for SEGs and preserve
“cycles” for definition graphs.

PROPOSITION 1. Any vertez of an SEG is in a loop and/or
on a path leading to a loop.

PROOF. Since every state of an SEG has at least one out-
going edge, any vertex is in a loop and/or on a path leading
to a loop. [J

PROPOSITION 2. Any two loops of an SEG with deter-
ministic evolution are disjoint.

PROOF. Since every vertex of an SEG with deterministic
evolution has exactly one outgoing edge, any two loops of
the SEG must be disjoint. [

In the sequel, we shall assume SEGs are deterministic unless
otherwise stated.

DEFINITION 2. A loop L is stable if len(L) = 1; L is
unstable if len(L) > 1.

It will be clear later why a loop’s stability is determined by
its length.

DEFINITION 3. An equilibrium loop L of an SEG 'y ¢ ;
s a loop whose vertices all have the same observation label,
i.e., vaj,vgk € L. (ZJ‘(%, §j) = (ZJ‘(%, §k)

Let Siy.c; denote the set {5 € [C] | vs is a vertex in the
loops of I'S ¢7}. For § C [C], let £°(S) denote the set
{&(%,8) € [O] | § € S} of observation labels.

ExXAMPLE 2. Continue the set Daq of definitions and cut-
set C of Ezample 1. Figure 1 shows the state evolution
graphs. Vertices are indezed with states, i.e., valuations of
(a,b). States are distinguished by solid and dotted circles to
reflect different observation labels induced by the observation
function. The SEG of x = 0 has two loops, one stable and
the other unstable; the SEG of x = 1 has two stable loops.
All of the loops are equilibrium loops.

3. COMBINATIONALITY
AT FUNCTIONAL LEVEL

Given the functional-level description of a system M with
cyclic definitions, we study the condition when M is com-
binational.

/\
(@) () (o)
)
//\ /\
(o) (o) (o) ()

O O

Figure 1: (i) SEG for z = 0. (ii) SEG for z = 1.

(i)

3.1 Formulation of Combinationality

In the functional-level formulation of combinationality,
physical timing effects are abstracted away by assuming that
all valuations of functions are instantaneous. However, the
order of valuations matters.

A system M is said to be combinational at the func-
tional level if, under any input assignment, M would even-
tually (i.e., within bounded steps) evolve into a status in
which the observation labelling settles to a definite value®
independent of the initial internal state in [C]. Here, the
dynamics of M’s evolution is with respect to a cutset C.
More precisely,

THEOREM 1. A system M with cutset C is combinational
at the functional level if and only if, for any input assign-
ment? € [I], all states § € S/{A,c,i have the same observation

label &(3,3), i.e., |L°(Sh,c5)| = 1.

PROOF. (—) Suppose not. M may produce outputs de-
pending on the initial state in [C]. In these cases, M is not
combinational.

(¢—) Since every vertex of I's ¢ ; = (V5%, Ef) is either in
a loop or on a path leading to a loop, any possible initial
state §; evolves into a state §j € Sf\,t,c,; after |V;°| — 1 steps
of evolution. Since all § € Sﬁ,t,cﬂ have the same observation
label, M eventually produces a unique output under input
7. Because this is true for any input assignment, the proof
follows. [

EXAMPLE 3. Continue Ezample 2. The system described
by D is functionally combinational because, for any SEG,
states in loops have the same observation label. Under input
asstignment ¢ = 0, output y valuates to 1; under z =1, y
valuates to 0.

3.2 Computation Algorithms
3.2.1 Combinationality Test.

From Theorem 1, we conduct a combinationality test on
M using a symbolic computation (e.g. BDD-based compu-
tation) as follows. First, derive the set S% ¢ ; for all i € [I]
by a greatest fixed-point computation. (It corresponds to:

3For simplicity, here we focus on the case where there is a
unique output valuation in [O] for any input assignment.
Our results can be straightforwardly generalized to a set of
possible output valuations.

