
Sequential Synthesis by Language Equation Solving

Nina Yevtushenko� Tiziano Villa��� Robert K. Brayton� Alex Petrenko��

Alberto L. Sangiovanni-Vincentelli���

�Dept. of EECS �DIEGM �PARADES
Tomsk State University Univ. of Udine Via di S.Pantaleo, 66
Tomsk, 634050, Russia 33100 Udine, Italy 00186 Roma, Italy

�Dept. of EECS ��CRIM
Univ. of California 550 Sherbrooke West

Berkeley, CA 94720 Montreal, H3A 1B9, Can

August 19, 2004

Abstract

Consider the problem of designing a component that combined with a known part of a system, called the context,
conforms to a given overall specification. This question arises in several applications ranging from logic synthesis to
the design of discrete controllers.

We cast the problem as solving abstract equations over languages and study the most general solutions under the
synchronous and parallel composition operators. We also specialize such language equations to languages associated
with important classes of automata used for modeling systems, e.g., regular languages as counterparts of finite au-
tomata, FSM languages as counterparts of FSMs. Thus we can operate algorithmically on those languages through
their automata and study how to solve effectively their language equations. We investigate the maximal subsets of
solutions closed with respect to various language properties. In particular, we investigate classes of the largest compo-
sitional solutions (defined by properties exhibited by the composition of the solution and of the context). We provide
the first algorithm to compute the largest compositionally progressive solution of synchronous equations.

This approach unifies in a seamless frame previously reported techniques. As an application we solve the classical
problem of synthesizing a converter between a mismatched pair of protocols, using their specifications, as well as
those of the channel and of the required service.

1 Introduction

An important step in the design of complex systems is the decomposition of a system into a number of separate
components which interact in some well-defined way. A typical question is how to design a component that when
combined with a known part of the system, called the context, satisfies a given overall specification. This question
arises in several applications ranging from logic synthesis to the design of discrete controllers. Some common network
topologies are shown in Figure 1. To formally solve such problems, the following questions need to be addressed:

� How to model the system, its components and the specification

� How is the interaction between components defined

� When does a system behavior satisfy its specification

For the first issue, different types of mathematical machines can be used to model the components of a system: finite
automata (FA), finite state machines (FSMs), Petri Nets (PNs), �-automata (�-FA) are used most commonly. Given a
decision on the first issue, related choices must be made for the other two. For instance, if FSMs are used to model the
system, operators to compose FSMs must be introduced together with the notion of an FSM conforming to another
FSM. For the last issue popular choices are language containment or simulation of one FSM by the other. For FSM

1

��

� �

��

��

���

���

���

�

�

� � ��

��

��

��

��

��

��

��

��

��

��
��

��

�	�

�
�

�

�

�

�

��

��

��

��

��

��

Figure 1: Patterns of composition. (a) general topology; (b) 2-way cascade (or 2-way series) topology; (c) 1-way
cascade (or 1-way series) topology; (d) rectification topology; (e) controller’s (or supervisory control) topology.

2

composition, various forms have been described in the literature. For example, one can define an equation over FSMs
of the type �� � �� � �� , where �� models the context, �� models the specification, �� is unknown, �
stands for a composition operator and � for a conforming relation (e.g., �, language containment). For any given
model of mathematical machines, appropriate equations can be set up and their solutions investigated. More complex
equations or systems of equations can be formulated depending on the topology of the system’s components.

A useful observation is that a certain class of languages is associated with each model of mathematical machine,
therefore we define abstract equations over languages. We introduce two composition operators for abstract lan-
guages: synchronous composition, �, and parallel composition, �, and we check conformity by language containment.

A key contribution is the computation of the most general solutions of the language equations � � � � � and

� �� � �, found respectively as � � � � �, and � � � ��. The derivation sheds lights on the properties required
of a composition operator to yield such a closed formula as largest solution, and explains when different equations
give rise to that same type of solution formula. These formulas turn out to subsume a panoply of specialized solutions
derived in the past for specific composition operators and topologies.

Then we specialize such language equations to languages associated with chosen classes of automata used for mod-
eling hardware and software systems, namely, regular languages as counterparts of finite automata, FSM languages as
counterparts of FSMs. Thus we can operate algorithmically on those languages through their automata and study how
to solve effectively their related language equations. It is important to find solutions within the same language class of
the equation, e.g., when studying FSM language equations we look for solutions that are FSM languages. Moreover,
we are interested in subsets of solutions characterized by further properties of practical interest, e.g., FSM languages
that satisfy the Moore property; thus the valid solutions are restricted further.

