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Abstract

Consider the problem of designing acomponent that combined with aknown part of a system, called the context,
conforms to a given overall specification. This question arisesin several applications ranging from logic synthesis to
the design of discrete controllers.

We cast the problem as solving abstract equations over languages and study the most general solutions under the
synchronous and parallel composition operators. We also specialize such language eguations to languages associated
with important classes of automata used for modeling systems, e.g., regular languages as counterparts of finite au-
tomata, FSM languages as counterparts of FSMs. Thus we can operate algorithmically on those languages through
their automata and study how to solve effectively their language equations. We investigate the maximal subsets of
solutions closed with respect to various language properties. In particular, weinvestigate classes of the largest compo-
sitional solutions (defined by properties exhibited by the composition of the solution and of the context). We provide
the first algorithm to compute the largest compositionally progressive solution of synchronous equations.

Thisapproach unifiesin aseamless frame previously reported techniques. Asan application we solvethe classical
problem of synthesizing a converter between a mismatched pair of protocols, using their specifications, as well as
those of the channel and of the required service.

1 Introduction

An important step in the design of complex systems is the decomposition of a system into a number of separate
components which interact in some well-defined way. A typical question is how to design a component that when
combined with a known part of the system, called the context, satisfies a given overall specification. This question
arisesin severa applicationsranging from logic synthesisto the design of discrete controllers. Some common network
topologies are shown in Figure 1. To formally solve such problems, the following questions need to be addressed:

e How to model the system, its components and the specification
e How istheinteraction between components defined
e \When does a system behavior satisfy its specification

For the first issue, different types of mathematical machines can be used to model the components of a system: finite
automata (FA), finite state machines (FSMs), Petri Nets (PNs), w-automata (w-FA) are used most commonly. Given a
decision on the first issue, related choices must be made for the other two. For instance, if FSMs are used to model the
system, operators to compose FSMs must be introduced together with the notion of an FSM conforming to another
FSM. For the last issue popular choices are language containment or simulation of one FSM by the other. For FSM
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Figure 1: Patterns of composition. (a) general topology; (b) 2-way cascade (or 2-way series) topology; (c) 1-way
cascade (or 1-way series) topology; (d) rectification topology; (€) controller’s (or supervisory control) topology.



composition, various forms have been described in the literature. For example, one can define an equation over FSMs
of thetype M4 ©® Mx ~ M¢c, where M 4 models the context, M~ models the specification, M x is unknown, ®
stands for a composition operator and = for a conforming relation (e.g., C, language containment). For any given
model of mathematical machines, appropriate equations can be set up and their solutions investigated. More complex
equations or systems of equations can be formulated depending on the topology of the system’s components.

A useful observation is that a certain class of languages is associated with each model of mathematical machine,
therefore we define abstract equations over languages. We introduce two composition operators for abstract lan-
guages: synchronous composition, e, and parallel composition, ¢, and we check conformity by language containment.

A key contribution is the computation of the most general solutions of the language equations A ¢ X C C and

Ao X C C,foundrespectively as.S = A e C, and S = A o C. The derivation sheds lights on the properties required
of a composition operator to yield such a closed formula as largest solution, and explains when different equations
giverise to that same type of solution formula. These formulasturn out to subsume a panoply of specialized solutions
derived in the past for specific composition operators and topologies.

Then we specialize such language equati onsto languages associated with chosen classes of automata used for mod-
eling hardware and software systems, namely, regular languages as counterparts of finite automata, FSM languages as
counterparts of FSMs. Thus we can operate algorithmically on those languages through their automata and study how
to solve effectively their related language equations. It isimportant to find sol utions within the same language class of
the eguation, e.g., when studying FSM language equations we look for solutions that are FSM languages. Moreover,
we are interested in subsets of solutions characterized by further properties of practical interest, e.g., FSM languages
that satisfy the Moore property; thus the valid solutions are restricted further.

Various contributions, investigating partial aspects of the topic of this research, have been published. A complete
survey is provided in Sec. 6 (see dso [15], Chap. 6, and [13]). A direct antecedent of this work is [29] on FSM
equations under parallel composition (called “ asynchronousequations’). A subset of the material on parallel language
equations has been reported at a conference[39].

2 Equationsover Languages

2.1 Languagesand Operators

Definition 2.1 An alphabet is afinite set of symbols. The set of all finite strings over a fixed alphabet X is denoted by
X*. X* includesthe empty string e. A subset L C X * iscalled alanguage over alphabet X .

Some standard operations on languages are:

1. Givenlanguages L, and L, respectively over alphabets X; and X, thelanguage L1 U L- over alphabet X; U X>
isthe union of languages L1 and L.

2. Given languages L, and L., respectively over alphabets X; and X5, thelanguage L1 L = {af8 | a € L1, €
L} over alphabet X; U X, isthe concatenation of languages L, and L. Define L° = {¢}, L: = LL*"'. The
Kleene closure of L isthe set L* = U2, L? and the positive Kleene closure of L is Lt = U, Lt. Finaly,
the [-bounded Kleene closureof Lisset LS! = Ul_ Lt

3. Givenlanguages L, and L, respectively over alphabets X, and X5, thelanguage LN L over alphabet X; N X>
istheintersection of languages Ly and L». If X1 N Xy, = then Ly N Ly = (.

4. Givenalanguage L over alphabet X, thelanguage L = X *\ L over alphabet X isthe complement of language
L. Similarly, givenlanguages L, and L., respectively over alphabets X'; and X, thelanguage L1\ L, = L1NL,
over aphabet X, isthe difference of languages L, and L-.

5. Given alanguage L over aphabet X, the language of al prefixesof wordsin LisInit(L) = {z € X * | Jy €
X* zy € L}.

It is useful to recall the notions of substitution and homomorphism of languages [14]. A substitution f is a
mapping of an alphabet 3> onto subsets of A* for some aphabet A. The substitution f is extended to strings by setting
f(e) = {e} and f(za) = f(z)f(a). An homomorphism h isasubstitution such that h(a) is asingle string for each
symbol a in the alphabet X. We introduce some useful operations on languages.



1. Given alanguage L over aphabet X x V, consider the homomorphismp : X x V — V * defined as

p((z,v)) =v,

then the language

Lyv ={p(e) |a €L}
over alphabet V' isthe projection of language L to alphabet V', or V-projection of L. By definition of substitu-
tion p(e) = e.

2. Given alanguage L over alphabet X and an alphabet 1, consider the substitution : X — 2 (X*V)" defined as
l(z) = {(z,v) |[v eV},

then the language
Ly ={l(e) |« € L}

over alphabet X x V isthelifting of language L to alphabet V', or V'-lifting of L. By definition of substitution
I(€) = {e}.
3. Givenalanguage L over aphabet X U V, consider the homomorphismr : X UV — V * defined as

_Jy ifyeV
T(y)_{e ifye X\V

then the language

Lyv ={r(a) | € L}
over alphabet V' is the restriction of language L to alphabet V', or V-restriction of L, i.e.,, wordsin L yy are
obtained from those in L by deleting all the symbols in X that are not in V. By definition of substitution
r(e) = €.

4. Given alanguage L over alphabet X and an alphabet V/, consider the mappinge : X — 2 (XYY)" defined as
e(z) ={azB |a,B € (V\ X)*},

then the language
Lyv ={e(a) |a € L}
over aphabet X UV isthe expansion of language L to alphabet V', or V-expansionof L, i.e., wordsin L 4y are
obtained from thosein L by inserting anywherein them wordsfrom (V'\ X') *. Noticethat e is not a substitution
andthate(e) = {a | a € V*}.
Given alanguage L over alphabet X, an alphabet V', and a natural number [, consider the mappinge; : X —
2(XU)" defined as
e(r) = {azf | a, € (V\ X)),
then the language
Ly = {ei(@) o€ L}
over aphabet X UV isthel-bounded expansion of language L over aphabet V, or (V,1)-expansionof L, i.e.,
wordsin Ly are obtained from thosein L by inserting anywhere in them words from (V' \ X) <!. Notice that
e; isnot asubgtitution and that e;(¢) = {a | a € V=l

By definition v = 0, 0y =0, Oyv =0, 0qv = 0, Oy vy = 0.

The four previous operators change a language and its a phabet of definition; in particular the operators T and |
vary what components are present in the cartesian product that defines the language alphabet. We assume that each
component has a fixed position in the cartesian product. For instance, let language L | be defined over aphabet I and
language L be defined over alphabet O, then language L | +¢ is defined over alphabet 1 x O and also language L » 41
is defined over aphabet I x O, if by assumption I precedes O in the cartesian product. More precisely, say that we
introduce an ordering of alphabets, 4, by which I is mapped to index i(I) and O is mapped to i(O), theni(I) < i(O)
implies that I precedes O in any cartesian product of aphabets. The ordering is arbitrary, but, once chosen, it holds
through the sequence of language operations.

The following straightforward facts hold between the projection and lifting operators, and between the restriction
and expansion operators. In the following, unless otherwise stated, the union is taken over non-disjoint al phabets.



Proposition 2.1 The following relations hold.

(a) Given alphabets X and Y, and a language L over alphabet X, then (L 4y);x = L.

(b) Given alphabets X and Y, and a language L over alphabet X x Y, then (L | x )4y 2 L.

(c) Given alphabets X and Y (X, Y digjoint), and alanguage L over alphabet X, then (L 4y )yx = L.

(d) Given alphabets X and Y (X, Y disoint), and a language L over alphabet X UY, then (L yx)4v 2 L.

Proposition 2.2 Given alphabets X andY’, alanguage L over alphabet X andastringa € (X xY) *, thenayx € L
iff € LTy.
Given alphabets X andY’, alanguage L over alphabet X andastringa € (X UY) *, thenayx € Liffa € Lyy.

Proposition 2.3 The following distributive laws for 1 and | hold.
(a) Let Ly, Ly belanguages over alphabet U. Then T commutes with U

(L1 U La)tr = Ly 41U Ly 41
(b) Let Ly, Ly belanguages over alphabet U. Then 1 commutes with N
(L1 N La)4r = L1 41 N Lo 41.
(c) Let M, M5 belanguages over alphabet I x U. Then | commutes with U
(MU M) =M yuU M.

(d) Let My, M, belanguages over alphabet I x U. If My = (M )41 (or My = (M1 7)41) then | commutes with
N

(M1 N M2)¢U = M, wn Mo -

Proof. (L1 N LQ)T[ =1 1+ N Lo 1I-

(:>) Ifthestring (il,ul) Ce (ik,uk) S (L1 ﬁLQ)TI,thenul LU € LiNLy; thusu; .. .U € Ly,ur...ug € Lo,
and so (il,ul) . (ik,uk) €l 115 (il,ul) . (zk,uk) € Lo 11, implying (il,ul) . (zk,uk) € Ly 1T N Lo 1I-

(<) If the string (i1, u1) ... (ig,ur) € Ly +1 N Lo 4y, then (i1, u1) ... (ig,ur) € Ly 11 (i1,u1) ... (Ig, u) €
Lo +Is thuswuy ... ug € Ly, uy ... up € Lo, implyingu; ...ux € L1 N Lo, and so (il,ul) . (ik,uk) S (L1 ﬂLz)T[.

Similarly one proves thefirst and third identity involving U.

(M1 N M2)¢U = M, wn Mo -

(=) Ifthestring u ... ux € (My N Ms),r then there exists iy ... iy such that (i1, u1) ... (ig, ur) € My N Mo,
i.e., (il,ul) ...(ik,uk) € My, (il,ul) ...(ik,uk) € My,andsouy ...up € M; U anduq...up € My -

(<) Ifthestringuy ...up € My o N My, 1€, uy...up € My anduy...u, € My p, then there exists
i1...9, suchthat (i1,u1) ... (ig,ur) € M;. Moreover, since My = (Ms )41, fromuy ... u, € M,y it follows
that (ig,u1)...(ik,ur) € M. Insummary, (i1, u1)... (i, ur) € My and (ig,u1) ... (ig,ur) € Mo, implying
(t1,uw1) ... (i, ug) € My N Ms, fromwhichfollowsw, ...ux € (M N M),y O

Corollary 2.1 Let L;,i = 1,...,n belanguages over alphabet U. Then 1 commutes with both U and N

UL =i,
(L =T ro).
Let M;,7i =1,...,n belanguagesover alphabet I x U., Then | commuteswith U
(UM w =M ).

Let M;,i =1,...,n belanguagesover alphabet I x U. If My = (M 1v)+1, - - -, My = (My, yr)+1 (OF @ny collection
of n — 1 languages M ; satisfies this property), then | commutes with N

(" Mi)yw = (M o).
The proof is by induction based on Prop. 2.3.



Proposition 2.4 The following distributive laws for 1} and {} hold.
(a) Let Ly, L, belanguagesover alphabet U. Then {} commutes with U

(LU Lo)gr = Ly 41U Lo g1
(b) Let L, L, belanguages over alphabet U. Then f} commuteswith N
(Li N Lo)gpr = Ly 41 N Lo g1
(c) Let My, M, belanguages over alphabet I U U. Then |} commutes with U
(My U Ms)yu = My yu U Mo gy

(d) Let M;, M, belanguages over alphabet U U. If My = (Ms yu)qr (or My = (My yu)4r) then |} commutes with
N

(M N Ms)yo = My yu N M, yo.

Proof. (L1 N Lg)ﬂ[ =14 41N Lo -

(=) If the string avyus . .. agurarsr € (L1 N La)gr and aq, ..., ok, ap41 € I*, thenwuq...up € Ly N Lo;
thus u; . .ug € Ly, ur...up € Lo, and so a1 u; . O UROEL1 € IR I, Q1UL - .. QRUEQE+1 € Lo s implying
QU] - .- QpUEQg41 € IR 41N Lo -

(<) If the string a;juy . Qpupogrr € Ly a1 N Lo 1 then it holds that a;u . Qpupogrr € Ly NI and
Uy .. apUgOgy1 € Logr; thuswuy ...up € Ly, up...up € Lo, implyingu; ...ur € Ly N Ly, and so it is
dsoaju;g ... QpUEOgt1 € (L1 N Lg)ﬂ[.

Similarly one provesthefirst and third identity involving U.

(M N MQ)l}U = M; yu N M> yy.

(=) Ifthestringuy ... u, € (MyNMs)yu thenthereexists ay, . . . o, a1 € I* suchthat it holdsthat the string
a1y ... QR € My N M, i€, ajug ... opupogr; € My, aug ... qpugagry € Mo, and SO uy ... uy €
MlUU andu;...u, € MQUU.

