
Synthesizing FSMs According to Co-Büchi Properties

Guoqiang Wang, Alan Mishchenko,
Robert Brayton, and Alberto Sangiovanni-Vincentelli

EECS Dept. University of California
Berkeley, California, 94720, USA

{geraldw, alanmi, brayton, alberto}@eecs.berkeley.edu

Abstract. Computations are developed for the synthesis of an FSM embedded
in a known larger system such that the overall behavior satisfies a co-Büchi
specification. The procedures for this are very similar to those used for regular
(non-omega) automata, except for a special final step in which a set of FSM so-
lutions is represented as a SAT instance. Each satisfying assignment corre-
sponds to an FSM solution. To reduce the SAT size, a preprocessing step splits
a general solution automaton into a “path” automaton and an “acceptance”
automaton. Cycles in the path automaton graph are trimmed while maintaining
the input -progressiveness property required for FSMs. Not all FSM solutions
are represented by the SAT instance, since in theory there could be an infinite
number. The computations have been implemented in the MVSIS environment
and a few experiments have been done.

1 Introduction

For some applications, the objective is to find a strategy, implementable as a finite
state machine, which guides a system to a given subset of states (e.g. a winning state
for a game), called the accepting states. Some examples are games and some control
problems. Such a situation cannot be captured by a regular automaton specification
since the requirement for an FSM solution is that its language is prefix-closed imply-
ing that the initial state is accepting. ϖ -type specifications seem to be needed to de-
scribe such stronger final constraints. The motivation for considering co -Büchi speci-
fication will be clear in Section 2.

We present a proposed synthesis flow for co-B üchi specifications. The FSM
synthesis problem is stated as follows: Find the most general FSM X such
that F X S• ⊆ , where S is a co-Büchi automaton, F is a known FSM, and • repre-
sents synchronous composition. The most general automaton solution is given by

X F S= • where the outside complementation is usually non-deterministic [9]. Thus
Büchi and co-Büchi automata complementation are required, which are in general s u-
per-exponential in complexity [8] . Instead, we aim for a less general solution and pro-
pose a synthesis flow, very similar to that used for regular (finite-word) automata.
This uses a subset construction to obtain a deterministic Büchi over-approximation of
an ND Büchi automaton. The final complementation is done by simply complement-

ing the acceptance conditions to obtain a co-Büchi automaton, which is a subset of the
most general solution automaton. An important subclass of co-Büchi automata is “co-
looping” automata. For this class of specifications, our procedure obtains the most
general solution automaton.

To derive the final FSM implementations, the co-Büchi acceptance condition is
applied to trim the solution automaton by formulating a SAT [7], [8] instance, all of
whose solutions correspond to particular FSM solutions. The SAT instance contains
clauses, which ens ure the input-progressiveness property required for FSMs (i.e. for
each input there must exist a next state and output response). Other clauses enforce
the co-Büchi condition by requiring the elimination of all simple cycles that contain a
non-final state. The SAT instance represents all FSM solutions that can be associated
with sub-graphs of the automaton solution.

To help simplify the SAT instance, we use a graph pre-processing step to find a
partial order based on input -progressiveness. An edge is classified as essential if its
removal causes a state to become non-progressive. Thus this edge removal implies the
removal of the corresponding state. This implies that all the states contained in any
loop of only essential edge s must be removed, implying the removal of other states.
This pre-processing is applied until no further removals are possible; the resulting
smaller graph becomes the basis for the SAT formulation. The algorithm was imple-
mented in the MVSIS [6] environment and applied to a few examples; the only add i-
tional procedure required beyond that used for regular automata specifications was the
SAT formulation and solution.

The contribution of this paper is a synthesis flow for co-Büchi specifications,
which follows the exact flow for regular automata [9], and hence is simpler than for
general ϖ -automata; the most complex part is a subset construction. Only in a final
step, which extracts an FSM implementation, does the flow differ from that for regu-
lar automata specifications.