In the initial step, let S4, ¢ ; = [C] initially, for any 7 € [I].
In the iterative steps, states without predecessors are suc-
cessively removed from S,l\,t,cyi by forward image compu-
tation with the characteristic function E = /\j(cg = &)

of evolution relation over Si, ¢z, where {¢j | ¢; € C} are
newly introduced auxiliary variables, i.e., the “next-state”
cutset variables. The process terminates when no more
states can be removed from Sﬁ,t,c,;.) Notice that, with
symbolic computation, Sﬁ,t,cﬂ can be derived simultane-
ously for all i € [I] since variables in I are not quanti-
fied out in the fixed-point computation. Second, we de-
rive the characteristic function A of £°(S%, ¢;) by setting
A =3c € CQAANZ, where Q : [I] x [C] x [O] — B is the
characteristic function Q = A;(0; = w;) of the output rela-
tion, and X : [I] x [C] — B is the characteristic function of
Shu,c; for all 7 € [T]. Again, this can be computed simulta-
neously for all 7 € [I] since primary-input variables are not
quantified out in the computation. Finally, we check if there
exists an 7 such that |£°(S%.c7)| > 1. If the answer is pos-
itive, then M is not combinational. Otherwise, it is. The
computation can be done with a SAT-solving formulation,
or with a BDD-based formulation. For the latter, the com-
putation can be performed effectively using the compatible
projection operator [14], cprojection. That is, M is com-
binational if and only if A equals cprojection(A,), where
6 is an arbitrary minterm in [O].

The computational complexity of the combinationality test
is the same as that of state traversal on the space spanned
by the cutset variables. That is, the complexity is PSPACE-
complete in the size of the selected cutset.

THEOREM 2. The problem of analyzing combinationality
at the functional level is in the complexity class of PSPACE-
complete with respect to the selected cutset size.

PrOOF. The problem of combinationality analysis can be
done in nondeterministic PSPACE. To determine if a state
§ is in a loop under some input assignment, one can record
any consecutive two states in the state evolution trace start-
ing from 3. As the “window” slides along the trace, the
recurrence of § can be checked in at most |[C]| steps. In
addition, one can test if different output observation labels
ever appear in the sliding windows. Hence the combination-
ality analysis can be achieved within space bounded by a
polynomial in the cutset size.

On the other hand, we need to reduce a PSPACE-complete
problem to the problem of combinationality analysis. The
following problem can be used.

Given a total function f : {1,...,n} = {1,...,n},
is there a k such that f*(1) = n?

It was shown [11] to be deterministic* LOGSPACE-complete
in n and, thus, PSPACE-complete in logn. We establish
that the answer to the PSPACE-complete problem is posi-
tive if and only if the answer to the corresponding problem
of combinationality analysis (to be constructed) is negative.
Since the complexity class of nondeterministic space is closed
under complementation [10], the theorem follows.

To complete the proof, given f: {1,...,n} = {1,...,n},
an excitation function £ : {1,...,n} — {1,...,n} and ob-
servation function w : {1,...,n} — B are constructed as fol-
lows. Let ¢ have the same mapping as f but with £(n) = 1.

*1It is a well-known fact, proved by Savitch in [19], that deter-
ministic and nondeterministic space complexities coincide.

Also, let w(j) = FALSE for 1 < j < mn — 1, and w(n) =
TRUE. With the above construction, n is reachable from 1
under f if and only if the system defined by £ and w is not
combinational. (Note that, since an m-valued variable can
be encoded with O(logn) binary variables, multiple-valued
representations fit our framework.) [J

3.2.2 Cycle Breaking.

Suppose M is combinational. From the above combina-
tionality test, we can derive a set of equivalent acyclic def-
initions for M. In fact, there are two ways of doing so:
One is to rewrite definitions of primary-output variables as
functions of primary-input variables. The other is to rewrite
definitions of cutset variables as functions of primary-input
variables. An advantage of the latter would be that the orig-
inal definitions of M can be reused except for the definitions
¢j = ¢j, for ¢; € C, and the resultant unused ones. The
derivations of the new definitions are as follows.