(<) Ifthestring uy ... ug € M, wo N Ms yy, i.e,ur...up € My WU anduy...up € My YU, then there exists
Q1 ...0EQk+1 € I* such that aqug ... QU1 € M. Moreover, since My = (Mg UU)ﬂI: fromwuy ... ur €
M> yy itfollowsthat ajus ... agpupog4r € Mo, Insummary, aqu; - . . apugar+1 € My and aiug . .. apupag+1 €
Mo, implying ajug ... agupoger € My N My, fromwhich followsuy ... ug € (M1 N Ma)yy. D

Example 2.1 Theidentity (M1NMs)yy = My yuN M, yp doesnot hold without an additional hypothesis. Consider
I ={a,b},U = {u}, M1 = {au}, My = {bu}, then (M1 N Ms)yv = Oyv = Dand M, yo N Mo yu = {u}Nn{u} =
{u}. Notice that au and bu are words of length 2 on the alphabet I U U.

Proposition 2.5 The following equivalences hold:

(a) Let L be alanguage over alphabet I, then L+o = 0 & L = (. (b) Let L be alanguage over alphabet I x O, then
Lio =0« L =0.(c) Let L bealanguage over alphabet I U O, then L 10 = 0 & L = 0. (d) Let L be alanguage
over alphabet I U O, then Lo =0 < L = 0.

Proof. The proofs are straighforward; implication = of statement (d) is true because, even in the case that all strings
in L are defined only over symbols from alphabet I, their restriction to aphabet O yields the empty string ¢ (i.e.,
€ € Lyo # 0) andsofrom L # () followsthat Lyo # 0. O

2.2 Finite Automata and Regular Expressions

Definition 2.2 A finite automaton (FA) is defined as a 5-tuple FF = (S, X, A, r, Q). S represents the finite state
space, X represents the finite alphabet, and A C ¥ x S x S isthe next staterelation, such that n € S isa next state
of present state p € S on symbol i € X iff (i,p,n) € A. Theinitial or reset stateisr € S and Q@ C S is the set of
final or accepting states. A variant of FAs allows the introduction of e-moves, meaningthat A C (X U {¢)} x S x S.

The next state relation can be extended to have as argument stringsin ¥* (i.e, A C ¥* x S x S) as follows:
(pi,s,s") € Aliffthereexists s’ € S suchthat (p,s,s’) € Aand (i,s',s") € A.



Astring z is said to be accepted by the FA F' if there exists a sequence of transitions corresponding to z such that
thereisa state v’ € @) for which A(z,r,r"). The language accepted by F', designated L ,.(F'), is the set of strings
{z |3r" € Q [A(z,r,r")]}. Thelanguage accepted or recognized by s € S, denoted L ,.(F|s) or L,.(s) when F' is
clear fromthe context, isthe set of strings {z |A(z, 7, s)}.

If for each present state p and symbol i thereis at least one next state n such that (i,p,n) € A, the FAissaid to
be complete.

An FAisadeterminitic finite automaton (DFA) if for each present state p and symbol i thereis exactly one next
staten such that (i, p,n) € A. Therelation A can be replaced by the next state function §, definedasd : ¥ x S — S,
wheren € S isthe next state of present state p € S on symbol i € X iff n = 6(¢,p). AnFAthat isnotaDFAisa
non-deter ministic finite automaton (NDFA).

Astring z is said to be accepted by the DFA F' if §(z, ) € Q. Thelanguage accepted by F', designated L ,.(F'), is
the set of strings {z |6(z,r) € @}. The language accepted or recognized by s € .S, denoted L ,.(F'|s) or L,.(s) when
F isclear fromthe context, is the set of strings {z |6(z, ) = s}.

The languages associated with finite automata are the regular languages, defined by means of regular expressions.
Definition 2.3 Theregular expressions over an alphabet X are defined recursively as follows:

1. Pisaregular expression and denotes the empty set.

2. eisaregular expression and denotesthe set {¢}.

3. For eacha € ¥, a isaregular expression and denotesthe set {a}.

4

. If r and s are regular expressions denoting the languages R and S, respectively, then (r + s), (rs) and (r *) are
regular expressionsthat denotethe sets R U S, RS and R*, respectively.

The sets denoted by regular expressions are the regular languages.

Regular languages are closed under union, concatenation, complementation and intersection. Also regular languages
are closed under projection, lifting and restriction, because they are closed under substitution [14]. Regular languages
are closed under expansion, because Sec. 3.2 describes an agorithm that, given the finite automaton of a language,
returns the finite automaton of the expanded language.

2.3 Classesof Languages
We introduce several classes of languages used later in the paper.

Definition 2.4 Alanguage L over alphabet X isprefix-closed if Va € X*Vz € X [ax € L = a € L]. Equivalently,
Lisprefix-closed iff L = Init(L).

Definition 2.5 Alanguage L over alphabet X = I x O isI-progressiveif
Vae X*VielJoeOla€e L= al(io)€ L]
Definition 2.6 Alanguage L over alphabet I x O isI -defined if L; = I*.

If alanguageover X = I x O isI-progressiveit is aso I -defined, but the converse does not hold.

Example2.2 The language L = {e + @101 + i102(i101)*} is I} -defined, but not I-progressive, as witnessed by
a =1i101 € Landi = i; for which thereisno o such that o io € L.

Definition 2.7 A language L over alphabet X = I x O isMoore with respect to alphabet 7, if
Va € LV(i,0) € X V(i',0') € X [a (i,0) € L = [a (i',0') € L = a (i',0) € L]].
Definition 2.8 Alanguage L C (I0O)* over alphabet I U O (I and O digoint) is IO-prefix-closed if

Va € (I0)*Vio € IO [wio € L= a € L].



Definition 2.9 Alanguage L C (I0)* over alphabet I U O (I and O digoint) is [O-progressiveif
Vae (I0)*VieIJoeOlae L = aio€ L]

Definition 2.10 A language L C (IU*O)* over alphabet I UU U O (I, U and O digjoint) is [ *O-progressive if

Yae (IU*O)*Vie I e U*Fo € O a € L = aifo € L].

Example2.3 a) Let I = {i1,i2}, O = {01,002} and U = {u,us}. Thelanguage L = {(i1uiuduio; + isufor)*}
is I*O-progressive, since any word in L can be extended to a word in L by suffixes starting with either i, or i,. The
corresponding automaton is shown in Fig. 2(a).

b) Let [ = {il,iQ}, 0= {01,02} andU = {Ul}. ThelanguageL = {(i101)* + (ilol)*iQUi(OQ(il’uTOQ)*} is not
I*O-progressive, since the words in the set {i>uto2(i1ufo2)*} arein L, but when i = i» thereisno g € U* and no
o € O suchthat a iffo € L (eg., @ = iau10, cannot be extended by any suffix starting with i5). The corresponding
automaton is shown in Fig. 2(b).

Definition 2.11 Alanguage L over alphabet / U O (I and O digjoint) is I ;-defined if Ly; = I*.
An IO-progressive languageis Iy -defined, so is an I*O-progressive language, but the converse does not hold.

Definition 2.12 Alanguage L over alphabet X U U (X and U digoint) is U-deadlock-freeif

Va € (XUU)*VueU3IBeU Iz € X [au € L= aufz € L].

Any language L C (IU*0O)* is U-deadlock-free (because no word ending by a symbol « € U belongs to the lan-
guage).

Example2.4 a) Le X = 1UO, I = {il,iQ}, 0= {01,02} andU = {Ul,UQ}. ThelanguageL = {(il(ulugul)*ol)*+
(i1 (uuiug )*o1)* i usuy } is U-deadlock-free, because any word in the language terminating by  ; or u» can be ex-
tended by suffix », to a word in the language terminating by o, . The corresponding automaton is shown in Fig. 2(c).

b) Lee X =TUO, I = {il,ig}, 0= {01,02} and U = {Ul,UQ,Ug}. ThelanguageL = {il(u1u§U3)*ol)* +
(11 (urudus)*or ) Yirurul + (i1 (uruiug)*or)*iiuiulu us} is not U-deadlock-free, since the words in the collection
{(i1 (urudug)*or ) *iruulus ul} cannot be extended to wordsin L (e.9., & = i1 uqu2uy). The corresponding automa-
ton is shown in Fig. 2(d).

Definition 2.13 A language L over alphabet X U U (X and U digoint) is U-convergent if Va € X * the language
aqu N L isfinite, otherwiseit is U-diver gent.

Example2.5 The language L = {iu*o} where X = {i,o} and U = {u} is U-divergent, as witnessed by the
string a = 0 € X whose expansion includes the infinite set {iu*o} coinciding with L: {aqu} = {(i0)p{u}} =
{u*iu*ou*} D {iu*o} = L.

2.4 Composition of Languages

Consider two systems A and B with associated languages L(A) and L(B). The systems communicate with each other
by achannel U and with the environment by channels I and O. We introduce two composition operators that describe
the externa behaviour of the composition of L(A) and L(B).

Definition 2.14 Given the digoint alphabets I, U, O, language L, over I x U and language L, over U x O, the
synchronous composition of languages L, and L, isthelanguage® [(L1 )10 N (L2)+1]y1x0, denotedby Ly e/ o Lo,
defined over I x O.

Definition 2.15 Given the digjoint alphabets I, U, O, language L over I U U and language L over U U O, the
parallel composition of languages L; and L. is the language [(L1)qo N (L2)qr]yruo, denoted by Ly oruo Lo,
defined over I U O.

Given alphabets I, U, O, language L, over I UU and language L- over U U O, thel-bounded parallel composi-
tion of languages L, and L isthelanguage[(L1)40 N (L2)4r N (TU O){*T(U’,)]MUO, denoted by L, ¢, L2, defined
over IUO.

lusethe sameorder I x U x O inthelanguages (L1 )10 and (L2)17.
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Figure 2: (a) Finite automaton of the language described in Example 2.3-a); (b) Finite automaton of the language
described in Example 2.3-b); (c) Finite automaton of the language described in Example 2.4-a); (d) Finite automaton
of the language described in Example 2.4-b).



For ease of notation, we will omit the aphabet from the symbol of synchronous and parallel composition, unless
unclear from the context. By definition of the operations v, +v, yv, qv, ¢(vy) it follows that DeL =Lel) =0,
@OL:LOQZQ,QOlL:Lol@:@.

When [ = oo the definition of [-bounded parallel composition reduces to the definition of parallel composition of
languages, because then (I U O)?r(U,l) becomes (I U O U U)*, that is the universeover I U O U U, and so it can be
dropped from the conjunction.

Comment The definition of parallel composition justifies a-posteriori why the expansions operator e is not defined
to be a substitution, i.e., e(e) # {e}. Consider alanguage A = ((io)*(uv)*)* and alanguage B whatsoever. The par-
allel composition of A and B should be equal to thelanguage (i0) *, because B should not affect the I U O behavior of
A. Now suppose B = {¢}. If wewould definee(e) = {e}, thenitwouldbe AN B ruo = ((i0)* (wv)*)*N{e}qruo =
((io)*(uv)*)*N{e} = {e}; if wedefineinstead {e} ;uo = (IUO)* thenitis ANByruo = ((i0)* (wv)*)*N{e}prvo =
((io)*(uv)*)* N (i U o)* = (io)*, that is the expected result.

Variants of synchronous composition are introduced in [6] as product, x (with the comment sometimes called
completely synchronous composition), and in [21] as synchronous parallel composition, ®. Variants of parallel com-
position are introduced in [6] as parallel composition, || (with the comment often called synchronous composition),
and in [21] asinterleaving parallel composition, ||; the same operator was called asynchronous composition in [29].
These definitions were usually introduced for regular languages; actually they were more commonly given for finite
automata.

It has al so been noticed by Kurshan [21] and Arnold [1] that asynchronous systems can aso be modeled with the
synchronous interpretation, using null transitions to keep a transition system in the same state for an arbitrary period
of time. Kurshan [21] observesthat: “While synchronous product often is thought to be a simple -even uninteresting! -
type of coordination, it can be shown that, through use of nondeterminism, this conceptually simple coordination
servesto model the most genera ‘ asynchronous’ coordination, i.e., where processes progress at arbitrary rates relative
to one another. In fact the ‘interleaving’ model, the most common model for asynchrony in the software community,
can be viewed as a specia case of this synchronous product.” A technical discussion can be foundin[22].

In the sequel it will be useful to extend some properties of languages to the composition of two languages. As
examples, weiillustrate the extension for I-progressive and I *O-progressive languages.

Definition 2.16 Given alanguage A over alphabet I x U, alanguage B over alphabet U x O is A-compositionally
I-progressiveif thelanguage L = A1o N By over alphabet X = I x U x O isI-progressive, i.e., Va € X* Vi €
I3(u,0) €U xO[a€ L= al(iu,o) € L]

Definition 2.17 Given alanguage A over alphabet I U U, alanguage B over alphabet U U O is A-compositionally
I*O-progressiveif thelanguage L = Ao N Bty C (IU*O)* over alphabet X = T UU U O (I, U and O digoint)
isI*O-progressive, i.e, Va € (IU*O0)*Vie I3 € U*Fo€ Ola € L= aifio € L.

Defn. 2.17 ensures that the composition does not fall into a deadlock.
When clear from the context, instead of A-compositionally we will write more simply compositionally.

2.5 Solution of Equations over Languages
251 Language Equationsunder Synchronous Composition

Giventhedigoint dphabets I, U, O, alanguage A over alphabet I x U and alanguage C' over aphabet I x O, consider
the language equation
AeX CC. D

Definition 2.18 Given digoint alphabets I, U, O, alanguage A over alphabet I x U and alanguage C' over alphabet
I x O, language B over alphabet U x O iscalled a solution of theequation Ae X C C'iff Ae B C (. Asolutionis
called the largest solution if it contains any other solution. B = ) isthetrivial solution.

Theorem 2.1 The largest solution of the equation A ¢ X C C isthelanguage S = A e C.