The paper is structured with Section 2 reviewing some preliminaries. The topol-
ogy used for the unknown component problem is presented in Section 3. The pro-
posed ϖ-property synthesis techniques are addressed in Section 4. The solution com-
puted for a representative example is illustrated in Section 5 and the corresponding
automata are shown in Appendix B. Section 6 discusses the complexity of comple-
menting non-deterministic Büchi automata in general and contrasts this with the co n-
struction in the present paper. In Section 7, concl usions are discussed. Appendix A
considers synthesizing to Büchi specifications and discusses a modification of the
procedure of the present paper to make it sound for this case.

2 Preliminaries

An ϖ-automaton is a finite state automaton that accepts infinite strings [2], [3] , [4],
[5]. Although there are many different types of ϖ -automata, here we discuss only
Büchi, looping, co-Büchi, co-looping and Muller automata.

A ND Büchi automaton has the following form: ()0, , , ,M Q q Acc= Σ ∆ , where Q

is the finite state space, Σ is the finite inp ut alphabet, 0q Q∈ is the initial state,

Q Q∆ ⊆ × Σ × is the transition relation, Acc Q⊆ represents the acceptance condi-

tion. A run of M on the input word ϖα ∈ Σ , ()q α , is successful if it starts at the initial
state and the set of states that occur infinitely often intersects Acc. For a Muller
automaton, 2QAcc ⊆ and a run is successful if it starts at the initial state and the set of
states which appear infinitely often is a member of Acc.

Like Büchi, a co-Büchi automaton has also a single set (stable region) in its ac-
ceptance condition; but it should eventually enter the stable region and stay there fo r-
ever. It is a Muller -type automaton where the Muller acceptance condition consists of
all subsets of the states in the stable region. Deterministic Büchi and co-Büchi aut o-
mata are limited in the set of properties that can be expressed, while deterministic
Muller automata, ND Büchi, and ND co-Büchi automata can express any ϖ-regular
property. For an ND Büchi automaton with acceptance condition Acc, an input se-
quence is accepted if there exists a run that intersects Acc infinitely often.

A co-looping automaton is a co-B üchi automaton with the additional restriction
that the final states (stable region) must be a sink, i.e. there is no edge from a final
state to a non-final state. A looping automaton is the dual of a co-looping automaton;
its non-final states are a sink. Looping automata are useful for expressing safety prop-
erties. Looping and co-looping automata have the property that they can be deter-
minized by the subset construction [11].

3 Problem Statement

In this paper, we consider a synthesis problem whose topology is shown in Fig. 1. The
setting is that of an unknown component, X, embedded in a larger known system
where the behavior of the combined system should satisfy some external specification
S. The comp onents communicate synchronously via the channels labeled with the
(multi-valued) variables, i, v, u, o. The particular topology of the communication is
not really critical for the results of this paper. The synthesis problem has been studied
extensively when the specification is a regular finite automaton or an FSM, and a sy s-
tem for efficiently computing the most general solution automaton or the most general
FSM solution has been implemented [9]. In this paper, we investigate the situation
where S is an ϖ-automaton.

Fig. 1. Topological Setup

We consider the case where the ϖ-specification, S, is a co -Büchi automaton with
multi-valued input signal o whose values are taken from the alphabet oΣ . S is repre-

sented by
0

(, , , ,)S
S o SS Q q A= Σ ∆ , where A is the stable set. The fixed part F or context

is an FSM with multi-valued inputs i and v and multi-valued outputs o and u. Here F

o i

u v
F

X

S

is interpreted as a special deterministic Büchi automaton, represented by

0
(, , , ,)F

F i u v o FF Q q B× × ×= Σ ∆ , where B is the set of all states. X is the unknown com -

ponent, which is to be implemented as an FSM.
In this topology, the unknown component only sees variables u and v; variables i

and o are hidden from it. The objective is to find an FSM implementation of X such
that its synchronous composition with F satisfies the co-Büchi specification S. Solu-
tions are obtained by solving the corresponding ϖ -language containment problem,

F X S• ⊆ . The most general solution is given by X F S= • . This is explained fur-
ther in Section 4, along with the details of our synthesis approach.