For the former rewriting, the new definitions for the primary-
output variables can be inferred from the input-output rela-
tion dc € C.QAY, which has been computed in the combina-
tionality test. For the later rewriting, for every 7 € [I], some
state §5; € Sf\,t,cﬂ is selected as the representative for SL’C,;.
Then the new definitions for the cutset variables can be in-
ferred from the relation A;(A;(%; = i[j])) A (Ar(ck = 3:[K])),
where i; € I, ¢, € C, and 7[j] (resp. $§;[k]), which denotes
the jth (resp. kth) bit of 7 (resp. §;), is a Boolean constant
of value either TRUE or FALSE.

3.3 Generality Analysis

THEOREM 3. Let C1 and C2 be two choices of minimal
cutsets for a system M with cyclic definitions. Then, under
any input assignment 1 € [I], there exists a bijection between
the loops of T'S,c, ; and those of TS c, ;-

PRrROOF. First observe that, since both C1 and C> are cut-
sets, under a specific input assignment 7 € [I], the variables
in C1 can be expressed as functions of variables in C2, and
vice versa. Thus, there exist a mapping fa1 : [C1] — [C-]
(resp. fi2 : [C2] — [C1]) such that, for a valuation § of
C1 (resp. t of C2), f21(3) (resp. fi2(f)) is the correspond-
ing valuation of Cy (resp. C1) variables. In addition, since
C; and C, are minimal, we have flz(le(s)) = £(3,5) and
for(fr2(f) = & (7,f), where &1 and &, are the vectors of exci-
tation functions of M with cutsets C; and Cb, respectively.

To see the relation between the loops of I'y, o, ; and
those of I'S4, ¢, ;, consider a state evolution sequence o1 =
S1, ..., 85, ..., 8 of [Ci] such that s} is the first recur-
rent state in o1 with §p = §;. Clearly, o2 = f21(51), ...,
f21(8;), ..., f21(8k) is a state evolution sequence over [Cs]
because fa1(fi2(f21(3))) = €2(, f21(5)). Now, we need to
show that f»1(Sx) is the only recurrent state in o, with
f21(8k) = f21(3;). By contradiction, suppose there exists
another recurrent state in o2 such that fo1(5,) = f21(51),
l < m < k. However, this implies §;+1 = §i+1 in o1 be-
cause fi2(f21(8m)) = fi2(f21(81)). It contradicts with the
assumption that §j is the first recurrent state in o3 unless
m =k —1and [= j — 1. Similarly, one can show that,
given a state evolution sequence of [C>] with a loop, there
exists a corresponding sequence of [C1] with a loop. Also,
by Propositions 1 and 2, there exists a bijection between the
loops of Iy, ¢, 7 and those of M c, ;- O

COROLLARY 1. A system’s combinationality at the func-
tional level is independent of the choice of minimal cutset in
the analysis.

ProOF. Let Cq1 and C> be two choices of minimal cut-
sets, and &1 : [I] x [Ci] — [O] and & : [I] x [C2] —
[O] be the resultant vectors of observation functions. Let
f21 and fi2 be the mappings as defined in the proof of
Theorem 3. Then, &1 (%, §1) = J2(7, f21(51)) and, similarly,
L:)’1('Z', f12(§2)) = Lﬁz(i, 52), for any 7 € |[I]], 81 € |IC1:|], and
32 € [C2]. In addition to the result of Theorem 3, we need
to show that all corresponding loops of 'l ¢, ; and I'4, ¢,
must have the same output observation for all 7 € [I].