Proof. Consider astring a € (U x O)*, then a isin the largest solution of A ¢ X C C' iff Ae {a} C C and the
following chain of equivalencesfollows:

Ae{a}CC &
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(Aro N{atin)xoNC =0 & by Prop.2.1(a) C = (Cyv)rxo
(Ato N{a}t1)irxo N (Cru)irxo =0 & by Prop. 2.3(d) since ((Ctv)irxo)rw = Cru
(Ao N{a}rNCru)iixo =0 <& by Prop. 2.5(b)
Ason{a}yNCiy=0 < by Prop. 2.5(b)
(Aro N{atrrNCru)iuxo =0 & by Prop. 2.3(d) since {a}rr = ({a}trr)uxo0)tr
({a}in)wxo N (Ao NCru)oxo =0 & by Prop. 2.1(a) ({a}sr)uxo = {a}

{a} N (A0 NCrv)oxo =0 &
a g (Ao NCrv)uxo <
a € (Ao NCiv)wxo ©

acAeC

Thereforethe largest solution of the language equation A ¢ X C C isgiven by the language

S=AeC. @)

Corollary 2.2 Alanguage B over alphabet U x O isasolutionof Ae X C Ciff BC AeC.

Let S be the largest solution of the equation A ¢ X C C. Itisof interest to investigate subsets of S that satisfy
some further properties, e.g., being prefix-closed, progressive, etc.

If S is prefix-closed then S is the largest prefix-closed solution of the equation. However, not every non-empty
subset of S inherits the feature of being prefix-closed. If .S is not prefix-closed, then denote by Pref(.S) the largest
prefix-closed subset of S. The set Pref(S) is obtained from S by deleting each string that has a prefix notin S.

Proposition 2.6 If Pref(S) # 0, then Pref(S) isthe largest prefix-closed solution of the equation A ¢ X C C.
If Pref(S) = 0, then the equation A ¢ X C C' has no prefix-closed solution.
If the language S does not include the empty string, then A ¢ X C C' has no prefix-closed solution.

If S is U-progressive (S is a language over aphabet U x O), then S is the largest U-progressive solution of
the equation. However, not each non-empty subset of .S inherits the feature of being U-progressive. If S isnot U-
progressive, then denote by Prog(S) the largest U-progressive subset of S. The set Prog(S) is obtained from S by
deleting each string a such that, for somew € U, thereisno o € O for which a(u,0) € S.

Proposition 2.7 If Prog(S) # 0, then the language Prog(.S) is the largest U-progressive solution of the equation
Ae X CC(C.
If Prog(S) = ), then the equation A ¢ X C C hasno U-progressive solution.

25.2 Language Equationsunder Parallel Composition

Given pairwise digoint aphabets I, U, O, alanguage A over alphabet I U U and alanguage C' over aphabet I U O,
consider the language equation
AoX CC. ©)

Definition 2.19 Given pairwise digoint alphabets I, U, O, alanguage A over alphabet I U U and alanguage C' over
alphabet 7 U O, language B over alphabet U U O iscalled a solution of theequation A« X C C'iff Ao B C C. The
lar gest solution is a solution that contains any other solution. B = (§ isthetrivial solution.

Theorem 2.2 Thelargest solution of the equation A ¢ X C C isthelanguage S = A o C.

Proof. Consider astring a € (U U O)*, then « isin the largest solutionof Ao X C C iff Ao {a} C C andthe
following chain of equivalencesfollows:

Ao{a} CC &

11



(Aqo N{alsr)yruoNC =0 & by Prop.2.1(c) C = (Cyv)yrvo
(Ago N{a}yr)yruo N (Chu)yrvo =0 & by Prop. 2.4(d) since ((Cov)yruo)yv = Cou
(Aqo N{alsr N Chu)yruo =0 & by Prop. 2.5(d)
Ayon{atqprNChu =0 < by Prop. 2.5(d)
(Apo N{atar N Chu)yvuo =0 & by Prop. 2.4(d) since {a}qr = (({a}nr)yvuvo)nr
({a}sn)yvuo N (Ao NChv)yruo =0 & by Prop. 2.1(c) ({a}yr)yvuvo = {a}
{a} N (440 NChoyvuo =0 &
ad (Ayo NChv)yvuo &
a € (A0 NChv)puuo &
a€AoC
Therefore the largest solution of the language equation A ¢ X C C isgiven by the language
S=4A0C. 4)

Corollary 2.3 Alanguage B over alphabet U U O isasolutionof Ao X C Ciff BC A< C.

Proposition 2.8 If S is U-convergent, then S is the largest U-convergent solution of the equation, and a language
B # D isaU-convergent solution iff B C S.

When S is not U-convergent the largest U-convergent solution does not exist, and any finite subset of S isa U-
convergent solution. An analogous proposition and remark hold for S-compositionally U -convergent solutions.

2.5.3 Language Equationsunder Bounded Parallel Composition

Theorem 2.3 The largest solution of the equation A ¢; X C C isthelanguage

S = (Ayo N Cywy))yvuo-

Proof.
Aoj{a}CC &
(Apo N{apr NI U O yuoNC =0 &
Ao N{alrNChupn =0 &
a ¢ (Ao NChwplyvuo &
a € (Ago N Chuy)uvuo
0

3 Equationsover Finite Automata

3.1 Equationsover Mathematical Machines

Language equations can be solved effectively when they are defined over languages that can be manipulated algo-
rithmically. Usually such languages are presented through their corresponding mathematical machines, e.g., finite
automata for regular languages. In the following sections, equations over various classes of automata are studied, like
FAs and FSMs, specializing the theory of equations to their associated languages. A key issue to investigate is the
closure of the solution set with respect to a certain type of language, e.g., when dealing with FSM language equations
we require that the solutions are FSM languages. This cannot be taken for granted, because the general solution of
abstract language equations is expressed through the operators of complementation and composition, which do not
necessarily preserve certain classes of languages.
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3.2 Solution of Equations over Regular Languages

Two well-known results [14] are that non-deterministic finite automata are equivalent (w.r. to language equality)

to deterministic ones and that regular expressions are equivalent to finite automata. By applying the algorithm of

subset construction one converts a NDFA into an equivalent DFA (complete by construction). Given an NDFA F' =

(S,%, A, r,Q), theprocess of subset constructionbuildsthe DFA F' = (25, %, 6,7, Q'), where 1) the states 5 € 2° are
the subsets of S, 2) thetransition relationis (i, §) = Uses{s’ | (i,s,s') € A} and 3) agtateisfina, i.e, § € Q' C 27,
iff 5N Q # 0. Since many of the states in 2° are unreachable from the initial state, they can be deleted and so the
determinized automaton usually has fewer states than the power set. To make aNDFA completeit is not necessary to
apply the full-blown subset construction, but it sufficesto add a new non-accepting state s ; whose incoming transitions
are (i, s, sq) for al i, s for which there was no transition in the original automaton. By a closure construction [14], an

NDFA with e-moves can be converted to an NDFA without e-moves; subset construction must be applied at the end to

determinizeit.

The equivalence of regular expressions and finite automata is shown by matching each operation on regular ex-
pressions with a constructive procedure that yields the finite automaton of the result, given the finite automata of the
operands. For the most common operations (union, concatenation, complementation, intersection) see [14]. Here we
sketch the procedures for projection, lifting, restriction and expansion:

projection (|) GivenFA F that acceptslanguage L over X x V', FA F'' that acceptslanguage L |y over X isobtained
from F' by replacing each edge ((z,v), s, s') by the edge (z, s, s’) and then applying subset construction to
determinizeit.

lifting (1) Given FA F that accepts language L over X, FA F' that accepts language L+y over X x V' is obtained
from F by replacing each edge (z, s, s') by the edges ((z,v), s,s'), Yv € V.

restriction (}) GivenFA F that acceptslanguage L over X UV, FA F' that acceptslanguage Ly over V isobtained
from F" by the following procedure:

1. Vz € X \ V, changeevery edge (z, s, s’) intothe edge (e, s, s'), i.e., replacethesymbolsz € X \ V by e.

2. Apply the closure construction to obtain an equivalent deterministic finite automaton without e-moves (by
a procedure similar to the subset construction, where the states of the final automaton are subsets of the
states of the original automaton, and e-moves are handled by the mechanism of e-closure[14]).

expansion (ff) GivenFA F that acceptslanguage L over X, FA F'' that acceptslanguage Loy over XUV (X NV =
() is obtained from F' by adding for each state s, Vv € V, the edge (self-loop) (v, s, s).

l-expansion (ft;) Given FA F' that accepts language L over X, FA F'' that accepts language L v, [ integer, over
XUV (X NV =()isobtained from F by the following procedure:

1. Theset of states S’ of F” isgiven by
S'=8SU{(s,j)|s€S,1<j<I}.
2. Thenext staterelation A’ of F' isgiven by
A" = AU {(v,s(s1)|veV,seS}
U{(v,(s5,5),(s,5+1)) [veV,s€S51<j<l}
U{(,(s,5),8') | (z,s,8") € A, 1 <j <1}
3 r=rand@ = Q.

The procedures for projection, lifting and restriction guarantee the substitution property f(e) = .

Given that all the operators used to express the solution of regular language equations have constructive counter-
parts on automata, we conclude that there is an effective way to solve equations over regular languages.

Asan example, given aregular language equation A e X C C, where A isaregular language over aphabet I x U,
Cisover I x O, and the unknown regular language X isover U x O, an algorithmto build X follows.

Procedure 3.1 Input: Regular language equation A ¢ X C C'; Output: Largest regular language solution X

13



1. Consider thefinite automata F'(A) and F'(C') corresponding, respectively, to regular languages A and C'.

2. Determinize F(C') by subset construction, if itisaNDFA. The automaton F'(C) of C' is obtained by interchang-
ing the sets of accepting and non-accepting states of the determinization of F'(C').

3. Lift the language A to O by replacing each label (i, u) of atransition of F'(A) with all triples (i, u,0), o € O.
Lift thelanguage C to U by replacing each label (i, 0) of atransition of F/(C) with al triples (i,u,0), u € U.

4. Build the automaton F(A N C) of theintersection A N C. The states are pairs of states of the lifted automata
F(A) and F(C), theinitial state is the pair of initial states, and a state of the intersection is accepting if both
states of the pair are accepting. There is a transition from the state (s1, s2) to the state (s, s5) labelled with
action (i, u,0) in F(A N C), if there are corresponding transitions labelled with (i, u, o) from state s, to state

sy in F(A) and from s, to s}, in F/(C).

5. Project F(ANC) toU x O to obtain F(A e C) by deleting i from the labels (i, u, 0). Projection in general
makes the finite automaton non-deterministic.

6. Determinize F((A o C) by subset construction, if it is a NDFA. The automaton F(A e C)) corresponding to the
regular language solution X = A e C is obtained by interchanging the sets of accepting and non-accepting

states of the determinization of F'(A e C').

Notice that Proc. 3.1 holds for any regular language, not only for prefix-closed languages as in restricted versions
reported in the literature.

A companion procedure to solve the regular language equation under parallel composition A ¢ X C C isobtained
from Proc. 3.1, after replacing the cartesian product with union, projection with restriction and lifting with expansion.
The largest solution of parallel equations for prefix-closed regular languages had been known aready in the process
algebraliterature [25, 32, 24],

4 Equationsover Finite State Machines

4.1 Finite State Machines

Definition 4.1 A finite state machine (FSM) is a 5-tuple M = (S,1,0,T,r) where S represents the finite state
space, I representsthefinite input space, O represents the finite output spaceand 7' C I x S x S x O isthetransition
relation. On input 7, the FSM at present state p may transit to next state » and produce output o iff (i, p,n,0) € T.
Sater € S representstheinitial or reset state. e denote the projection of relation 7 to I x .S x S (next state relation)
byT, CIxSxS,ie,(iss)eT, < Jol(is,s’, o) € T; smilarly, we denote the projection of relation T to
IxSxO (outputrelation) by T, C I xS xO,i.e, (i,s,0) € T, & 3s' (i,s,5',0) € T. Sometimes § is used instead
of T, and X instead of T',. If at least one transition is specified for each present state and input pair, the FSM is said
to be complete. If no transition is specified for at least one present state and input pair, the FSM is said to be partial.
An FSM issaid to betrivial when T' = (), denoted by M ..

It is convenient to think of the relations T',, and T, asfunctionsT,, : I x S — 25 and T, : I x S — 2°.

Definition 42 An FSM M’ = (S',I',0',T',r") isa submachineof FSM M = (S,1,0,T,r)if S C S, I' C I,
O CO,”=r,andT' CT,i.e,T isaresriction of T' to the domain of definition I’ x S’ x S’ x O'.

Definition 4.3 A deterministic FSM (DFSM) isan FSM where for each pair (i, p) € I x S, thereisat most one next
state n and one output o such that (i, p,n,0) € T, i.e, thereis at most one transition from p under i. An FSM that is
not a DFSM is a non-deter ministic finite state machine (NDFSM).

In aDFSM the next state  and the output o can be given, respectively, by a next state functionn = T',, (i, p) and an
output function o = T, (i, p).

Definition 4.4 An NDFSM is a pseudo non-deterministic FSM (PNDFSM) [38], or observably non-deter ministic
FSM [8], or observable FSM [34], if for each triple (i, p,0) € I x S x O, thereis at most one state n such that
(i,p,n,0) €T.
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The qualification “non-deterministic” is because for a given input and present state, there may be more than one
possible output; however, edges (i.e., transitions) carrying different outputs must go to different next states. Thefurther
qudification “pseudo” non-deterministic is because its underlying finite automaton is deterministic. In a PNDFSM
the next state n, if it exists, is unique for a given combination of input, present state and output, so it can be given by
a partial next state function n = T, (4, p, 0). Since the output is non-deterministic in general, it is represented by a
relationT, C I x S x O.

Definition 4.5 A complete FSM is said to be of Moore type if (i, p,n,0) € T impliesthat for all i’ thereisn’ such
that (i’, p,n’,0) € T 2.

The transition relation 7" of an FSM can be extended in the usual way to arelationon I * x S x S x O*: givena
present state p and an input sequence iy .. .i; € I*, (i1 ...ig,p,n,01 ...0r) € T iff thereisasequence s; .. . sg+1
suchthat s; = p,...,sgr1 =nandforeachj =1,...,kitholdsthat (i;,s;,s;+1,0;) € T. A similar extension can
be defined for T}, and T,.

In this paper FSMs are assumed to be pseudo non-deterministic, unless otherwise stated. It is aways possible to
convert ageneral NDFSM into a PNDFSM by subset construction.