4 Overview of the Synthesis Flow

An overview of the general synthesis flow is outlined in Figure 2, where each variable
is an ϖ -automaton. All operations are done on Büchi or co-Büchi automata.

Computation of X F S= •
 Complement S;
 Complete F as an automaton;
 Compute the product P of F and S ;
 Hide variables invisible to X, e.g. i and o;
 Complement P;
 Restrict to FSM solutions;

Fig. 2. High-level algorithm for synthesis of X F S= •

The first five steps compute the most general automaton solution (Section 4.1)
while the last step specializes it to a large set of FSM solutions (Section 4.2). We
modify this flow by avoiding complementing Büchi and co-Büchi automata, as dis-
cussed below.

4.1 Computing a General Automaton Solution

In this section, we first compute a general ϖ-automaton solution. We follow the first
five steps. A sixth step is done as part of extracting particular FSM solutions.

Complementing the Specification S. We assume that S is a deterministic co-B üchi
automaton with final states A. It is complemented by simply inverting its acceptance

condition. Thus S is a deterministic Büchi automaton and a run of S is accepted if it
intersects \SA Q A≡ infinitely often.

Completing the Fixed Part F. F is an FSM and can be interpreted as a special Büchi
automaton; it has a set of states B all of which are accepting. Since F as an automaton
is incomplete, it is completed by adding a single new state Fn , which is the only non-
accepting state (it is a state with no-exit and a universal self-loop – a “don’t care”
state). For convenience, we denote the completed automaton also by F.

Creating the Product P F S= • . Since both F and S are Büchi automata, their
product is conventionally done by introducing a flag as a third entry in the product
state to indicate whenever an acceptance condition is met in each operand Büchi
automaton. We will remove the need for this flag by using the fact that all states of F,
except the don’t care state, Fn , are accepting. In general, the flag is used to ensure that

we visit both product states {(,)}s t in which s is in B infinitely often as well as product

states {(,)}q r in which r is in A infinitely often. The flag toggles once we have visited

B and again once we have visited A . Suppose that A has just been visited, so the
current state (,)s t has t A∈ . There are two cases. If s B∈ then we have just visited B

also, so the flag does not need to be toggled. The ot her case is where Fs n= . Since

Fn is a don’t care state, we can never exit it . Thus all subsequent states of the product

machine will be (,)Fn − . All such states are part of the non -accepting Büchi states of P
and can never enter the accepting region. Thus, we don’t need to toggle the flag, since
nothing important will happen after this. Hence the product automaton P F S= • is
obtained by taking the regular product of the two operand automata to obtain the
transition structure of the Büchi automaton , , , 0(, , , ,)P

P i v u o PP Q q C= Σ ∆ . To

determine C , note that P has the following types of states:(,)b a , (,)b a , (,)Fn a ,

(,)Fn a , where a A∈ , a A∈ , and b B∈ . Thus {(,)}C b a= and a run is accepting

if and only if it visits states of type (,)b a infinitely often.

Hiding Variables Invisible to X. Hiding variables i and o that are invisible to the
unknown component X is simply the normal procedure of erasing such labels on the
transitions. Even though P is deterministic, the result (,)u vP↓ can be non-deterministic.

The notation (,)u v↓ represents the normal projection op eration.

Determinizing (,)u vP↓ . Since (,)u vP↓ is a ND Büchi automaton it can’t be determinized

in general. On the other hand, complementing it is a super-exponential procedure,
(log)2O n n (see Section 6), which should be avoided if possible. We apply the subset

construction to the transition structure of (,)u vP↓ to obtain a Büchi automaton P% , whose

language contains that of (,)u vP↓ . The final states of C are obtained as follows. When a

subset state is reached it is put in C if it contains a state of type (,)b a .