Suppose M is combinational under an analysis with cutset
Ci. Then, all the states in vat,cl,z must have the same
output observation label, say 61 € [O]. For the sake of
contradiction, assume there exists a state 52 € SﬁA,CZ,i with
Jz(i, 52) 75 51. It implies that (31(5:, f12(§2)) 7é 51. Since
fi12(82) isin S/{/t,cl i, it contradicts with the assumption that
all the states in SﬁA,Cl,i have observation label 6:. Hence,
all the states in Sf\,t,CZ,q; must have the same observation
label 61 as well. The corollary follows. [

Notice that the result holds even when the cutset changes
dynamically.

Assuming a system M operates without a special pre-
initialization, our combinationality analysis at the functional
level is the most general formulation that one can hope for
in the sense that

THEOREM 4. There exists a feasible combinational imple-
mentation of M if and only if M satisfies our combination-
ality test.

PROOF. (—) Suppose that M fails our combinational-
ity test. It implies that there exists some input assignment
such that the corresponding output valuation cannot settle
to an unique value. This violates the definition of combina-
tionality.

(+—) Trivial. [

3.4 Conditions of Legitimacy

The legitimacy of our combinationality formulation is con-
firmed if a system’s cyclic definitions are to be broken in the
final realization. However, if some cyclic definitions are to be
maintained in the final realization, then the certification of
combinationality at the functional level of abstraction is not
sufficient to guarantee correctness. Essentially, two restric-
tions need to be imposed to ensure the correctness. First, all
excitation functions should be valuated synchronously such
that state evolutions follow the combinationality analysis.
Second, the time interval between two consecutive input as-
signments should be much larger than the time spent on
internal valuations such that the state of the system has
enough time to evolve to an equilibrium loop. Certainly,
the first restriction is inadequate for hardware realization of
cyclic definitions due to undesirable defects, such as races,
hazards, glitches, etc. In contrast, software realization is
more adequate since the above defects can be eliminated.
A possible application domain could be software synthesis
for reactive systems, where the common assumption is that
internal computations are much faster than environmental
responses. Hence, the second restriction is satisfied under
this assumption.

3.5 Stable Cyclic Dependencies

For software synthesis with cyclic definitions to be main-
tained, although the combinationality formulation at the
functional level can be legitimate, it may be undesirable
for SEGs containing unstable loops. Since the existence of
unstable loops results in persistent updates of state infor-
mation (even though observation functions have settled to
definite values), the updates consume dynamic power. To
avoid the persistent power consumption, we require that all
the loops in SEGs must be stable. To do so, the defini-
tions of the system M in consideration should be rewritten.
Such rewrites can be done in various ways. For instance, an
unstable loop L is broken by redirecting the evolution of a
state in L to itself or to another state not in an unstable
loop. Recall that replacing cyclic definitions with acyclic
equivalents is just a special case of such rewrites.

On the other hand, one can devise an algorithm to test if a
system M with cutset C' is stably combinational at the func-
tional level. Essentially, M is stably combinational if and
only if, for any input assignment, any state § € [C] can reach
(i-e., evolve to) a self-looped state. Let X : [I] x [C] — B be
the characteristic function denoting the set of states which
can reach self-looped states with respect to some input as-
signment. Then the algorithm can be outlined as follows.
First, compute the set of self-looped states of I'4, ¢ ; for all
7 € [I] by the characteristic function A;(c; = &;), where
¢j € C is a cutset variable and &; : [I] x [C] — B is an ex-
citation function in €. Second, let © = A ;(c; =§&;) initially.
Perform the standard backward reachability analysis (how-
ever, variables in I are not quantified out). That is, with
respect to some 7 € [I], the set Sx, of states represented
by 3; is augmented iteratively by adding to it the set of its
predecessor states, where X; denotes the partial valuation
of ¥ with variables I valuate to 7. The iteration terminates
when no more states can be added. Using a symbolic ap-
proach, the computation is done for all input assignments
simultaneously since variables in I are not quantified out
during the fixed-point computation. The system is stably
combinational if and only if the final ¥ is a tautology.