4.2 Languagesof FSMs

We now introduce the notion of a language associated to an FSM. This is achieved by looking to the automaton
underlying agiven FSM. For our purposes, we define two related languages: one over the alphabet I x O and the other
over the alphabet I U O, naturally associated, respectively, with synchronous and parallel composition, as it will be
seen later.

For alanguage over I x O, the automaton coincides with the original FSM where al states are made accepting
and the edges carry alabel of the type (i, 0).

For a language over I U O, the automaton is obtained from the original FSM, by replacing each edge (i, s, s ', 0)
by the pair of edges (i, s, (s, %)) and (o, (s, i), s") where (s, ) is anew node (non-accepting state). All original states
are made accepting. The automaton is deterministic becausefrom (i, s, s1, 01) and (i, s, s, 02) the edges (4, s, (s, 1)),
(01, (s,1),s]) and (02, (s,1), ) are obtained (the same edge (4, s, (s, 7)) works in both cases).

Definition 4.6 GivenanFSM M = (S,1,0,T,r), consider thefiniteautomaton F'(M) = (S, I x O, A, r, S), where
((i,0),s,s") € Aiff (i,s,s',0) € T. Thelanguage accepted by F'(M) is denoted L (M), and by definition is the
x-language of M at stater. Smilarly L (M) denotes the language accepted by F'(M) when started at state s, and
by definition isthe x-language of M at state s.

Definition 4.7 Given an FSM M = (S,1,0,T,r), consider the finite automaton F(M) = (SU (S x I),I U
O,A,r,S), where (i, s, (s,i)) € A A (o,(s,1),s") € Aiff (i,s,5',0) € T. The language accepted by F(M) is
denoted L;’(M), and by definition is the U-language of M at state ». Smilarly LY (M) denotes the language ac-
cepted by F'(M) when started at state s, and by definition is the U-language of M at state s. By construction,
LY (M) C (I0)*, where IO denotesthe set {io | i € I,0 € O}.

In both cases, € € L, (M) becausetheinitial state is accepting. An FSM M istrivial iff L. (M) = {e}.

Definition 4.8 Alanguage L is an FSM language if there is an FSM M such that the associated automaton F'(M )
accepts L. The language associated to a DFSM is sometimes called a behaviour 3.

Remark When convenient, we will say that FSM M has property X if its associated FSM language has property X .

Definition 4.9 Satet of FSVI M g issaid to beareduction of state s of FSM M 4 (M 4 and M g are assumed to have
the same input/output set), written ¢ < s, iff L;(Mp) C Ls(M4). Satest and s are equivalent states, written ¢ = s,
ifft <sands <t,i.e,when L;(Mpg) = Ls(M4). An FSM with no two equivalent statesis a reduced FSM.
Smilarly, Mp isareduction of M 4, Mp < M4, iff rar,, theinitial state of M g, isareduction of s, , theinitial
stateof M 4. When Mg < M4 and M 4 < Mpg then M 4 and M g are equivalent machines, i.e.,, M4 = Mp.

2Notice that this definition allows for NDFSMs of Moore type, contrary to the more common definition of Moore type: for each present state p
thereis an output o such that all transitions whose present state is p carry the same output o.
3The language associated to a NDFSM includes a set of behaviours.
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For complete DFSMss reduction and equivalence of states coincide. Given an FSM language, there is a family of
equivalent FSM's associated with it; for simplicity we will usualy speak of the FSM associated with a given FSM
language. In this paper, FSMs are assumed to be reduced, unless stated otherwise.

An FSM language is regular, whereas the converseis not true.

Theorem 4.1 A regular language over alphabet 7 x O is the language of a complete FSM over input alphabet
and output alphabet O iff L is prefix-closed and I-progressive. A regular language that is prefix-closed, but not
I-progressive, is the language of a partial FSM.

Notice that the coincidence of the notions of complete FSM and 7-progressive associated language is due to the fact
that FSMs are assumed to be PNDFSMs, i.e,, their underlying automaton is deterministic, therefore a word has a
unique run (sequence of transitions), from which an extension is possible under any input.

Theorem 4.2 Aregular language over alphabet 7 U O is the language of a complete FSM over input alphabet I and
output alphabet O iff L C (I0)*, L is IO-prefix-closed and IO-progressive. A regular language L C (10)* that is
IO-prefix-closed, but not 7O-progressive, is the language of a partial FSM.

Given aregular language L over alphabet I x O, an agorithm followsto build L 5™ | the largest subset of L that
isthe x-language of an FSM over input aphabet I and output alphabet O.

Procedure4.1 Input: Regular Language L over I x O; Output: Largest FSM language L F'S™ over I x O.
1. Build adeterministic automaton A accepting L.
2. Deleteal nonfinal states together with their incoming edges.

3. If the initial state has been deleted, then L¥SM = (). Otherwise, let A be the automaton produced by the
procedure and L SM the language that A accepts. If there is no outgoing edge from the initial state of A, then
A acceptsthetrivial FSM language LSM = {¢}, otherwise it accepts a nontrivial FSM language L75M . Any
FSM language in L must be asubset of LF5M

To obtain the largest subset of L that is the language of a complete FSM we must apply one more pruning a gorithm.

Procedure 4.2 Input: FSM Language L ¥ over I x O; Output: Largest I-progressive FSM language Prog(L5M)
over I x O.

1. Build adeterministic automaton A accepting L 75M

2. lteratively delete al states that have an undefined transition for some input (meaning: states such that 3; € I
with no o € O for which there is an outgoing edge carrying the label (4, 0)), together with their incoming edges,
until theinitial state is deleted or no more state can be del eted.

3. If theinitial state has been deleted, then Prog(L"5M) = {). Otherwise, let A be the automaton produced by the
procedure and Prog(LT5M) the languagethat A accepts. Any I-progressive FSM languagein L 5™ must be
asubset of Prog(LF5M),

Theorem 4.3 Procedure 4.2 returns the largest I-progressive subset of L75M

Proof. Defineastate s of the automaton A representing L 5™ as I, -nonprogressiveif for somei € I andforall o € O
thereis no state reached from s under atransition labeled with (i, 0). State s is I ,-nonprogressive, k > 1, if for some
i € I andfor @l o € O each state reached from s under the transition labeled (4, 0) is I ;-nonprogressive, j < k. State
s is I-nonprogressive if it is Ij,-nonprogressive for some k > 1. The language Prog(L "5M) is represented by the
automaton Prog(A), obtained from A by removing iteratively the I-nonprogressive states and the related transitions.

We must provethat if K C LFSM and K is I-progressivethen K C Prog(L*5M). The proof goes by induction.
If K isI-progressive, thereisno string in K that takes the automaton A from theinitial state to an I ;-nonprogressive
state. Suppose now by induction hypothesisthat no string in K takes A to an I ,.-nonprogressivestate, £ > 1. We must
concludethat, if K is I-progressive, thereis also no string that takes A to an I ; -nonprogressive state, otherwise, by
definition of I} 1 -nonprogressive, K has a string that takes A to some I j-nonprogressive state, j < k. Therefore no
string in K takes the automaton A to anonprogressive state, i.e., K C Prog(LT5M). O
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Proposition 4.1 An FSM whose language is L™ or Prog(L¥S™) can be deduced trivially from A (obtained
according to Proc. 4.2) by interpreting each label (4, 0) as an input/output pair i/o.

Proposition 4.2 Given aregular language L over alphabet I x O, let M bean FSM over input alphabet I and output
alphabet O. The language L X (M) of M iscontainedin L iff L X (M) C L¥SM,

Proof. Show that L (M) C L = LX(M) C L¥5M Indeed L (M) isan FSM language contained in L and LM
is by construction the largest FSM language containedin L. So L X (M) C L¥SM,
LX(M) C LFSM = [X(M) C L, since by definition LM C L. O

Given aregular language L over alphabet I U O, an algorithm followsto build L 5 | the largest subset of L that
is the U-language of an FSM over input alphabet I and output alphabet O.

Procedure 4.3 Input: Regular language L over I U O; Output: Largest FSM language L 5™ over 1 U O.

1. Build adeterministic automaton A accepting L N (10)*.
2. Deletetheinitia stateif it isanonfinal state.

3. Delete al nonfinal states having incoming edges labelled with symbols from alphabet O, together with their
incoming edges.

4. If the initial state has been deleted, then L¥5™ = (). Otherwise, let A be the automaton produced by the
procedure and LM the language that A accepts. If there is no outgoing edge from the initial state of A, then
A acceptsthetrivial language LES™ = {¢}, otherwise it accepts anontrivial FSM language LS. Any FSM
languagein L must be a subset of L5M

To obtain the largest subset of L that is the language of a complete FSM we must apply one more pruning algorithm.

Procedure 4.4 Input: FSM Language L 7'M over TUO; Output: Largest IO-progressive FSM language Prog (L 5M)
over I UO.

1. Build adeterministic automaton A accepting L 75M

2. lteratively delete all statesthat arefinal and for which 3i € I with no outgoing edge carrying thelabel 7, together
with their incoming edges, until theinitial stateis deleted or no more state can be deleted. Deletethe initial state
if 35 € I with no outgoing edge carrying the label i.

3. If theinitial state has been deleted, then Prog(LY5™) = {). Otherwise, let A be the automaton produced by the
procedure and Prog(L*5M) the language that A accepts. Any IO-progressive FSM languagein LF5™ must
be asubset of Prog(LF5M).

Theorem 4.4 Procedure 4.4 returns the largest 7O-progressive subset of L75M

Proof. Similar to the proof of Theorem 4.3. O

Proposition 4.3 An FSM whose language is L™ or Prog(L¥S™) can be deduced trivially from A (obtained
according to Proc. 4.4) by replacing pairs of consecutive edges labelled, respectively, with 7 and o by a unique edge
labelled i/o.

Proposition 4.4 Given aregular language L over alphabet 7 U O, let M be an FSM over input alphabet I and output
alphabet O. The language LY (M) of M iscontainedin L iff LY (M) C LFSM,

The proof is the same as the one of Prop. 4.2.
Finally we characterize the Moore FSMs that are the reduction of a given FSM. Notice that the language of a
Moore FSM is a Moore language.

Procedure4.5 Input: Complete FSM M; Output: Largest submachine of M that is a Moore FSM, denoted by
Moore(M), if it exists.
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Givenastate s € M, definetheset K, = {o€ O |Vi € I As' € M s.t. (i,s,s",0) € Tar}, K5 C O.
1. Iteratefor each state s € M until M does not change.

(8) Computetheset K C O.

(b) If K # 0 deletefrom Ty each transition (4, s, s’,0) suchthat o € K;
if Ky = () delete s with all itsincoming edges from M.

2. If theinitial state has been deleted then thereis no submachineof M thatisaMoore FSM, otherwise Moore(M ) =
M.

Theorem 4.5 Any Moore FSM M’ that is a reduction of M isa reduction of Moore(M'), the output of Proc. 4.5.

Proof. Define astate s of FSM M as 1-nonMooreif K, = (). State s is k-nonMoore, k > 1, if for somes € I and for
al o € O each state reached from s under the transition labeled (i/o) is j-nonMoore, j < k. State s is nonMoore if
it is k-nonMoore for some k > 1. Moore() is obtained from M by removing iteratively the nonMoore states and,
from the remaining states s, the transitions (i, s, s’,0) such that o ¢ K. Notice that by construction Moore(M) is
guaranteed to be complete.

We must provethat if L(M') C L(M) and L(M'") isMoorethen L(M') C L(Moore(M)). The proof goes by
induction. If L(M") isMoore, thereisno stringin L(M') that takesthe FSM M fromtheinitial state to a1-nonMoore
state. Suppose now by induction hypothesisthat no string in L(M ') takes M to a k-nonMoore state, k£ > 1. We must
conclude that, if L(M") is Moore, there is also no string that takes M to a (k + 1)-nonMoore state, otherwise, by
definition of (k + 1)-nonMoore, L(M ") has a string that takes M to some j-nonMoore state, j < k. Therefore no
stringin L(M') takesthe FSM M to anonMoorestate, i.e., L(M') C L(Moore(M)). O

Moore machines play arole in guaranteeing that the composition of FSMsis a complete FSM (see Theorem 4.6).

4.3 Composition of Finite State Machines

Different types of composition between pairs of FSMs may be defined, according to the protocol by which signals are
exchanged. For a given composition operator and pair of FSMs we must establish whether the composition of this pair
isdefined, meaning that it yields a set of behavioursthat can be described by another FSM. In general, the composition
of FSMsis a partialy specified function from pairs of FSMs to an FSM. In our approach we define the composition
of FSMs by means of the composition operators over languages introduced in Sec. 2. Thus the FSM yielded by the
composition of FSMs M 4 and M g is the one whose language is obtained by the composition of the FSM languages
associated to M 4 and M g. The synchronous composition operator models the synchronous connection of sequential
circuits, while the parallel composition operator models an exchange protocol by which an input is followed by an
output after a finite exchange of interna signals. The latter model, introduced in [29], abstracts a system with two
components and asingle messagein transit. At any moment either the components exchange messages or one of them
communicates with its environment. The environment submits the next external input to the system only after the
system has produced an external output in response to the previousinput.

4.3.1 Synchronous Composition of FSMs
Consider the pair of FSMs
1. FSM M 4 hasinput alphabet I; x V, output aphabet U x O, and transition relation T 4;

2. FSM Mg hasinput aphabet I, x U, output alphabet V' x O, and transition relation T'g.

We define a synchronous composition operator e that associatesto apair of FSMs M 4 and M g another FSM M e M g
such that

1. theexternal input alphabetis I, x I, = I;
2. theexternal output alphabetisO; x Oy = O.
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Recall that, by definition of synchronous composition of languages, asequence a € (I x I x O1 x O2)* isin the
language of the synchronous composition of L(M 4) and L(M ) iff aisinthe projectiononto I; x I» x Oy x O of
the intersection of the liftings, respectively, of L(M 4) over I, x O, and of L(Mp) over I; x Oy :

a € L(MA) ° L(MB) iff

a € [L(Ma)t+1,x0, N L(MB)11, 0, ] 1% 0-

Notice that the liftings L(M4)+1,x0, and L(Mp)+1, xo, are needed to have the languages of M 4 and M p defined
on the same aphabet; eg., L(Mp) is defined over 1o x U x V' x O,, and the lifting + I; x O, defines it over
I x I xU xV x 01 x Os.

Lemma4.l If L(M4) and L(Mp) are FSM x-languages, then L(M 4) e L(Mp) isan FSM x-language.