Complementing P% . P% can be obtained by duality, by inverting its acceptance
condition; thus keeping the same transition structure, but interpreting the result as a

co-B üchi automaton with final states C. In general, P% will be an under-

approximation to the most general solution automaton (,)u vP↓ .

Observations. All the computations above involve only ones that are in the “normal”
flow used and implemented in MVSIS for solving problems with regular automata. In
particular, one can make use of a partitioned transition structure where the fixed part
F is given as a multi-level circuit [9] . These computations are completion, hiding,
product and determinization. Nothing special has been done in Section 4.1 that is
associated with computing with Büchi automata. Even the determinization step when
deciding which of the subset states are to be put in the Büchi final set, C , is a typical
operation in which each subset state is classified as soon as it is generated. The only
difference is in the interpretation of the meaning of C when it is used to construct
FSM solutions. In the next subsection, special non-regular methods are formulated to

trim P% to obtain FSM solutions to meet the co-Büchi condition C. Thus all efficient
implement ations done in MVSIS for computing with regular automata can be used.

Another observation is that for specifications, which are co-looping automata,

the determinization step in this section is exact, i.e. (,)u vP P↓=% . This follows from the

fact that looping automata can be determinized [11]. Hence for this case, we obtain
the most general solution automaton. Note that the result is the same as if we used f i-
nite word automata and made all states accepting.

4.2 Computing Particular FSM Solutions X'

To obtain particular FSM implementations for the unknown component, we will ge n-
erate all sub-graphs of X, where any loop that contains a non-stable state has been
eliminated, leaving only acyclic paths from the initial state to C. The most difficult
part is to do this while maintaining input-progressiveness of the solutions.1 Note that,
in general, we may lose some solutions, since only sub-graphs are derived, while state
duplication is not allowed. Thus, for example, solutions which circulate around a loop
a finite number of times before leaving the loop are not considered. In addition, we

have lost some solutions by the determinization of (,)u vP↓ .

SAT Formulation. We will focus on trimming the deterministic co-B üchi solution

P% so that the only cycles left are those entirely contained in the stable set C. This

requires removing transitions (edges) in the graph of P% making the non-stable part

1 Although algorithms for finding minimum feedback-arc sets in directed graphs are available

in the literature [1], they do not deal with input progressiveness.

acyclic but still maintaining u-progressiveness (u is the only input for the unknown
component shown in Fig. 1.).

This is formulated as a SAT instance. For each transition, we associate a binary
variable jke , which is 1 if the transition is chosen to remain. The variable js is 1 if

State j is chosen to remain.
Let juE be the set of edges that may be traversed on input u in one step from j.

1 ...ju j jnE e e= + + , where n is the cardinality of juE . The u-progressiveness clause,
u
j juC E= , says that for input u, there exists at least one next state. Thus the u-

progressiveness of State j is ()j j juu
C s E= ⇒ ∏ , which says that if State j is selected,

then it must be u-progressive, meaning that for each minterm of u, there exists a next
state. A second type of clause, connection clause, says that if edge ije is selected,

then both terminal states have to be selected, i.e. ()()i
ij i j i ij jC e s e s= ⇒ ⇒ . Finally, to

eliminate every simple loop not entirely contained in the stable set, a third type of
clause, loop-breaking clause, is constructed one for each such loop. Suppose

12 23 34 1{ , , ,..., }lL e e e e= is such a loop. Its clause should say that at least one of these

transitions should not be chosen. This is equivalent to 12 23 34 1...L lC e e e e= .
We must also require that the initial state 0s be selected. Thus 0 0C s= , i.e.