In addition to the stability requirement, one may want to
bound the maximum length of evolution paths to equilib-
rium loops. The number of iterations spent in a combina-
tionality test corresponds to the length of the longest evolu-
tion path(s). If the length is greater than the upper bound,
say n, state evolutions need to be redirected to shorten long
paths. One approach would be to memorize the newly re-
moved state sets for every n — 1 iterations in the combina-
tionality test. After the test, redirect the evolutions of the
memorized states to proper equilibrium loops.

3.6 Input-Output Determinism
of State Transition Systems

We extend combinationality analysis on the set Dag of
cyclic definitions of a system M with state-holding elements.
Note that D contains only simultaneous definitions and,
thus, excludes the delayed definitions of the state-holding
elements. Let I and O be the sets of primary input and pri-
mary output variables, respectively. Also, let S (resp. S’) be
the set of output (resp. input) variables of the state-holding
elements, and C be a cutset of Da. We specify two types
of states: FEzternal states [S] are those designated by the
state-holding elements; internal states [C] are those emerg-

ing from the cyclic definitions. Also, terms “transition” and
“evolution” are used to differentiate the dynamics among
external and internal states, respectively.

Our objective here is to analyze whether the cyclic defini-
tions of M can be replaced with acyclic ones such that the
sequential behavior of M remains unchanged. Essentially,
such a substitution is possible if and only if M has deter-
ministic input-output behavior®. As mentioned in Section 2,
the inputs and outputs of the state-holding elements can be
treated as the primary outputs and primary inputs, respec-
tively, of the set of the cyclic definitions. However, a direct
combinationality test on the cyclic definitions only yields an
approximative analysis because it requires the valuations of
S’ to be deterministic.

To achieve an exact analysis, with the above input and
output transformation, reachability analysis (for external
states) and combinationality analysis (for internal states)
should be performed alternately. Two conditions need to
be satisfied: First, under any input assignment 7 € [I] and
any reachable state § € [S], the set Sﬁ,t,c,(;,g) of all in-
ternal states in loops of the corresponding SEG T'§, ¢ .5
must have the same observation label induced by O, 1e.,
|‘CO(SJ{4,C,(€,§))| = 1. Second, under any input assignment
i and any reachable state §, the corresponding next (exter-
nal) states must be sequentially equivalent. This set of next
states is derived from the set of observation labels induced
by S’ over Si ¢..5)-

A detailed computation is outlined as follows. Let RY) be
the reached state set for the state-holding elements at the
jth iteration. Let R(® C [S] be the initial state set. In the
Jjth iteration, we perform combinationality analysis detailed
in Section 3.2.1 to certify that Daq is combinational with
respect to O for any 7 € [I] and § € RY). (If the certification
is not established, M is not deterministic in its input-output
behavior and the procedure aborts.) The combinationality
analysis also gives us the set Sjl\A,C,(i,E) for all 7 € [I] and

5 € RY). From it, we obtain the set of next states under
7 and § by computing the set of observation labels induced
by S over 84y ¢ (5,5 Denote the set of next states as Ni(fg).
Then, RV+*Y = RY U{NY |7 € [I],5 € RD}. The
iterations terminate when R*™Y = R® for some k. At
this point, we need one more step to conclude whether D,
can be rewritten with acyclic definitions. The answer is
affirmative if and only if |£"(Ni(,’§))| =1,forj=0,...,k—1,
and for any 7 € [I], 5 € RY). The rewriting procedure is
similar to what was described in Section 3.2.2.

The corresponding computational complexity is PSPACE-
complete in the number of state-holding elements and the
cutset size. The PSPACE-completeness is immediate from
the fact that the input-output determinism problem of state
transition systems is in PSPACE and is even harder than
the PSPACE-complete problem of combinationality analysis
shown in Theorem 2.