Proof. L(M4) e L(Mp) is prefix-closed, because prefix-closed FSM x-languages are closed under e composition.
Noticethat L(M4) e L(Mp) does not need to be progressive, because partial FSMs are allowed. O

Therefore we can state the following definition.

Definition 4.10 The synchronous composition of FSMs M 4 and M g yieldsthe FSM M 4 e Mg with language
L(MyeMp)=L(Ma)e L(Mpg).
Ifthelanguage L(M 4) o L(Mp) = {e},then M 4 o Mp isatrivial FSM.

The previous definition is sound because the language L(M 4) o L(Mp) by Lemma4.1is an FSM language, which
may correspond to a complete or partial FSM according to whether the language L(M 4) e L(Mpg) is I-progressive
or not. Then by subset construction and reduction we produce a reduced observable FSM. In summary, we convert
from the FSMs M 4 and Mg to the automata accepting their FSM languages, operate on them and then convert back
from the resulting automaton to an FSM; then we produce a reduced PNDFSM (we assume that M 4 and Mp are
PNDFSMs), because subset construction determinizes the underlying finite automaton.

Example 4.1 a) Synchronous composition of two FSMs defining a complete FSM.

Consider theFSMs M4 = (Sa, 1 x V,U x O1,T4,sl)and Mp = (Sp,U,V, T, sa) with Sy = {s1, s2, 53},
Ta={(1-, s1, s1, 11),(00. s1, s2, 10), (01, s1, s3, 10), (-0, s2, s1, 01), (-1, s2, s3, 10), (- 1, s3, s1, 01),
(-0, 83, 52, 00)}, Sp = {sa, sb}, T = {(0, sa, sa, 1), (1sasb0), (0, sb, sa, 0), (1, sb, sb, 0)} °.

Then M e Mp = Maep = (Saen, 11,01, T4en, (s1,s5a)) With S4ep = {(s1, 5a),(s1, sb),(s2,sb)} and T sep =
{(1, (s1,sa), (s1,sb), 1), (0, (s1,sa), (s2,sb), 0), (1, (s1,sd), (s1,sb), 1) (0, (s1,sd), (s2,sb), 0), (-, (s2, sb),
(s1,sa), 1)} isacomplete FSM.

b) Synchronous composition of two FSMs defining a partial FSM.

Modify thetransition relation of M g asfollows: Tg = {(0, sa, sa, 1), (1 sasb0), (0, sb, sa, 1), (1, sb, sb, 0)}.
ThenT4e5 = {(1, (s1,sa), (s1,sb), 1), (0, (s1,sa), (s2,sb), 0), (1, (s1,sb), (s1,sb), 1) (0, (s1,sb), (s2,sb), 0)}
definesa partial FSM (no transition from state (s2, sb)).

Theorem 4.6 Let M 4 be a complete FSM over input alphabet 7; x V' and output alphabet O, x U andlet Mg bea
complete Moore FSM over input alphabet 7> x U and output alphabet O» x V. Then the composition M 4 ¢ Mp isa
complete FSM.

Proof. Consider astring aw € L(M 4)+11,x0, N L(MB)11, x0, - SUuppose that from theinitial state M 4 reaches state s
under the string a1, xux v xo, and similarly that A/ g reaches state ¢ under the string a1, x v x v x0, - L€t the external
input (i1,i2) € I x I be applied next. For any v € U thereis atransition iu, t,t', 0,v) in Mp, because Mg is
a complete FSM; similarly, for any v € V thereisatransition (i1v, s,s’,01u') in M 4, because M 4 is a complete
FSM. Moreover, given the input i»u’, there is a transition (iou’, t,t", 0ov) with the same output o,v of transition
(i2u,t,t', 00v), because M g isaMoore FSM. Therefore u’ and v are matching internal signals, i.e., the string « can
be extended by (7:1, 12, UI, v, 01, 02). O

4Usethesameorder Iy x Iz x U x V x O1 x Oz inthelanguages L(M4) 11, x 0, ad L(MB)11, x0, -
5_ denotes input or output don’t care conditions.
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4.3.2 Paralle Composition of FSMs

Consider the pair of FSMs ©
1. FSM M 4 hasinput alphabet I; U V, output alphabet U U O, and transition relation T'4;

2. FSM Mg hasinput aphabet I, U U, output alphabet V' U O, and transition relation T'g.

We define a parallel composition operator < that associates to a pair of FSMs M 4 and M g another FSM M 4 ¢ Mpg
such that:

1. the aphabet of the external inputsis I, U I, = I;

2. the alphabet of the external outputsisO;, U Os = O.

Recall that, by definition of parallel composition of languages, asequencea € ((1;UIl)(0;,UO2))* isinthelanguage
of the parallel composition of L(M 4) and L(M p) iff awisintherestriction onto I; U I, U O; U O, of the intersection
of the expansions, respectively, of L(M 4) over I U O, and of L(Mpg) over I; U Oq:

a € L(My) o L(Mp) iff

a € [L(Ma)yru0. L N L(MB)y1,00: Jy1uo-
Noticethat the expansions L(M 4)41,u0, @d L(Mp)q1,u0, areneeded to havethelanguagesof M 4 and M p defined
on the same alphabet; e.g., L(M ) is defined over I, U U U V U O-, and the expansion {} I; x O, defines it over
LULUUUV UO;UO:s.

Lemma4.2 If L(M4) and L(Mp) are FSM U-languages, then L(M 4) o L(Mp) N (I0)* isan FSM U-language.

Proof. L(M4) o L(Mp) N (10)* is I0-prefix-closed, because IO-prefix-closed U-languages are closed under o
composition. Indeed, a state of the finite automaton corresponding to an FSM U-language is accepting iff it is the
initial state or al its ingoing edges are labelled by symbols in O. The property is preserved by intersection and
restriction over 7 U O. Theintersection with (10)* makes sure that in the strings of the resulting FSM U-language an
input is always followed by exactly one output, so that a corresponding FSM (with edges labelled by pairs (i/0)) can
be reconstructed. Noticethat L(M 4) o L(Mp) N (I0)* does not need to be JO-progressive, because partial FSMs
arealowed. O

Therefore we can state the following definition.

Definition 4.11 The parallel composition of FSMs M 4 and M g yields the FSM M 4 o M with language
L(M4 o Mp) = L(M4) o L(Mg) N (I0)*.

If thelanguage L(M 4) ¢ L(Mp) N (I0)* = {e}, then M4 o Mp isatrivial FSM.

The previous definition is sound because the language L(M 4) o L(Mg) N (I0)* by Lemma4.2 isan FSM language,
which may correspond to a complete or partial FSM according to whether thelanguage L(M 4) ¢ L(Mg) N (I0)* is
IO-progressive or not. Then by subset construction and reduction we produce a reduced observable FSM.

Example 4.2 a) Parallel composition of two FSMs defining a complete FSM.

Consider the FSMs M4 = (S4,[; UV,U U 01,T4,sl) and Mp = (Sp,U,V,Tg, sa) with Sy = {sa, sb},
Ta = {(i1, sa, sa, 01), (v1, sa, sa, 01), (v2, sa, sa, ui), (iz, sa, sb, us), (v1, sb, sb, u1), (v2, sb, sb, 03),
(i1, sb, sa, o1), (i2, sb, sa, 01)}, Sp = {s1,s2}, Tp = {(u2, s1, s2, va), (u1 sl, s2, v1), (u1, $2, s2, va),
(u27 52, S]-, UZ)}'

Then the composition M4 ¢ Mp = Maop = (Saon,l1,01,T 0B, (sa,sl)) with Syep = {(sa, sl), (sb, s2),
(sa,s2), (sb,s1)} and Tuop = {(i1, (sa,sl), (sa,sl), o1), (ia, (sa,sl), (sb, s2), 02), (i1, (sb, s2), (sa,s2), o1),
(i2, (sb,s2), (sa,s2), o1), (i1, (sa,s2), (sa,s2), o), (i2, (sa,s2), (sb,sl), 02), (i1, (sb,sl), (sa,sl), o1),
(i2, (sb,sl), (sa,sl), o1)} isacomplete FSM.

Fig. 3 shows some steps and the result of the computation of M 4 ¢ Mp.

b) Parallel composition of two FSVIs defining a partial FSM.

Modify the transition relation of M g asfollows: Tg = {(ue, sl, s2, v2), (u1 s1, s2, vy), (u1, 52, s2, ve),
(uz2, 82, s1, v1)}. ThenTuop = {(i1, (sa, sl), (sa,sl), o1), (i2, (sa, sl), (sb, s2), 02), (i1, (sb, s2), (sa, s2), o1),
(i2, (sb,s2), (sa,s2), o1), (i1, (sa,s2), (sa,s2), o1)} definesan incomplete FSM (no transition from state (sa, s2)
under input i-).

SFor simplicity the alphabets I, I, 01, O2, U, V are assumed to be dijoint.

20



U2/U2

Vo \
O L N ey ) S T

Ug/ul 7:1/01 UQ/UQ

() (b)

U1

(3
w

U9 U2
%-
Uy

) U9

(d)

i1/01
L. i2/02
11,1201, 0 al b2
@ i1/o1 i1/0
is/01 i/ 0

01, O
22/02 Q

1, 27@ 09, 09 (f) 7,1/01
U U2 .

Z1/01
S
i2/01

(9)

Figure 3: Illustration of parallel composition M 4 ¢ Mg = M 4.5 of Example4.2-a). (a) FSM M 4; (b) FSM M5; (c)
Automaton of A (U-language of M 4); (d) Automaton of B (U-language of M g); (€) Automaton of By, uo, ; (f) FSM
MyoMp = Maop; (g) Reduced FSM M 4 o Mp = M oB.
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4.4 Definition of Equations over FSM s

Consider the network of FSMs shown in Fig. 4, where FSM M 4 hasinput signals I; and V' and output signals U and
O, and FSM M p hasinput signals I, and U and output signals V' and O». The network implements a specification
M withinput signals I, I, and output signals O, O». Supposing that M 4 and M areknown and M g is unknown,
we want to define an equation of thetype M4 ©® Mx ~ M, to capture the FSMs M g that in place of M x let the
network of M 4 and Mg match the specification M. Through Definitions 4.6 and 4.7 we have seen two different

I 0,

Iy, I 01,0,

14 U = . Me

" Mg

Figure 4: General Topology.

ways to associate an FSM language to a given FSM, and related composition operators e and ¢ have been introduced
in Sec. 4.3; therefore we introduce two types of equations over FSMs:

MA [ ] MX j MC
and

My oMx < Mc,
and solve them by building first the related language equations

L(My) o L(Mx) C L(Mc)

and

L(My) o L(Mx) € L(Me) U (I0),

where L(M 4) and L(M ) are the FSM languages associated with FSMs M 4 and M. The latter language equation
isjustified by the following chain of equivalences

MaoMx < Mo &
L(MjoMx)C L(Mg) < by Def.4.11
L(Ma)o L(Mx)N(10)* C L(Mc) <
L(Ma)o L(Mx) C L(Mc) U (I0)*.
Thelast equivalence uses the set-theoretic equality AB C C < AC C+ B .
When there is no ambiguity we will denoteby Ae X C C and A o X C C U (I0)* the language equations
L(M,) e L(Mx) C L(M¢) and L(M ) o L(Mx) C L(M¢) U (I0)*, where L(M ), L(Mx) and L(M¢) are,
respectively, the x-languages and U-languages associated with the FSMs M 4, Mx and M.

45 FSM Equationsunder Synchronous Composition
451 Largest FSM Solutions

Given alphabets I, I,,U,V, 01,02, an FSM M 4 over inputs I; x V and outputs U x Oy, and an FSM M over
inputs I; x I, and outputs O, x O, consider the FSM equation

My o Mx < Mc, ©)

"Inonedirection, AB C C = AB+AB C C+AB = A C C+AB = A C C+B. Intheother direction, AC C+B = AB+AB C
C+ B = AB C C,because AB ¢ B.
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whose unknownisan FSM M x over inputs I x U and outputs V' x O,. Sometimesthe shortened notation I = I x I
and O = O; x Os will be used.

Definition 4.12 FSM Mg is a solution of the equation M 4 ¢ Mx < M¢, where M 4 and Mo are FSMs, iff M4 o
Mg < Mc¢.

Converting to the related FSM languages, we construct the associated language equation
L(Ma)e L(Mx) C L(Mc), (6)

where L(M ,4) is an FSM language over alphabet I; x U x V x Oy, L(M¢) is an FSM language over alphabet
I x I x O1 x Oy and the unknown FSM languageis over alphabet 7> x U x V' x O,. The previous equation can be
rewritten for simplicity as
AeX CC. 7
We want to characterize the solutionsof A ¢ X C C as FSM languages. We know from Theorem 2.1 that the largest
solution of the equation A e« X C C isthelanguage S = A e C.
When A and C' are FSM languages, the following property holds.

Theorem 4.7 S # (.

Proof. FSM languages are not closed under complementation, because the complement of an FSM language does
not include the empty string e, so it cannot be an FSM language. So C' does not include e and neither does C' +pxv .
Then the intersection A+r,x0, N Cruxy does not include the empty string, neither does its projection (A+r, xo, N

CtuxVv) I xUxV x0., thatis A e C. Therefore A e C includes the empty string, i.e, e € S # (). O

Example 4.3 Consider theFSMsM 4 = (Sa, [1 XV, UX01,T4, sa) and M = (S¢, U, V, T, s1) with S4 = {sa},
T4 = {(01, sa, sa, 01), (00, sa, sa, 01), (11, sa, sa, 10), (10, sa, sa, 10)}, Sc = {s1}, T = {(1, s1, s1, 1),
(0, s1, s1, 0)}. Theequation M 4 e Mx < M¢ yieldsthelanguageequation A e X C C withsolution S = {e},i.e,
the corresponding FSM solution M x produces only the empty word.

Itisalsotruethat if M producesonly e, then M x producesonly e.

In genera S is not an FSM language. To compute the largest FSM language contained in S, that is S 7'M we
must compute the largest prefix-closed language contained in S.

Theorem 4.8 Let A and C' be FSM languages. Thelargest FSM languagethat is a solution of the equation Ae X C C

isgivenby SFSM where S = A e C. STSM s obtained by applying Procedure 4.1t0 S. S ¥5M contains at least the
string e.