Various contributions, investigating partial aspects of the topic of this research, have been published. A complete
survey is provided in Sec. 6 (see also [15], Chap. 6, and [13]). A direct antecedent of this work is [29] on FSM
equations under parallel composition (called “asynchronous equations”). A subset of the material on parallel language
equations has been reported at a conference [39].

2 Equations over Languages

2.1 Languages and Operators

Definition 2.1 An alphabet is a finite set of symbols. The set of all finite strings over a fixed alphabet � is denoted by
��. �� includes the empty string �. A subset � � � � is called a language over alphabet � .

Some standard operations on languages are:

1. Given languages �� and ��, respectively over alphabets �� and ��, the language ����� over alphabet �����

is the union of languages �� and ��.

2. Given languages �� and ��, respectively over alphabets �� and ��, the language ���� � �	
 � 	 	 ���
 	
��
 over alphabet �� ��� is the concatenation of languages �� and ��. Define �� � ��
, �� � �����. The
Kleene closure of � is the set �� � ������

� and the positive Kleene closure of � is �� � ������
�. Finally,

the �-bounded Kleene closure of � is set ��� � ��
����

�.

3. Given languages �� and ��, respectively over alphabets �� and ��, the language ����� over alphabet �����

is the intersection of languages �� and ��. If �� ��� � � then �� � �� � �.

4. Given a language � over alphabet � , the language � � � �
� over alphabet � is the complement of language
�. Similarly, given languages�� and ��, respectively over alphabets �� and ��, the language��
�� � �����

over alphabet �� is the difference of languages �� and ��.

5. Given a language � over alphabet � , the language of all prefixes of words in � is Init��� � �
 	 � � � �� 	
���
� 	 �
.

It is useful to recall the notions of substitution and homomorphism of languages [14]. A substitution � is a
mapping of an alphabet � onto subsets of �� for some alphabet �. The substitution � is extended to strings by setting
���� � ��
 and ��
�� � ��
�����. An homomorphism � is a substitution such that ���� is a single string for each
symbol � in the alphabet �. We introduce some useful operations on languages.

3

1. Given a language � over alphabet � � � , consider the homomorphism � � � � � � � � defined as

���
� ��� � ��

then the language
��� � ���	� � 	 	 �

over alphabet � is the projection of language � to alphabet � , or � -projection of �. By definition of substitu-
tion ���� � �.

2. Given a language � over alphabet � and an alphabet � , consider the substitution � � � � � ���� �� defined as

��
� � ��
� �� � � 	 �
�

then the language
��� � ���	� � 	 	 �

over alphabet � � � is the lifting of language � to alphabet � , or � -lifting of �. By definition of substitution
���� � ��
.

3. Given a language � over alphabet � � � , consider the homomorphism � � � � � � � � defined as

���� �

�
� if � 	 �
� if � 	 �
 �

�

then the language
��� � ���	� � 	 	 �

over alphabet � is the restriction of language � to alphabet � , or � -restriction of �, i.e., words in � �� are
obtained from those in � by deleting all the symbols in � that are not in � . By definition of substitution
���� � �.

4. Given a language � over alphabet � and an alphabet � , consider the mapping � � � � � ���� �� defined as

��
� � �	

 � 	�
 	 ��
���
�

then the language
�	� � ���	� � 	 	 �

over alphabet � �� is the expansion of language � to alphabet � , or � -expansion of �, i.e., words in � 	� are
obtained from those in � by inserting anywhere in them words from ��
�� �. Notice that � is not a substitution
and that ���� � �	 � 	 	 � �
.

Given a language � over alphabet � , an alphabet � , and a natural number �, consider the mapping � � � � �

����� �� defined as
���
� � �	

 � 	�
 	 ��
����
�

then the language
�	����� � ����	� � 	 	 �

over alphabet � � � is the l-bounded expansion of language � over alphabet � , or ��� ��-expansion of �, i.e.,
words in �	� are obtained from those in � by inserting anywhere in them words from ��
����. Notice that
�� is not a substitution and that ����� � �	 � 	 	 � ��
.