5Nevertheless, state transitions may be nondeterministic
due to the cyclic definitions. Since internal states in loops
of an SEG may have different observation labels induced by
S’, these observation labels constitute the possible next ex-
ternal states. Hence, state transitions are nondeterministic
in general.

4. COMBINATIONALITY
AT CIRCUIT LEVEL

Combinationality analysis at the functional level abstracts
away timing information. Certainly, it does not guarantee
the feasibility of maintaining cyclic definitions in final circuit
implementations. On the other hand, Malik’s formulation
based on ternary-valued simulation turns out to be the right
formulation at the circuit level. In his formation, effectively,
all gates and wires are sources of uncertain delay®. Under
the up-bounded inertial delay model [4], ternary-valued sim-
ulation can be treated as an operational definition of com-
binationality for cyclic circuits [21, 20].

4.1 Synthesis of Cyclic Circuits

A recent attempt [17, 18] of synthesizing cyclic circuits
brings the formulation of ternary-valued simulation up to
the functional level. Combinationality analysis was checked
with recursive marginal operations. However, it was over-
looked that functional-level analysis itself is not sufficient
to guarantee the correctness of final circuit implementation.
Consider the following cyclic definitions over primary-input
variables a and b:

f = ~ahV-b-h
g = ~a-bf
h = abV g

The reader can verify that the above definitions are function-
ally combinational under any input assignments. (Indeed,
under the analysis with recursive marginal operations, the
cyclic definitions are combinational.) However, functional
analysis does not guarantee a well-behaved circuit imple-
mentation. Consider the circuit netlist in Figure 2 (i) as an
implementation of the above cyclic definitions. The circuit
may not be well-behaved. To see this, consider input as-
signment ¢ = 0 and b = 0. Assume the resultant induced
circuit is abstracted to that in Figure 2 (ii), where all the
gates have one-unit delay and all the wires have zero delay.
Now, suppose the previous input assignment is ¢ = 1 and
b =1 before assignment ¢ = 0 and b = 0. That is, internal
signals ¢ and y in Figure 2 (ii) are of value 0 initially. An
examination shows that the circuit oscillates despite of its
combinationality at the functional level. Essentially, the fail-
ure originates from the fact that some gates and wires are
not fully characterized in the analysis. Hence, functional-
level analysis is not sufficient to conclude the correctness of
the gate-level implementation.

Two approaches can be applied to rectify the deficiency in
the analysis proposed by [17, 18]. One is to remove axioms
x V -x = TRUE and £ A mx = FALSE from the recursive
marginal operations when z is not a primary-input variable.
The other is to add more terms to functional expressions
such that, for every input assignment, cyclic definitions are
broken for some functions valuating to either TRUE or FALSE
purely depending on the input assignment. For instance,
in the previous example, product term —a—b needs to be
added to the definition of f, i.e, f := —ah V ~b-h V —a—b.
For the second rectification, one should be careful in any
subsequent circuit optimization; the added terms should not
be removed without special care. Note that the necessity of

SHowever, this timing assumption is very conservative in the
sense that no asynchronous circuits can ever exist under this
assumption if initialization is not allowed.

b-4_
b
X
Y

(ii)

Figure 2: (i) The original circuit. (ii) The induced circuit under input assignment ¢ =0 and b = 0.

adding some rectification terms may nullify area gains due
to allowing cyclic combinational circuits.

5. RELATED WORK
5.1 SEG vs. GMW

Our SEG formalism is closely related to the general mul-
tiple winner (GMW) analysis [4], which is commonly used
in the analysis of asynchronous circuits. To reason about
the behavior of asynchronous circuits under physical effects
such as glitches, hazards, races, etc., the GMW analysis
builds graphs similar to SEGs with additional nondetermin-
istic evolutions. Depending on how the current state and
next state are coded, an evolution branches out into several
nondeterministic ones. Also, unlike an SEG existing for a
fixed input assignment, the graph built by the GMW anal-
ysis is connected for different input assignments. These ad-
ditional evolutions make GMW analysis a complicated pro-
cedure. Even worse, the GMW analysis declares a state
variable for every delay element (possibly, a gate or wire).
In comparison, only a minimal cutset needs to be chosen
in our combinationality analysis. Therefore, the state space
is substantially reduced. Under the legitimacy conditions
in Section 3.4, all of the above complications in the GMW
analysis can be avoided and simplified to our SEG formal-
ism.