Thus, a synchronous FSM language equation is always solvable, since the solution includes at least the empty string
and so its prefix-closure does too. This correspondsto the trivial FSM being always a solution of a synchronous FSM
equation.

Example 4.4 Consider the equation M 4 ¢ Mx < M¢, with M 4 and M shown, respectively, in Fig. 5(a) and 5(c).
The automata of the related languages are shown, respectively, in Fig. 5(b) and 5(d). The intermediate steps to
compute the solution are demonstrated in Fig. 5(e)-(g). The automaton generating the largest language solution,
S = (AN (Cruuv)wuv, is portrayed in Fig. 5(h). Notice that it is not prefix-closed, since string uqviusv; € S,
but u;v; € S; its largest prefix-closed sublanguage yields the largest FSM solution M x shown in Fig. 5(i). The
composition of any DFSM reduction of M x with A4 producesthe trivial machine.

For logic synthesis applications, we assumethat M 4 and M are complete FSMs and we require that the solution
is a complete FSM too. This is obtained by applying Procedure 4.2 to S 7™ yielding Prog(S™5M), the largest
(I x U)-progressive FSM language C (I> x U x V' x O)*. Notice that an (I, x U)-progressive solution might not
exist, and in that case Procedure 4.2 returns an empty language.

Proposition 4.5 FSM Mg isa solution of theequation M 4 ¢ Mx < M¢, where M 4 and M are FSMs, iff Mp isa
reduction of the FSM M s associated to S¥ 5™, where S¥5M is obtained by applying Procedure 4.1 to S, where S =
Ao C.If SFSM = {¢} then thetrivial FSM isthe only solution. The largest complete FSM solution M p,.oy(srsa) iS
found, if it exists, by applying Procedure 4.2. A complete FSM is a solution iff it is a reduction of the largest complete
solution Mprog(SFSM).
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Example 4.5 (Variant of Ex. 4.3) Consider theFSMsSM 4 = (Sa, [1 XV, UX0;,T4, sayand M = (Sc, U, V, T, s1)
with Sy = {sa}, T4 = {(01, sa, sa, 01), (00, sa, sa, 01), (11, sa, sa, 10), (10, sa, sa, 10)}, Sc = {s1},
Te = {(1, s1, s1, 1), (0, s1, s1, 0)}. Theequation M 4 e Mx < M yields the language equation A e X C C
with solution S = {(01)*}, i.e,, the corresponding FSM solution M x produces the set of strings of input/output pairs
{(0/1)*}, and so the equation has no complete FSM solution.

45.2 Computational Complexity

Consider the equation A ¢ X C C, where A and C are FSM languages. We know that the largest unconstrained
solution is given by S = A e C. Given the rectification topology in Fig. 1(d) with M g as the unknown M x, the
solution has in the worst-case 2154125/ states, where S 4 is the number of states of FA A and S¢ is the number of
states of FA C. The exponent 2!°¢! appears when €' is non-deterministic, to account for the determinization needed
to compute C’; otherwise if C' is deterministic, in place of 2!5¢! we have |S¢|, because complementation becomes a
linear operation. The product |S 4|.2!°¢! is dueto the product of automata A and C'. Then to complete the computation
of the e operator we must project the product on the internal signals U and V'; as a result we may get again a non-

deterministic automaton, and therefore a new determinization is needed before performing the final complementation:

this explains the outer exponential 2/541:2'%¢",

There are “easier” topologies, like supervisory control, where there is no projection onto a subset of signals of the
product automaton; therefore non-determinism is not introduced and so the final complementation is linear, resulting
in the complexity of |S 4].2!5¢1. Moreover, if S¢ is deterministic, the exponential 2!%¢! is replaced by |S¢|, and so
the final complexity of supervisory control is bounded by only |S 4|.|S¢|.

The operations on the language S to extract from it an FSM language, a complete FSM language or a Moore
solution (see below) are linear in the number of edges of the automaton representing S.

453 Largest FSM Compositional Solutions

It isinteresting to compute the subset of compositionally /-progressive solutions B, i.e., such that A 11, x0, N Bt1, x0,
is an I-progressive FSM language C (I x U x V' x O)*. Thus the composition (after projection on the external
signals) is the language of a complete FSM over inputs I; x I» and outputs O; x O2. Since Atr,x0, N S@fﬁ/fol
is prefix-closed and hence corresponds to a partial FSM, we have to restrict it so that it is also I-progressive, which
correspondsto acomplete FSM. If S¥5M s compositionally I-progressive, then S ¥5M isthe largest compositionally
I-progressive solution of the equation. However, not every non-empty subset of S 7'M inherits the feature of being
compositionally I-progressive. If S¥5M is not compositionally I-progressive, then denote by cProg(S M) the
largest compositionally I-progressive subset of S¥SM . Conceptualy cProg(STSM) is obtained from S¥5M by
deleting each string « such that, for somei € I, thereisno (u,v,0) € U x V x O for whichit holds« (i, u, v, 0) €
Arr,x0, N ST, . Thefollowing proceduretells how to compute cProg(S F5).

Procedure4.6 Input: Largest prefix-closed solution S 5™ of synchronous equation A ¢ X C C and context A;
Output: Largest compositionally I-progressive prefix-closed solution cProg(S ¥5M),

1. Initidizei toland S* to SESM

2. Compute R* = Ayr,x0, NS}, 0,
If the language R is I-progressive then cProg(STSM) = St
Otherwise

(@ Obtain Prog(R?), thelargest I-progressive subset of R, by using Proc. 4.2.
(b) Compute 7% = S*\ (R \ Prog(R%)) |1, xUxVx0»-

3. If T FSM = (j then cProg(STSM) = .
Otherwise

(@) AssignthelanguageT® ¥SM to S+1.
(b) Increment i by 1 and goto 2.

Theorem 4.9 Proc. 4.6 returns the largest compositionally I-progressive (prefix-closed) solution, if it terminates.
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Theorem 4.10 Proc. 4.6 terminates.

The proofs can be found in [40].

A sufficient condition to insure that A47,x0, N Sf;7 Y, is an I-progressive FSM language is that Sf;7, or
As1, %0, Stisfy the Moore property (see Theorem 4.6 for arelated statement proved for complete FSMs). If S 75M
isMoorethenit isthe largest Moore solution of the equation. However, not every non-empty subset of S F'SM inherits
the feature of being Moore. If S¥5M s not Moore, then denote by Moore(S F5M) the largest Moore subset of S75M
The set Moore(S7 M) is obtained by deleting from S 5™ each string which causes S 5™ to fail the Moore property.

Proposition 4.6 If Moore(SF5M) £ (), then it is the largest Moore solution of the equation A ¢ X C C. Otherwise
the equation A ¢ X C C has no Moore solution.

To compute the largest Moore FSM that is a solution, it is sufficient to apply Procedure 4.5 to the FSM M grsa
associated to S¥M | as justified by Theorem 4.5. The result is the largest Moore FSM solution, of which every
deterministic Moore solution is a reduction.

Example 4.6 Consider the equation M 4 e M x < M, with M 4 and M~ shown, respectively, in Fig. 6(a) and 6(b).
The largest FSM solution M x is shown in Fig. 6(c), whereas Fig. 6(d) shows the largest Moore FSM solution
Moore(M x). Moore FSM solutions are portrayed in Fig. 7(a)-(b), whereas nonMoore FSM solutions are pictured
inFig. 7(c)-(d).

4.6 FSM Equationsunder Parallel Composition
4.6.1 Largest FSM Solutions

Givenaphabets Iy, I;,U,V, 01,02, an FSM M 4 over inputs [; UV and outputsU U, and an FSM M~ over inputs
I, U I, and outputs O; U O-, consider the FSM equation

MyoMx < Mc, ©)

whose unknownisan FSM M x over inputs I, UU and outputs V' U O, . Sometimes the shortened notation I = I, U1,
and O = O; U O» will be used.

Definition 4.13 FSM M g is a solution of the equation M 4 ¢ Mx < Mg, where M 4 and My are FSMs, iff M 4 o
Mp < Mc¢.

Converting to the related FSM languages, we construct the associated language equation (see Sec. 4.4)

L(Ma) o L(Mx) C L(Mc) U (TO)*, )

where L(M 4) is an FSM language over alphabet I; U U U V U O, L(M¢) is an FSM language over alphabet
I, U I, U O1 U O4 and the unknown FSM language is over alphabet 7, U U U V' U O,. The previous equation can be
rewritten for simplicity as

Ao X C CU(IO) . (10)

We want to characterize the solutionsof A ¢ X C C' U (I0)* that are FSM languages. We know from Theorem 2.2
that the largest solution of the equation A o X C C' U (I0)* isthelanguage S = A o (C N (10)*).

In general S is not an FSM language. To compute the largest FSM language contained in S, that is S 7'M we
must compute the largest prefix-closed language contained in S N (I U U)(V U O2))*.

Theorem 4.11 Let A and C' be FSM languages. The largest FSM language that is a solution of the equation A o X C
C U (T0)* isgivenby SFSM where S = Ao (C N (I0)*). 1f S = ¢ then SFM = ¢; it § £ 0, SFSM s obtained
by applying Procedure 4.3t0 S. If S¥SM — () then the FSM language equation A ¢ X C C' U (I0)* has no solution.

Proof. The first step of Procedure 4.3 computes the intersection of S with ((Z7» U U)(V U O,))* to enforce that the
solution, if it exists, is an FSM language with input aphabet 7> U U and output alphabet V' U O,. Since A and C' are
regular languages, SN ((I> UU)(V U O3))* isaregular language too and, by construction, Procedure 4.3 extracts the
largest FSM language contained in it. O
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Figure 6: Illustration of Example 4.6. (a) FSM M 4; (b) FSM M¢; (¢) Largest FSM solution M x; (d) Largest Moore
FSM solution Moore(Mx ).
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Figure 7: Illustration of Example 4.6. (a)-(b) Moore FSM solutions; (c)-(d) Non-Moore FSM solutions.
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Example 4.7 Consider theFSMsM 4 = (S4, UV, UUO;,T4,sa)yand Mc = (Sc, U, V, Tc, s1) with S4 = {sa},
T4 = {(i, sa, sa, 02), (v, sa, sa, u)}, Sc = {s1}, Tc = {(i, s1, sl, o1)}. Theequation M 4 o Mx < Mc¢ yields
the language equation A « X C C U (IO)* whose solution S becomes empty under prefix-closure, because S does
not contain e, even though it contains the string wv. Thusthereis no solution.

By Proposition 4.3, it is easy to derive an FSM M grs associated to ST5M | This allows us to talk about FSMs that
are solutions of FSM equations, meaning any reduction of the FSM M grsa, as guaranteed by Prop. 4.4.

Example 4.8 Consider the equation M4 o Mx =< M, with the language of M 4, i.e, A = LY(M4,), and the
language of M¢, i.e., C = LY (M), represented by the automata shown, respectively, in Fig. 8(a) and 8(b). The
automata generating the largest language solution, (A N (C'N (I0)*)quuv)yvoy N (UV)* and its largest prefix
closure are portrayed, respectively, in Fig. 8(c) and 8(d).

Figs. 9 and 10 show the intermediate steps of the computation. Notice that in Fig. 8(d) there are two don’t care
states, dcl non-accepting and dc2 accepting, obtained by “ splitting” the accepting dc state in Fig. 10(b), due to the
intersection with the automaton of (U'V')*.

For logic synthesis applications, we assumethat M 4 and M are complete FSMs and we require that the solution
is a complete FSM too. This is obtained by applying Procedure 4.4 to S 7™ yielding Prog(S™5M), the largest
(L, UU)(V U Os)-progressive FSM language C ((Io U U)(V U O2))*.

Proposition 4.7 FSM Mg isa solution of theequation M 4 o Mx < Mg, where M 4 and M are FSMs, iff Mg isa
reduction of the FSM M grsa associated to STSM where ST5M s obtained by applying Procedure 4.3 to S, where
S =Ao(CN(I0)*). If SFSM = () then no FSM solution exists. The largest complete FSM solution M p,. oy (gesar)
isfound, if it exists, by Procedure 4.4. A complete FSM isa solutioniff it is a reduction of the largest compl ete solution
‘]\/[PTOg(SFSM)'

The worst-case complexity of computing the largest solution of a parallel equation is of 2 I5al-25¢" o for asyn-
chronous equation. The same analysis applies (restriction plays the same role as projection in introducing nondeter-
minism).

4.6.2 Largest FSM Compositional Solutions

It is interesting to compute the subset of compositionally 1 *O-progressive solutions B, i.e., such that A 47,00, N
Byr,uo, N(IO) 0y i1san I*O-progressive FSM language C (1(UUV)*O)*. Thusthe composition (after restriction
to 1 U O) is the language of a complete FSM over inputs I; U I» and outputs O; U Os. Since Ayr,u0, N Bynuo, N
(I O)?TUUV (after restriction to I U O) is IO-prefix-closed and ence corresponds to a partial FSM, we have to restrict
it sothat it is also I*O-progressive, which correspondsto a complete FSM.

If SFSM is compositionally I*O-progressive, then STSM s the largest compositionally 1*O-progressive solu-
tion of the equation. However, not every non-empty subset of S 75 inherits the feature of being compositionally
I*O-progressive. If SFSM s not compositionally 1*O-progressive, then denote the largest compositionally I*O-
progressive subset of S¥SM py cI*OProg(S¥M). Conceptualy, the language cI*OProg (STSM) is obtained
from S¥SM py deleting each string a such that, for somei € I, thereisno (v Uv)* € (U U V)* andnoo € O for
which o i(u U v)*o € Agr,u0, N S{1 YL, N (I0)5y,y holds. We expect that a procedure to compute the largest
compositionally I*O-progressive prefix-closed solution, cProg(S¥°M), can be designed following the pattern of
Proc. 4.6, but as yet have not worked out the details. A procedure to compute the largest compositionally progressive
solution of aparallel equation over regular languages for the rectification topology was provided in [20].

To characterize subsets of solutionswell-behaved with respect to deadlocksand livelocks (endless cycles of internal
actions), we introduce a few more language definitions.

Definition 4.14 A solution B of Eq. 10 is A-compositionally prefix I *O-progressiveif
|ﬂit(A)ﬂ[2Uoz n |ﬂit(B)ﬂ[1Uol N |nit(([0)*)ﬂUUv
is I*O-progressive.