By definition ��� � �, ��� � �, ��� � �, �	� � �, �	����� � �.
The four previous operators change a language and its alphabet of definition; in particular the operators � and �

vary what components are present in the cartesian product that defines the language alphabet. We assume that each
component has a fixed position in the cartesian product. For instance, let language � � be defined over alphabet � and
language �� be defined over alphabet �, then language �� �	 is defined over alphabet � �� and also language �� �

is defined over alphabet � � �, if by assumption � precedes � in the cartesian product. More precisely, say that we
introduce an ordering of alphabets, �, by which � is mapped to index ���� and � is mapped to ����, then ���� � ����
implies that � precedes � in any cartesian product of alphabets. The ordering is arbitrary, but, once chosen, it holds
through the sequence of language operations.

The following straightforward facts hold between the projection and lifting operators, and between the restriction
and expansion operators. In the following, unless otherwise stated, the union is taken over non-disjoint alphabets.

4

Proposition 2.1 The following relations hold.
(a) Given alphabets � and � , and a language � over alphabet � , then �� �� ��� � �.
(b) Given alphabets � and � , and a language � over alphabet � � � , then �� ����� � �.
(c) Given alphabets � and � (� , � disjoint), and a language � over alphabet � , then �� 	� ��� � �.
(d) Given alphabets � and � (� , � disjoint), and a language � over alphabet � � � , then �� ���	� � �.

Proposition 2.2 Given alphabets � and � , a language � over alphabet � and a string 	 	 ���� � �, then 	�� 	 �
iff 	 	 ��� .

Given alphabets � and � , a language � over alphabet � and a string 	 	 �� �� � �, then 	�� 	 � iff 	 	 �	� .

Proposition 2.3 The following distributive laws for � and � hold.
(a) Let ��� �� be languages over alphabet � . Then � commutes with �

��� � ����
 � �� �
 � �� �
 �

(b) Let ��� �� be languages over alphabet � . Then � commutes with �

��� � ����
 � �� �
 � �� �
 �

(c) Let ����� be languages over alphabet � � � . Then � commutes with �

��� ������ � �� �� ��� �� �

(d) Let ����� be languages over alphabet � � � . If �� � ��� �� ��
 (or �� � ��� �� ��
) then � commutes with
�

��� ������ � �� �� ��� �� �

Proof. ��� � ����
 � �� �
 � �� �
 .
(�) If the string ���� ��� � � � ��
� �
� 	 ��������
 , then �� � � � �
 	 �����; thus �� � � � �
 	 ��, �� � � � �
 	 ��,

and so ���� ��� � � � ��
� �
� 	 �� �
 , ���� ��� � � � ��
� �
� 	 �� �
 , implying ���� ��� � � � ��
� �
� 	 �� �
 � �� �
 .
(�) If the string ���� ��� � � � ��
� �
� 	 �� �
 � �� �
 , then ���� ��� � � � ��
� �
� 	 �� �
 , ���� ��� � � � ��
� �
� 	

�� �
 ; thus �� � � � �
 	 ��, �� � � � �
 	 ��, implying �� � � � �
 	 �� � ��, and so ���� ��� � � � ��
� �
� 	 ��� � ����
 .
Similarly one proves the first and third identity involving �.
��� ������ � �� �� ��� �� .
(�) If the string �� � � � �
 	 ��� ������ then there exists �� � � � �
 such that ���� ��� � � � ��
� �
� 	 �� ���,

i.e., ���� ��� � � � ��
� �
� 	��, ���� ��� � � � ��
� �
� 	��, and so �� � � � �
 	�� �� and �� � � � �
 	�� �� .
(�) If the string �� � � � �
 	 �� �� ��� �� , i.e., �� � � � �
 	 �� �� and �� � � � �
 	 �� �� , then there exists

�� � � � �
 such that ���� ��� � � � ��
� �
� 	 ��. Moreover, since �� � ��� �� ��
 , from �� � � � �
 	 �� �� it follows
that ���� ��� � � � ��
� �
� 	 ��. In summary, ���� ��� � � � ��
� �
� 	 �� and ���� ��� � � � ��
� �
� 	 ��, implying
���� ��� � � � ��
� �
� 	�� ���, from which follows �� � � � �
 	 ��� ������ . �

Corollary 2.1 Let ��� � � �� � � � � � be languages over alphabet � . Then � commutes with both � and �

�
�

����
 �
�

��� �
��

�
�

����
 �
�

��� �
��

Let ��� � � �� � � � � � be languages over alphabet � � � ., Then � commutes with �

�
�

����� �
�

��� �� ��

Let ��� � � �� � � � � � be languages over alphabet ��� . If �� � ��� �� ��
 , � � �, �� � ��� �� ��
 (or any collection
of �� � languages �� satisfies this property), then � commutes with �

�
�

����� �
�

��� �� ��

The proof is by induction based on Prop. 2.3.