5.2 Combinationalities

At the functional level, we contrast our formulation of
combinationality with prior work based on ternary-valued
simulation. In the case where all valuations in the set of
cyclic definitions must stabilize, the functional-level exten-
sion of Malik’s formulation can be summarized as follows.
For any input assignment 7 € [I], there exists a set of def-
initions valuating to either TRUE or FALSE such that the
cyclic definitions are broken. This requirement corresponds
to that, for every input assignment, the corresponding SEG
has a single loop, which is stable, i.e., of length one, and all
states of the SEG evolve directly to this loop. (An SEG with
multiple stable loops correspond to what was considered
having nondeterministic multiple solutions; an SEG with an
unstable loop, i.e., a loop with length greater than one, cor-
responds to what was considered having no consistent solu-
tion.) In comparison, our formulation is much more general
because SEGs are allowed to have multiple loops, which can
be stable or unstable, and to have long evolution paths.

Now consider a more relaxed case where signals are al-
lowed to oscillate for some input assignment as long as all
output valuations are uniquely determined under this in-
put assignment regardless of internal states. To see how
Malik’s formulation corresponds, we partition input assign-
ments into two sets: one with outputs fully determined, and
the other partially determined. Under the former set of
input assignments, no restrictions need to be imposed on
SEGs, just like in our formulation. Under the latter set of
input assignments, however, the restrictions discussed in the
case where all valuations must stabilize need to be imposed.
Although the generality is enhanced in the relaxed case, the
combinationality based on ternary-valued simulation is still
a limited formulation. In comparison, our formulation is
strictly more general. In fact, it is the most general formu-
lation that one can hope for as stated in Theorem 4.

ExXAMPLE 4. Continue Ezample 1. The observation func-
tion is only partially determined under any input assign-
ment. It is not hard to see that system M specified by Day
is not combinational under the functional-level extension of
Malik’s combinationality formulation, contrary to our com-
binationality analysis.

5.3 Sequential Extensions

In his thesis [20], Shiple extended the analysis of combi-
national cycles for circuits with state-holding elements. He
defined sequential output-stability, which allows a circuit to
be initialized to some stable states and considers only initial-
ized behavior. The GMW analysis was adopted to replace
ternary-valued simulation such that nondeterministic inter-
nal states were admitted to exist as long as the observable
behavior is unaffected. An equivalent acyclic circuit can be
generated from the GMW analysis. Again, if the objective
is software synthesis or to break cyclic definitions, such se-
quential extension can be generalized substantially and sim-
plified to our computation outlined in Section 3.6 without
resorting to the complicated GMW analysis.

6. CONCLUSIONS AND FUTURE WORK

Based on the observation that when cyclic definitions are
to be broken in the final realization, the formulation of com-
binationality can be much more general than previous for-
mulations. In addition, the analysis can be done at a higher
abstraction level, i.e., the functional level. The combina-
tionality formulation is extended to an extreme — a system
is combinationally implementable if and only if it passes

our combinationality test. When cyclic definitions are to
be maintained, we examine the legitimacy condition of our
formulation. It turns out that software synthesis of reactive
systems may be an application domain, where cyclic defini-
tions can be maintained in the final realization. In addition,
we show that our analysis is independent of the choice of
cutsets. Our results admit strictly more flexible high-level
specifications in hardware/software system design. For com-
binationality at the circuit level, we comment on a pitfall in
a recent attempt synthesizing cyclic circuits for area mini-
mization. Two approaches are given to rectify the deficiency.