A compositionally prefix I*O-progressive solution yields a composition that alows (u U v) * cycles without exit, yet
every sequencein I*O followed by aninput in I must befollowed by a (uUwv) * cyclethat can be exited (by an output).
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Figure 10: [lllustration of Example 4.8. (@ FA of (AN (Cn (I0)*)qvuv)youv: (b)) FA of
(AN (CN(I0)*)souv)youy-
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Definition 4.15 A solution B of Eq. 10 is A-compositionally prefix (U U V')-deadlock-freeif

|ﬂit(A)ﬂ[2Uoz n |ﬂit(B)ﬂ[1Uol n |nit(([0)*)ﬂUUv
is (U U V)-deadlock-free.

A compositionally prefix (U U V')-deadlock-free solution yields a composition that has no (u U v) * cycles without
exit.

Definition 4.16 A solution B of Eq. 10 is A-compositionally prefix (U U V')-conver gent if

|nit(A)ﬂ12Uo2 N |nit(B)ﬂ]1Uol N |I’lit(([0)*)ﬂUUv
is (U U V)-convergent.

A compositionaly prefix (U U V')-convergent solution yields a composition that has no (u U v) * cycles, i.e, it is
livelock-free. A compositionaly prefix (U U V')-deadlock-free solution does not need to be compositionally prefix
(U U V)-convergent.

Example 4.9 Consider the equation M 4 ¢« Mx < M¢, where FSMs M4 and M and the largest solution M p
are shown in Fig. 11(a)-(b)-(c). Fig. 11(d)-(e) shows the related automata A and B 41,00, = By{ijufo}, Whereas
Fig 1l(f) (9) portrays the automata representing the languages A 41,00, N Byr,uo, N(10)3puy = AN Bpgijugoy N
ﬂ'guévl{ and Imt )ﬂIzLJOz mInit(B)ﬂjluol ﬂInit((IO) )ﬂUUV = Init(A)ﬁInit( )ﬂ{ }U{O}ﬂInit((IO) )ﬂ{u}u{v}-
M 4 answers by u to the external input ¢ then FSMs M 4 and Mg fall into an infinite dialogue, so we
would like to classify their composition as neither (U U V')-convergent nor (U U V')-deadlock-free. However the
language A N By tivugey N (IO)TT (upufe} = {(i0)*} is both (U U V')-convergent and (U U V')-deadlock-free. To
overcome this modeling problem, we introduce the operator Init (guarantees prefix-closure) and rewrite the previous
language composition as Init(A) N Init(B) 4 1i3u{0) NINit((I0)*)g{uyu{v}- Thelatter languageisneither (U UV )-
convergent (Since iy¢, gy} includes iu(v + u)* that is a subset of the language) nor (U U V')-deadlock-free (aviu
cannot be extended to a string ending by o, against the definition of (U U V')-deadl ock-free).
Finally 11(h) shows a languagethat is (U U V')-deadlock-free, but not (U U V')-convergent.

Theorem 4.12 Let B bean (I,UU)(VUO,)-progressivesolutionof AcX C CU(I0)* andlet A be (I; UV )(UUO, )-
progressive. If B iscompositionally prefix (UUV')-convergent, then B is compositionally prefix (U UV')-deadl ock-free.

Proof. Sincethe components A and B are progressive, their composition Init(4) ¢z,uo0, N INIL(B) 41,00, N INit((I0)*)qouv
is deadlock-free, i.e., it never stops because a component does not have atransition under a given input. If the compo-
sitionisaso (U U V')-convergent, there can be no livelocks, i.e., there are no cycles labeled with actions from the set

U U V. Therefore an external input, after afinite path labelled with internal actions, must be followed by an external
output. O

The computation of the largest subset of compositionally prefix (U U V')-deadlock-free solutions and of the largest
subset of compositionally prefix (U U V')-convergent solutions requires further investigation. The former problem
appears similar to the one of finding the largest subset of compositionally I *O-progressive solutions. About the
|latter problem, when S 5™ is not compositionally prefix (U U V' )-convergent, then the largest compositionally prefix
(U'UV')-convergent sol ution does not exist and each finite 7O-prefix-closed subset of S 5™ isacompositionally prefix
(U U V)-convergent solution. It is an open question whether there is the largest complete prefix (U U V')-convergent
solution.

4.6.3 FSM Equationsunder Bounded Parallel Composition

Here we discuss the solutions whose composition with the context produces an external output after at most / internal
actions. One could build an analogy with Moore solutions of synchronous equations. We providein the sequel the key
stepsto solve FSM equations under bounded parallel composition.

Definition 4.17 Thel-bounded parallel composition of FSMs M g, over input alphabet 7, U U and output al phabet
O, UV, with My, over input alphabet 7; U V' and output alphabet O, U U, yieldsthe FSM M 4 o; Mg with language

L(MA g MB) = L(]\/[A) o1 L(]\/[B) N (IO)*
= [L(Ma)yru0, N L(Mg)gnuo0, N (I VO puvyluruo N (10)*.
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(h)
Figure 11: lllustration of Example 4.9. (8) FSM M 4; (b) FSM M¢; () FSM Mp; (d) FA of A = LY (M 4); (e) FA of
Bﬂ{i}u{o}a where B = L;J(MB); fHFAoOf AN Bﬂ{i}u{o} N (IO)E{U}U{U}; (9) FA of Init(A) N Init(B)ﬂ{i}U{o} N

Init((10)*)pfurugeys (h) FA of prefix (U U V')-deadlock-free, but not prefix (U U V7)-convergent language.



When [ = oo, it reducesto the definition of parallel composition of FSMs.

Proposition 4.8 FSM M g isa solution of the equation M 4 o; M x < M¢, where M 4 and M are FSMs, iff Mg isa
reduction of the FSM M grsnm associated to ST5M where S¥5M s obtained by applying Procedure 4.3 to S, where
S = (Aynuo, N (C N IO ywuvi))tuuuvuo,. I SFSM = () thenno FSM is a solution. S75M isthe largest
compositionally (U UV')-convergent solution of M 4 o; Mx < Mc. Thelargest complete FSM solution M p,.,(srsar)
isfound, if it exists, by Procedure 4.4.

Theorem 4.13 A solution Mg of M4 ¢ Mx =< M is also a compositionally (U U V')-convergent solution of
]\/[A < MX j Mc.

If M4 and M g arealso complete FSMs, then M g isa compositionally prefix I * O-progressive and compositionally
I*O-progressive solutionof M 4 o Mx < Mc.

Proof. By construction, a solution M g of M4 o Mx < M is compositionally (U U V')-convergent. A solution
Mp of My oy Mx < Mg isasoasolutionof M4 o Mx < M, because when | = oo the operator ¢; becomes the
operator .

By Theorem 4.12, thefact that M g is compositionally (U U'V')-convergent, together with the completeness of M 4
and M g, imply that M g iscompositionally prefix I*O-progressive and therefore compositionally I *O-progressive. O

However, ingeneral M 4o Mx < M¢ may be solvable despitethe fact that M 4 o; M x < M hasno solution. For
instance, this may happen when M 4 ¢ Mx < M has no compositionally I*O-progressive solution. If the equation
My o Mx < M¢ has no complete solution, it is open whether there is a compositionally I *O-progressive solution
of MaoMx < Mc.

5 An Example: Solvingthe Protocol Mismatch Problem

A communication system has a sending part and a receiving part that exchange data through a specific protocol. A
mismatch occurs when two systems with different protocols try to communicate. The mismatch problem is solved
by designing a converter that translates between the receiver and the sender, while respecting the overall service
specification of the behaviour of the composed communication system relative to the environment. We formulate the
problem as a parallel language equation: given the service specification C' of a communication system, a component
sender and a component receiver, find a converter X whose composition with the sender and receiver A meets the
system specification after hiding theinternal signals: A ¢ X C C.

As an example we consider the problem of designing a protocol converter to interface: an alternating-bit (AB)
sender and a non-sequenced (NS) receiver. This problem is adapted from [20] and [12]. A communication system
based on an alternating bit protocol is composed of two processes, a sender and a receiver, which communicate
over a half duplex channel that can transfer data in either directions, but not ssmultaneously. Each process uses a
control bit called the alternating bit, whose value is updated by each message sent over the channel in either direction.
The acknowledgement is also based on the aternating bit: each message received by either process in the system
corresponds to an acknowledgement message that depends on the bit value. If the acknowledgement received by a
process does not correspond to the message sent originally, the message is resent until the correct acknowledgement
is received. On the other hand, a communication system is non-sequenced when no distinction is made among the
consecutive messages received or their corresponding acknowledgements. This means that neither messages nor their
acknowledgements are distinguished by any flags such as with the alternating bit.

Fig. 12 shows the block diagram of the composed system. Each component is represented by a rectangle with
incoming and outgoing labeled arrows to indicate the inputs and outputs, respectively. The sender consists of an AB
protocol sender (PS and of an AB protocol channel (PC). Meanwhile, the receiving part includes an NS protocol
receiver (PR). The converter X must interface the two mismatched protocols and guarantee that its composition with
PS, PC and PR refines the service specification (SS) of the composed system. The events Acc (Accept) and Del
(Deliver) represent the interface of the communication system with the environment (the user). The converter X
tranglates the messages delivered by the sender PS (using the alternating bit protocol) into a format that the receiver
PR understands (using the non-sequenced protocol). For example, acknowledgement messages A delivered to the
converter by the receiver are transformed into acknowledgements of the alternating bit protocol (aOxc to acknowledge
a0 bit and alxc to acknowledge a 1 bit) and passed to the sender by the channel (aOcsto acknowledge a0 bit and alcs
to acknowledge a 1 bit); data messages are passed from the sender to the channel (dOsc for a message controlled by
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Figure 12: Communication system described in Sec. 5.

a 0 hit and d1sc for a message controlled by a 1 bit) and then from the channel to the converter (dOcx for a message
controlled by a 0 bit and dlcx for a message controlled by a 1 bit) to be transformed by the converter into a data
message D for the receiver.

We model the components as 1/0 automata [23], which recognize prefix-closed regular languages, and we solve
their language equations. Fig. 13 shows the automata of the components of the communication system. Missing
transitions go to atrap (non-accepting) state, that loopsto itself under any event.

Fig. 14 shows the largest prefix-closed solution S = PS o PC ¢ PR ¢ SS of the converter problem. Notice that
all missing transitions go to an accepting trap state dc, that loops to itself under any event; e.g., the initial state has
a transition to state dc under events A, aOzc, alzc, dlcx. These transitions are not indicated in the state transition
graph of the automaton of the solution language to avoid cluttering the picture. State dc can be termed the don't care
state, becauseit is introduced during the determini zation step to complete the automaton P.S ¢ PC o PR ¢SS, before
the final complementation. It is reached by transitions that cannot occur due to impossible combinations of eventsin
the composition of PS ¢ PC ¢ PR and S, and so it does not matter how S behaves, once it is in state dc (thus the
qudification don't care state). This makes the largest solution .S non-deterministic. The solution presented in [20]
and [12] does not feature this trap accepting state and so it is not complete (in [20] and [12] all missing transitions of
the solution are supposed to end up in a non-accepting trap state, afail state); without the above dc state, one gets only
asubset of all solutions.

Fig. 15 shows another view of the largest prefix-closed solution S = PSS o PC o PR ¢ SS of the converter prob-
lem, with the dc state included and the fail state excluded.

Fig. 16 showsthe largest prefix-closed 2-bounded solution of the converter problem.

Fig. 17 showsthe composition PS¢ PC'o PRNSy{ acc,pery Of thecommunicationsystem PSo PCo PR and of the
largest converter S. The largest prefix-closed solution S is compositionally (I *O)-progressive and compositionally
prefix (U U V')-deadlock-free, but not compositionally prefix (U U V')-convergent.

6 Comparison with Previous Approaches

6.1 Equationsunder Synchronous Composition

Sequential synthesis offers a collection of problems that can be modeled by FSM equations under synchronous com-
position. Some have been attacked in the past with various techniques in different logic synthesis applications.
Hierarchical Optimization and Don’t Care Sequences
The goa of hierarchical optimization isto optimize the FSMs of a network capturing the global network information
by means of don’t care conditions.

This paradigm generalizes what is done already in multi-level combinational synthesis[9, 7], where alot of effort
has been invested in capturing the don’'t cares conditions and devising efficient algorithms to compute them or their
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(c)

Figure 13: Automata of communication system described in Sec. 5 (a) Automaton of PS’; (b) Automaton of PR; (c)
Automaton of PC; (d) Automaton of S'S.
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Figure 14: Largest prefix-closed solution S = PS ¢ PC o PR < SS of the converter problem of Sec. 5.
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Figure 15: Largest prefix-closed solution S of the converter problem of Sec. 5. It shows explicitly the transitions to
the dc state.
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Figure 16: Largest prefix-closed 2-bounded solution of the converter problem of Sec. 5.

subsets. In particular input controllability don’t cares and output observability don’t cares  have been defined for
multi-level combinational networks (see [26] for an introduction to the topic).

When the theory is extended to sequentia circuits, don’t care sets become sequences of inputs instead of single
inputs, since sequential circuits transform input sequences into output sequences °.

Input Don’t Care Sequences

Consider a cascade interconnection of two FSMs M and M, where the driving FSM M feeds the input patterns
to the driven FSM M,. Then input controllability don't cares are the sequences of outputs not produced by M q:
they restrict the controllability of the driven FSM A, and are used to modify 1/, obtaining an FSM A7, such that
the cascade interconnection does not change, i.e.,, M, — J\?[z = M, — M. Kim and Newborn [17] were the first
to give a procedure to compute al input controllability don't care sequences for a series topology. Later on, H.-Y.

Wang [36] showed that input don’t care sequences for a component in a network of FSMs with an arbitrary topology

can be exploited in the same way asin a seriestopology and that computing input don’t care sequencesfor an arbitrary

topology can be reduced to computing them for a series topology. The theory of input don’t care sequences was

developed independently in Russia by Yevtushenko [41].

Output Don’t Care Sequences

Output observability don’t cares are the sets of sequences of inputs of M 5 that cannot be distinguished by the outputs
of Ms, i.e., the sequences of a set cannot be distinguished from each other by looking to the outputs of M 5: they
restrict the observability of the driving FSM A, and are used to modify 1/, obtaining an FSM M such that the
cascade interconnection does not change, i.e., J\/L — My = M, — M,. Aninteresting procedureto compute a subset
of the sequential output don’t caresis dueto H.-Y. Wang [37]. For a survey on the topic refer to [13].