0 1s = , is added to the clauses.
Since all simple unstable loops must be enumerated, there could be many such

loops. To alleviate this problem, the graph is pre-processed initially to eliminate ce r-
tain obvious transitions, using the notion of essential edges. This is described in Sec-
tion 4.3. Hopefully, this reduction will cut down the number of loops considerably.

Theorem 1. (a) An FSM solution (of the ϖ-language synthesis problem), which

corresponds to a sub-graph of P% , is a solution of our SAT instance. (b) A solution of
our SAT instance is an FSM solution of the ϖ-language synthesis problem.

Proof:

(a) Since the derived co-Buchi automaton P% is a general automaton solution, any
deterministic solution to the FSM synthesis problem (implementation) corresponding

to a sub-graph of P% has the property that for every input string w of u symbols, there is

a unique path in the automaton structure of P% . This path can be decomposed into a fi-
nite part 1p , and a final part 2p contained entirely in C. Suppose 1p is not simple. Then

there is a state js that is repeated. Let 0w be the part of the input 0 1 2w w w w=

where js is visited for the first time and after 1 1{ , , }nw u u= L , js is arrived at again.

Then the input 0 1 1w w w wϖ=% would be an allowed input string to the FSM, but the run

for this never eventually remains in C. This violates the co-Büchi acceptance cond i-
tion. Therefore, for any input word, the finite part of each path before finally entering

C must be simple. By construction, such a path is contained in a solution of our SAT
instance.

(b) Suppose we have a solution of the SAT instance. This corresponds to a sub-
graph of the most general solution X where every state is u-progressive and in the
graph there is no loop not entirely contained in C. Being u-progressive means that the
graph represents a pseudo-non -deterministic FSM (and hence might contain many de-
terministic solutions). Being a sub-graph of a general solution automaton with the re-
quired properties, it is a solution of the synthesis problem, and hence all its determi-
nistic sub-machines are solutions.

QED
A SAT solver can be configured to enumerate all possible satisfying assign-

ments (a highly efficient one has been implemented in MVSIS). Hence the SAT in-
stance formulated represents a set of FSM solutions. However, all FSM solutions may
not be represented, e.g. those where a non-simple loop is traversed a finite number of
times before it is exited. An associated FSM would require enough stat es to count ef-
fectively the number of times it has gone around a particular loop. In this sense, such
solutions might not be of interest. On the other hand, it is possible that our SAT in-
stance is not satisfiable, but still there exists an FSM solution. T his could be remedied
by first duplicating one or more states and then formulating a new SAT instance
which is satisfiable. Finally, as noted previously, the determinization step in Section
4.1 may cause other FSM solutions to be lost.

4.3 Pre-processing to Simplify the SAT Instance.

To reduce the size of the SAT instance, a preprocessing step which trims P% can be
done. In some cases, after this step, it is possible that no SAT solving is needed.

Trimming the Acceptance Set. P% is a co-Büchi automaton with accepting set C.
We create an acceptance automaton as follows. A nominal initial state is created
where its outgoing transitions are all the transitions from C to C, (the labels on these
edges are irrelevant) and all states of C are eliminated. Thus all transitions from C to
C being eliminated. This automaton is processed in the regular way [9], which trims
away some states and transitions in C, to make it u-progressive. The regular
progressive command in MVSIS can be used to trim down this acceptance automaton.
If the result is empty, we output that no solution exists and stop, since this means that
there can be no cycles entirely contained in C.

At this point, we modify P% by merging all remaining nodes of C into a sink node
f having a single universal self loop. Incoming edges to f are only those which lead to
the remaining nodes of C; other edges are removed. We obtain a so-called path (co-

looping) automaton pathX , based on P% , which has only one nominal stable state f.

Pre-processing the Path Automaton. For each state in pathX , outgoing transitions are

classified as essential or not. An essential edge is one that if eliminated would make
that state not u-progressive. Now restrict pathX to the essential transitions and

corresponding states. If this graph has a loop (of essential edges) then all states of the
connected component containing the loop must be eliminated. This is because there is
no way to make pathX acyclic since eliminating any transition in the loop requires a

corresponding state must be eliminated, causing other transitions and states to be
eliminated until the entire connected component is gone. After this, only those
connected components, which have no loops of essential transitions, remain. If no
states are left in the path automaton, then there is definitely no solution.