As for future work, although the choice of cutset does not
affect the analysis of combinationality, it does influence the
resultant system rewritten with acyclic definitions. It might
be crucial to decide a good cutset with respect to various
optimization objectives. Also, as shown in Sections 3.2, 3.5
and 3.6, there are many ways to rewrite cyclic definitions
with acyclic equivalents. It would be interesting to explore
such flexibilities for further optimization.

ACKNOWLEDGEMENTS

The authors would like to acknowledge the helpful comments
of anonymous reviewers and clarifying discussions with Marc
Riedel.

REFERENCES

[1] G. Berry. The foundations of Esterel. Proof, Language,
and Interaction: Essays in Honour of Robin Milner,
MIT Press, 2000.

[2] G. Berry. The constructive semantics of pure Esterel.
Draft book, 1999.

[3] R. Bryant. Boolean analysis of MOS circuits. IEEE
Trans. Computer-Aided Design, pages 634-649, July
1987.

[4] J. Brzozowski and C.-J. Seger. Asynchronous Circuits.
Springer-Verlag, 1995.

[6] S. Edwards. Making cyclic circuits acyclic. In Proc.
Design Automation Conference, pages 159-162, 2003.

[6] S. Edwards and E. Lee. The semantics and execution of
a synchronous block-diagram language. Science of
Computer Programming, vol. 48, pages 21-42, 2003.

[7] G. Even, J. Naor, B. Schieber, and M. Sudan.
Approximating minimum feedback sets and multi-cuts
in directed graphs. Algorithmica, vol. 20, pages
151-174, 1998.

[8] N. Halbwachs. Synchronous Programming of Reactive
Systems. Kluwer Academic Publishers, 1993.

[9] N. Halbwachs and F. Maraninchi. On the symbolic
analysis of combinational loops in circuits and
synchronous programs. In Proc. Euromicro, 1995.

[10] N. Immerman. Nondeterministic space is closed under
complementation. SIAM Journal on Computing. vol.
17, pages 935-938, 1988.

[11] N. Jones. Space-bounded reducibility among
combinatorial problems. Journal of Computer and
System Sciences, vol. 11, pages 68-85, 1975.

[12] R. Karp. Reducibility among combinatorial problems.
Complezity of Computer Computations, pages 85-104,
Plenum Press, 1972.

[13] W. Kautz. The necessity of closed circuit loops in
minimal combinational circuits. IEEE Trans. on

Computers, pages 162-164, 1970.

[14] B. Lin and A. R. Newton. Implicit manipulation of
equivalence classes using binary decision diagrams. In
Proc. Int’l Conf. Computer Design, pages 81-85, 1991.

[15] S. Malik. Analysis of cyclic combinational circuits.
IEEE Trans. on Computer-Aided Design, vol. 13, no. 7,
pages 950-956, July 1994.

[16] K. Namjoshi and R. Kurshan. Efficient analysis of
cyclic definitions. In Proc. Computer Aided
Verification, pages 394-405, 1999.

[17] M. Riedel and J. Bruck. The synthesis of cyclic
combinational circuits. In Proc. Design Automation
Conference, pages 163-168, 2003.

[18] M. Riedel and J. Bruck. Cyclic combinational circuits:
analysis for synthesis. In Proc. Int’l Workshop on Logic
and Synthesis, pages 105-112, 2003.

[19] W. Savitch. Relationships between nondeterministic
and deterministic tape complexities. Journal of
Computer and System Sciences, vol. 4, pages 177-192,
1970.

[20] T. Shiple. Formal Analysis of Cyclic Circuits. Ph.D.
thesis, University of California at Berkeley, 1996.

[21] T. Shiple, G. Berry, and H. Touati. Constructive
analysis of cyclic circuits. In Proc. European Design
and Test Conf., pages 328-333, 1996.

[22] L. Stok. False loops through resource sharing. In Proc.
Int’l Conf. on Computer-Aided Design, pages 345-348,
1992.