The complete flexibility for the head FSM of a series composition was derived by Yevtushenko and Petrenko [41,
31, 30] by means of a NDFSM whose states are the cartesian product of the components’ states, and whose transition
relation is unspecified for the inputs such that no internal signal produces the reference output, otherwise it includes
all transitions with allowed internal signals.

Thefirst result [41] solved the special case of Moore FSMs where the tail component produces different outputs
for different states. Consider a series composition M 4 — Mp of two Moore FSMs M4 = (Sa,I,U,04,A4,74)
and Mp = (SB,U,O,(SB,)\B,TB), such that V81,82 € Sg s 75 So implias )\B(Sl) 75 )\3(82). The FSM
representing all behaviours that can be realized at the head component is given by the NDFSM M p = (Sa X

8The input controllability don’t care set, C DC;,, includes all input patterns that are never produced by the environment at the network’s
inputs. The output observability don’t care sets, O DC,.t, denote all input patterns that represent situations when an output is not observed by
the environment.

9Theinput controllability sequential don't care set, CDC‘;;‘Z, includes all input sequences that are never produced by the environment at the
network’s inputs. The output observability sequential don’t care sets, ODC.-%, denote all input sequences that represent situations when an
output is not observed by the environment at the current time or in the future.
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SB,I,U, 6D7/\D7 (TA,TB))!Where(sD((SA7SB),i) = (5A(SA7i)753(SB,)‘A(SA))) and/\D(SA;SB) = {u | 6B(SB,Z/) =
0(sB,Aa(sa))}, 1.e, the output of M, at state (s4, sp) isthe set of u € U that drive M, from sp into the same
state to which A 4 (s 4) does.

Theorem 6.1 Mo — Mp = M4 — Mp iff Mo isareduction of Mp.

The method was then extended to arbitrary tail machines through two more contributions [31, 30]. The first
one [31] proposes an algorithm for output don’t care sequences dua to the one by Kim and Newborn for input don’t
care sequences.

Consider aseriescomposition M 4 — Mp of tWOFSMS M4 = (Sa,1,U,04, Aa,7a)andMp = (Sp,U, 0,05, AB,rB).
The FSM representing all classes of input sequences equivalent with respect to M g (M produces the same output
seguence under these input sequences, which are the don’t care output sequences of A) isgiven by theNDFSM M p =
(SB X SB, U, U, T, (TB, TB)), where the transition ((§B, §B), U1, U2, (§IB, §IB)) e T iff )\B(§B; ul) = >\B(§B, UQ),

§ = 0p(8B,u1) and 5%z = (5B, u2). In other words, the output sequences produced by FSM M p under a given
input sequence « are those under which M 4 produces the same output sequence that it generates under a.

Theorem 6.2 M¢c — Mg = M4 — Mg iff Mo isareduction of the product of M 4 and M.

The latter contribution [30] builds directly the NDFSM capturing all the flexibility. Consider a series composi-
tion My — Mp of two FSMs M4 = (Sa,I,U,04,A4,74) and Mg = (Sg,U,0,dp, \p,rB). The FSM rep-
resenting all behaviours that can be realized at the head component is given by the NDFSM M, = (S4 X Sp %
S, I,UT,(ra,re,rB)), Where ((s4, §B,8B), 1, u, (s, 85,8%)) € T iff theoutput of M 4 — Mp at state (sa,5p)
under input 7 is equal to the output of A/ g at state §p under input , and (s'y, §%5, §%) are the successor states respec-
tivelyin M, — Mp and Mp.

Theorem 6.3 Mo — Mp = M4 — Mp iff Mo isareduction of Mp.

Computation of the Permissible Behaviorswith the E-machine

Given the network topology shown in Fig. 1(d), afixed-point computation was been defined by Watanabe and Brayton

in [38] to compute a PNDFSM that contains all behaviors M g (DFSMs) whose composition with the given machine
M 4 is contained in the specification M. The PNDFSM so obtained has been called the E-machine, where the prefix
E stands for environment. An alternative computation, credited to A. Saldanha, builds an equivalent NDFSM (see [15]

for a detailed exposition). The authors have aso investigated the issue of logical implementability of the DFSMs
contained in the E-machine, i.e., the problem of finding those contained DFSMs M g such that there exists a pair of
circuit implementations of Mg and M 4 with no combinational cycles created by connecting them together by the
internal signals« and v. These DFSMs are called permissible.

FSM Network Synthesis by WS1S

WS1S (Weak Second-Order Logic of 1 Successor) is alogic with the same expressive power as regular languages [5,

35, 18]. The WSLS formalism enables one to write down easily equations that characterize the set of (functionaly)
permissible behaviors at a node for different topologies, as pointed out by A. Aziz et al. in [3]. We present the
equations for some FSM networks shown in Figure 1. In all equations M ~ represents the specification; in a given
equation, we label the unknown FSM by a superscript *. According to the WS1S syntax, the FSMs must be encoded
to appear in the equations.

1-Way Cascade (a) - Fig. 1() ¢™4" (I, U) = (YO2)[¢M® (U, 02) =+ 6M< (11, 02)).
The machine M} is exactly the one produced by the construction due to Kim and Newborn [17].

1-Way Cascade (b) - Fig. 1(c) ¢M?™ (U, 0y) = (VI))[¢oMA (I, U) — M (I, 05)].

Supervisory Control - Fig. 1(e) ¢™#" (I5,01,V) = ¢M4(V,0,) = ¢Mc (I, 01).
Therestriction to Moore solutions was investigated in [2].

2-Way Cascade (a) - Fig. 1(b) ¢™4” (I, V,U) = (YO2)[¢MB (U, V, 03) — ¢Me (11, 0,)].
2-Way Cascade (b) - Fig. 1(b) ¢M2" (U, V,0s) = (VI,)[¢M4 (I, V,U) — ¢Me (11, 0,)].

Rectification (a) - Fig. 1(d) ¢M2" (U, V) = (VI,01)[¢oMA(I1,V,U, 0y) — ¢™Me (I, 04)].
Rectification (b) - Fig. 1(d) ¢™2"(I,,V,U,0,) = M5 (U, V) — ¢Me (I, 04).
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Going beyond previous ad hoc approaches, the fact of embedding logic synthesis problemsinto WS1Sformulasallows
oneto state them in acommon frame, enabling easily proof of correctness and compl eteness of the proposed solutions.
Then the computations are performed upon the related automata applying to them the operations that correspond to
the standard logical connectives (however the result may be a regular language that is not an FSM language, an issue
addressed by Th. 4.8).

In contrast, the theory of synchronous and parallel equationsis built upon the primitive notions of language and
language composition, and models naturally alarger spectrum of language equations and their specialized solutions.
M odel Matching by Simulation Relations
The model matching problem in control theory seeks to design a controller M g so that the composition of a plant
M 4 with M g matches a given model M (see the controller’s topology in Fig. 1(€)). A procedure for deriving the
largest solution for complete FSMs M 4 (DFSM) and M (PNDFSM) of the equation M 4 e Mx <™ M for the
discrete model matching problem was proposed in [16, 4], where < #™ denotes simulation relation 1° (as opposed to
language containment in our approach). Simulation relations in genera are stronger than language containment, i.e.,
asimulation relation implies language containment, but not vice versa.

The use of simulation relation instead of |anguage containment avoi ds determinization and leads to an a gorithm of
polynomia complexity bounded by O(|S 4l|.|Sc|.|Tal.|Tc|), where |S ]| (|Sc]) is the number of states of M 4 (M)
and |T4| (T¢) is the size of the transition relation of M 4 (M¢). In [4] a solvability condition is given, based on
the notion of simulation relation between the automata which generate the possible output sequences produced by an
FSM.

6.2 Equationsunder Parallel Composition

Consider the parallel composition of discrete-event systems A over alphabet 7 U U and B over aphabet O U U, with
pairwise-digoint alphabets I, O and U. A number of papers in process algebra[25, 32, 33, 28, 20, 12] solves the
equation A o X =~ C under various relations ~, where A and C are given processes. In this section we focus
on equations defined over process languages, A process language is usualy a prefix-closed regular language and is
represented as the language (or set of traces) of alabeled transition system (LTS), which is afinite automaton (with e
moves) where each state is accepting. Some states can a so be marked with a partially ordered set of marks.

In[25] theequation A ¢ X = C was studied over LTS languages and the following results were claimed:

Theorem 6.4 The maximal solution of A o« X C C over prefix-closed regular languagesis given by
S=A0C\AC.

Theorem 6.5 Theequation Ao X = (' issolvable over prefix-closed regular languagesiff the language S = Ao C'\
A o Cisasolution of the equation,i.e, Ao (Ao C\ AcC) =C.

Theorem 6.4 is not accurate because the largest solution of 4 o X C CisS = A o C, which is obtained by adding
to the language A o C'\ A o C eachword a € (U U O)* such that the sets ayy and Ay are digoint (these words
cannot occur in the composition). Given the equation A ¢ X C C over prefix-closed regular languages accepted by a
finite automaton with nonaccepting states, a procedure leading to the same incomplete solution S = Ao C'\ Ao C
is presented and argued to be maximal in [11]. Notice that the version of Procedure 3.1 for parallel composition
handles unrestricted regular languages, so it is more general than the onesin [25] or [11]. Safe and compositionally
deadlock-free solutions are considered in [10] and a procedure to derive the largest safe solution is proposed.

A procedure for deriving the largest solution for LTSs A and C of the equation A o X < %™ (' was proposed
in[32], where <i™ denotes either astrong or weak bisimulation rel ation (as opposed to language containment in our
approach). The authors derive an automaton representing all traces of the parallel composition of A and each sequence
over the alphabet U U O. The final state of each trace of the composition whose I U O-restriction isnot atrace of C' is
marked as a bad state. To compute the largest solution, the automaton is augmented with a designated don't care state
that accepts all unfeasible sequences, i.e,. those that do not occur in the composition. Finally the (U U O)-restriction

104 C 81 x S isasimulation relation froman FSM M; = (S1,1,0,Ti,r1)toan FSM My = (Sa, 1,0, Ty, r2) if
1. (r1,72) € ¢, and
2. (s1,82) € Y =>
{Vivoys, [(s1 L3, 1) = 35y [(s2 L3, 55) A (51,5) € 011}
If such a1 exists, we say that M» simulates M, or that M has asimulation into Ma, and denote it by M; <$P™ My,
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of the automaton is derived and the result is determinized by subset construction, where each subset including a bad
state is marked as bad. The largest solution is the subset of all sequences of the (U U O)-restriction whose runs do not
end up in bad states.

In[29], the equation A » X C C'is solved over complete FSMs. It is shown that the solution over LTSs cannot be
applied directly to FSMs because in general it is not an FSM language (an FSM language must be also prefix-closed
and I-progressive). Moreover, compositionally (U U O)-convergent solutions are considered. A techniqueis proposed
to find the so-called largest candidate solution by deleting from the largest solution the sequences causing deadlocks
in the composition with FSM A. If the obtained solution is compositionally (U U O)-convergent then it is called
the largest solution of the equation; otherwise, the question whether a compositionally (U U O)-convergent solution
exists remains open. In the latter case, asin [28], the authors propose to limit to [ the number of internal interactions;
if, for a given [, the largest solution of the eguation exists then it is compositionaly (U U O)-convergent and also
each of its reductionsinherits this property. Notice that in Sec. 4.6.3 we extended to regular languages the procedure
for determining the solution with a limited number of internal interactions. Another restricted solution to parallel
equations over regular languagesis considered in [19]. The solution is called the minimally restrictive supervisor, i.e.,
a supervisor that combined with the context matches the largest specification sublanguage.

The equation A « X = (' over regular languages, restricted to the case of the rectification topology to model
the protocol conversion problem, was addressed in [20]. The solution was found using the theory of supervisory
control of discrete event systems and looks for a converter sublanguage in the language of A; their technique as it
is does not generalize to topologies such that the unknown component depends also on signals that do not appear in
the component A. Their solution is of the form A o C'\ A ¢ C (not the largest solution). Moreover, they gave an
algorithm to obtain the largest compositionally progressive solution by first splitting the states of the automaton of the
unrestricted solution (refining procedure, exponential step due to the restriction operator), and then deleting the states
that violate the desired requirement of progressive composition (linear step). The protocol conversion problem was
discussed also in [12] with the formalism of input-output automata.

In the context of modeling delay-insensitive processes and their environments, a number of concurrency models

use various labelings of states of processes to represent certain properties of states, such as quiescence and error or
violation [24, 27]. The existence of state labels reguires a stronger semantics than language semantics and leads to
areflection operator further refining the language complementation operator. See [24, 27] for discussions on parallel
composition operators for delay-insensitive processes. The largest solution of the equation P || X < R isthe process
“(P ||”R), where || is a composition operator and ~ is a reflection operator, replacing the complementation operator
used with language semantics. As with language semantics, such a solution might not be compositionally (U U O)-
convergent; it is also of interest to look for solutions exhibiting a property called healthness, capturing correctness
properties according to the chosen parallel composition operator [24].

7 Conclusions

The problem of finding an unknown component in a network of components in order to satisfy a global system
specification was addressed. Abstract language equations of thetype A e X C C and A ¢ X C C wereinvestigated,
where e and ¢ are operators of language composition. The most general solution was computed and various types of
constrained solutions were studied. Then specialized language eguations were introduced, such as regular and FSM
language equations. The maximal subsets of them closed with respect to various language properties were studied. In
particular the largest compositional solutions were studied; the first algorithm to compute the largest compositionally
I-progressive solution was given.

This approach unifies in a seamless frame the previous reported techniques and appears capable of modeling
problems with various notions of composition and types of language acceptors.

These techniques were applied to aclassical synthesis problem of a converter between a given mismatched pair of
protocols, using their specifications, aswell as those of the channel and of the required service. This problem was also
addressed in [20, 12] with supervisory control techniques. We were able to derive the largest solution, and the largest
compositionally progressive solution, which were not previously reported in the literature.

Futurework includes studying other types of |anguage equations(e.g., as applied to gametheory and those model ed
by Petri nets) and building a prototype software package to compute the sol utions automatically. To assess the practical
relevance of the method, we planto test it in different applicative domains and to determine, for each domain, the level
of system “granularity” at which the method is effective. Computing approximations will be the next direction to
explore, after that exact techniques have been exploited fully.
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