Now there may be non-essential transitions that must be eliminated because they
lead to eliminated states. This can create new essential transitions (which could be
called secondary essential transitions).

Of the remaining nodes, the essential edges define a partial order; for each to-
tally ordered subset of states, all backward (non-essential) edges within this subset
must be eliminated because this is the only way to break such loops while still ensu r-
ing input -progressiveness. This could create additional essential transitions (tertiary
essential transitions).

The above three steps are repeated with all the newly created essential trans i-
tions added until no further eliminations are possible. This fixed point can be consid-
ered the complex core of the problem for which the SAT instance is formulated.

After deriving any particular solution corresponding to the path automaton, it is
easy to combine it with the solution of the acceptance automaton to get a correspon d-
ing particular solution for the original unknown component problem.

4.4 Discussion

Although all transitions are classified as either essential or not, we cannot just set the
value associated with all essential transitions to 1 in the clauses since one of their
states may not always be in a final solution. However, knowledge of essential edges
can help in satisfying the loop-breaking clauses. In general, the graph consisting of
essential transitions and the corresponding states could be disconnected. After the
preprocessing step, any simple cycle must contain at least one non-essential transition.
Only non -essential edges of any loop need to be considered for elimination; otherwise,
assume a loop is broken by eliminating an essential edge. This implies that the source
node of this edge must be eliminated. Then all edges that lead to this node must be
eliminated. If any of these is an essential edge on the loop, then its source node must
be eliminated. Eventually we eliminate a node in the loop whose incoming edge on
the loop is non-essential. Hence eliminating an essential edge always implies elimi-
nating also a non-essential edge on any loop.

5 Example and Discussion

The above presented synthesis approach has some interesting applications in the con-
troller synthesis area. For example, it can nicely handle applications like the Guide-
way scheduling synthesis problem discussed in [12]. For ease of illustration, we dis-
cuss application to the Wolf -Goat-Cabbage control problem to illustrate the cycle
breaking tec hniques discussed in earlier sections, even though it has a trivial input
progressiveness . The problem is to find a strategy to transport by boat all three (wolf,
goat, cabbage) across a river without having one of them eat another in the process
(wolf eats goat, goat eats cabbage .). The boat can hold only one of the three at once. X
represents a transportation strategy (to be found). There is no input to X. Thus, if
there is only one outgoing transition associated with a state, the transition is essential
for progressiveness; if there is more than one outgoing edge, all are non-essential.
This example shows how the cycles are broken in the graph.

Figures 3 and 4 illustrate this example. The co-Büchi specification is shown in
Figure 3 (left). The initial state is a; the stable region consists only of State c. The
automaton of the context is not shown since too many states and transitions make it
unreadable. Figure 3 (right) shows the minimized most general solution automaton. In
this co-Büchi automaton, there is only one state in the stable set. To find a particular
FSM implementation, the most general solution is split into two automata. The path
automaton is not shown, but has 12 cycles. Some states cannot reach the target state f
in the path automaton. We pre-process the path automaton to remove cycles consist-
ing of only essential transitions; and also remove any backward non-essential edges.
This leads to the removals of one state and nine transitions. The resulting core struc-
ture shown in Figure 4 (left) leads to 29 variables and 57 clauses of the SAT instance,
among which 9 clauses are for cycles. It is satisfiable and Figure 4 (right) shows one
particular solution of the path automaton.

6 Complexity Issues and Complementing ND Büchi Automata

After the construction of the product of two Büchi automata and the hiding of some
variables (i and o) the ND B üchi automaton ,u vP↓ is obtained. The last step would be to

complement this to obtain the most general solution. There has been much progress in
complementing ND Büchi automata (see [8] for a good review and the latest construc-
tion). A tight lower bound on the number of states in the complement Büchi automa-
ton is (log)2O n n where n is the number of states in the original Büchi automaton. The
most recent results show an upper bound of (1.06)nn [8] in the number of states. In
general, it is known that subset constructions do not work for co-B üchi (Büchi) auto-
mata but do work for co-looping (looping) automata. The subset construction is upper
bounded by 2n . Thus the procedure in this paper is much less expensive than the ge n-
eral procedure. In addition, experience with the sub-set construction shows that on
practical problems, its behavior is well-behaved, in some cases result ing in a reduced
number of states. However, the cost , for the general co-Büchi case, is that only a su b-
set of the most general solution is obtained.

7 Conclusions

A flow to synthesize an FSM according to co-Büchi specifications was derived. In
general, the method is sound but not complete since the determinization step may ex-
clude some solutions (for co-looping specifications it is complete). Indeed, our proce-
dure might wrongly conclude that no FSM solution exists. The steps used to compute
a general solution automaton are the same as those used in regular finite-word aut o-
mata synthesis. A difference occurs only in the last step, which derives a particular
solution by formulating and solving a corresponding SAT problem. The SAT formu-
lation is also incomplete since not all solutions can be represented. Simple experimen-
tal results demonstrate the correctness of the proposed synthesis procedures on the
examples tried.

Synthesizing to Büchi specifications (useful for liveness properties) is discussed
in Appendix A, and is sound and complete if the specification is a looping automaton
and if the words Büchi and co-Büchi are interchanged in the procedures.

If the specification is non-deterministic, it seems expeditious to complement it
as a Büchi (co-Büchi) automaton. Algorithms for complementation are discussed in
Section 6 and although super-exponential in complexity, the number of states in the
specification may be small. Note that trying to treat ND specifications by simply
complementing the acceptance condition does not work because this results in a for-
all (universal) ND automaton whose product with the fixed part needs to be co mputed.

Acknowledgments

This research was sponsored partly under NSF contract CCR-0312676 and industrial
sponsors, Fujitsu, Intel, Magma, and Synplicity. Guoqiang Wang is sponsored by the
Gigascale Systems Research Center. We greatly thank Orna Kupferman for extensive
reading and feedback and for suggesting the application to looping automata. Thanks
also to Moshe Vardi for very useful comments.

References

[1] C. Demetrescu and I. Finocchi, “Combinational Algorithms for Feedback Problems in
Directed Graphs,” Information Processing Letters, vol. 86, no. 3, pp. 129-136, May 2003.

[2] T. Henzinger, “EE219B: Lecture Notes for Computer Aided Verification,” Spring 2003.
[3] S. Gurumurthy, O. Kupferman, F. Somenzi, and M. Vardi, “On Complementing Nonde-

terministic Buchi Automaton,” The 12th Advanced Research Working Conference on
Correct Hardware Design and Verification Methods, Oct. 2003 (CHARME'03).

[4] M. Roggenbach, “Determinization of Büchi Automata,” in Automata, Logics, and Infinite
Games, pp. 43–60, 2002.

[5] H. Jain, “Automata on Infinite Objects,” B. T ech. Seminar Report ., Indian Institute of
Technology, April 2002.

[6] J. P. Marques-Silva and K. A. Sakallah, “GRASP: A Search Algorithm for Propositional
Satisfiability,” IEEE Transactions on Computers, vol. 48, no. 5, pp. 506–521, 1999.

[7] N. Een and N. Sorensson, “An Extensible SAT-solver,” in SAT 2003.

[8] E. Friedgut, O. Kupferman, and M. Vardi, “Büchi Complementation Made Tighter, 2nd
International Symposium on Automated Technology for Verification and Analysis, Lec-
ture Notes in Computer Science, 2004.

[9] Alan Mishchenko, Robert Brayton, Roland Jiang, Tiziano Villa, and Nina Yevtushenko,
“Efficient Solution of Language Equations Using Partitioned Representations”, EuroDAC,
March 2005.

[10] R. P. Kurshan, “Complementing D eterministic Büchi Automata in Polynomial Time”,
Journal of Computer and System Sciences, 35:59-71, 1987.

[11] O. Kupferman and M.Y. Vardi, “On Bounded Specifications”, In Logic for Programming,
Artificial Intelligence and Reasoning, 2001.

[12] P. J. Ramadge, W. M. Wonham, “The Control of Discrete Event Systems”, Proceedings
of the IEEE, vol. 77 No. 1, 1989.

Appendix A – Büchi Specifications

Büchi specifications are natural for specifying liveness properties, i.e. always event u-
ally something good happens. The overall flow for using Büchi specifications might
seem to be very similar to that discussed for synthesizing to co-Büchi specifications,
with the only difference being the words “Büchi” and “co-Büchi” interchanged. How-
ever, as pointed out earlier, the subset construction for co-Büchi produces a smaller
language and so the procedure is not sound (since its complement produces a larger
language).

On the other hand, if the specification is a looping automaton, then the basic
procedure is correct (but properties are restricted to safety properties) . The product
becomes a co-looping automaton, which can be determinized. On complementing this,
the most general solution becomes a looping automaton. Thus, the only modification

would be in the trimming as described in Sect ions 4.2 and 4.3. Since P% would be a
looping automaton, the loop trimming need not be done since C is a sink; ther e-
fore C and all edges to C must be eliminated. The remaining graph is then made u-
progressive. This is just like that done for finite word automata specifications [9].

For a general deterministic Büchi specification, S, a sound approach would be to
compute its complement using the procedure in [10]. In addition to this procedure be-
ing linear, by adding to the description of the fixed part F, often the specification can
be described with only a few states. After this, the flow is the same as described for

the co-Büchi case, since S is obtained as a Büchi automaton and therefore P% will be a
co-B üchi automaton.

Appendix B–Figures for Wolf-Goat -Cabbage Example

Fig. 3. Co-looping specification (left) and minimized most general automaton solution (right)

Fig. 4. Path automaton after pre-processing (left) and a particular solution of the path autom a-
ton with bad loops removed (right)

c b

done notok

a ok

dcb00100a

goat goat

dcb00210a

dcb01200a

empty,goat

(empty,wolfe)
(wolfe.cabbage)

cabbage

cabbage

wolfe

wolfe

dcb02101a

wolfe

wolfe

dcb01021a

dcbdca11110c

goat

(empty,wolfe)
(empty.goat)

00001adcb

empty
cabbage

empty
cabbage

(empty,wolfe)

cabbage

(empty,wolfe)
(wolfe.cabbage)

00201adcb 00000a
(empty,wolfe)

(wolfe.cabbage)

goat

goat empty,goat

(empty,wolfe)

dcb00121a
goat goat

cabbage

cabbage

dcb01010a dcb01211a

goat goat

dcb01200a

dcb00210a

dcb00100a

empty,goat

(empty,wolfe)
(wolfe.cabbage)

cabbage

cabbage

wolfe

wolfe

dcb02101a

wolfe

wolfe

dcb01021a

(empty,wolfe)
(wolfe.cabbage)

00201adcb 00000a
goat

dcb00121a
goat goat

cabbage

cabbage

final

goat

(empty,wolfe)
(empty.goat)

dcb01010a dcb01211a

cabbage

cabbage

empty,goat

dcb00121a

dcb00100a
(empty,wolfe)

(wolfe.cabbage)
00201adcb 00000a

goat

goat

dcb01200a

dcb02101a
wolfe

dcb00210a
wolfe

dcb01021a

goat

final

goat

(empty,wolfe)
(empty.goat)

dcb01010a dcb01211a