5

Proposition 2.4 The following distributive laws for � and � hold.
(a) Let ��� �� be languages over alphabet � . Then � commutes with �

��� � ���	
 � �� 	
 � �� 	
 �

(b) Let ��� �� be languages over alphabet � . Then � commutes with �

��� � ���	
 � �� 	
 � �� 	
 �

(c) Let ����� be languages over alphabet � � � . Then � commutes with �

��� ������ � �� �� ��� �� �

(d) Let ����� be languages over alphabet � �� . If �� � ��� �� �	
 (or �� � ��� �� �	
) then � commutes with
�

��� ������ � �� �� ��� �� �

Proof. ��� � ���	
 � �� 	
 � �� 	
 .
(�) If the string 	��� � � � 	
�
	
�� 	 ��� � ���	
 and 	�� � � � � 	
� 	
�� 	 ��, then �� � � � �
 	 �� � ��;

thus �� � � � �
 	 ��, �� � � � �
 	 ��, and so 	��� � � � 	
�
	
�� 	 �� 	
 , 	��� � � � 	
�
	
�� 	 �� 	
 , implying
	��� � � � 	
�
	
�� 	 �� 	
 � �� 	
 .

(�) If the string 	��� � � � 	
�
	
�� 	 �� 	
 � �� 	
 , then it holds that 	��� � � � 	
�
	
�� 	 �� 	
 and
	��� � � � 	
�
	
�� 	 �� 	
 ; thus �� � � � �
 	 ��, �� � � � �
 	 ��, implying �� � � � �
 	 �� � ��, and so it is
also 	��� � � � 	
�
	
�� 	 ��� � ���	
 .

Similarly one proves the first and third identity involving �.
��� ������ � �� �� ��� �� .
(�) If the string �� � � � �
 	 ��������� then there exists 	�� � � � 	
� 	
�� 	 �� such that it holds that the string

	��� � � � 	
�
	
�� 	 �� ���, i.e., 	��� � � � 	
�
	
�� 	 ��, 	��� � � � 	
�
	
�� 	 ��, and so �� � � � �
 	
�� �� and �� � � � �
 	�� �� .

(�) If the string �� � � � �
 	 �� �� ��� �� , i.e., �� � � � �
 	 �� �� and �� � � � �
 	 �� �� , then there exists
	� � � � 	
	
�� 	 �� such that 	��� � � � 	
�
	
�� 	 ��. Moreover, since �� � ��� �� �	
 , from �� � � � �
 	
�� �� it follows that 	��� � � � 	
�
	
�� 	 ��. In summary, 	��� � � � 	
�
	
�� 	 �� and 	��� � � � 	
�
	
�� 	
��, implying 	��� � � � 	
�
	
�� 	�� ���, from which follows �� � � � �
 	 ��� ������ . �

Example 2.1 The identity ��������� � �� �� ��� �� does not hold without an additional hypothesis. Consider
� � ���
, � � ��
, �� � ���
, �� � � �
, then ��������� � ��� � � and �� �� ��� �� � ��
���
 �
��
. Notice that �� and � are words of length 2 on the alphabet � � � .

Proposition 2.5 The following equivalences hold:
(a) Let � be a language over alphabet � , then ��	 � � � � � �. (b) Let � be a language over alphabet � ��, then
��	 � � � � � �. (c) Let � be a language over alphabet � � �, then �		 � � � � � �. (d) Let � be a language
over alphabet � � �, then ��	 � � � � � �.

Proof. The proofs are straighforward; implication� of statement (d) is true because, even in the case that all strings
in � are defined only over symbols from alphabet � , their restriction to alphabet � yields the empty string � (i.e.,
� 	 ��	 �� �) and so from � �� � follows that ��	 �� �. �

2.2 Finite Automata and Regular Expressions

Definition 2.2 A finite automaton (FA) is defined as a 5-tuple ! � ������� �� "�. � represents the finite state
space, � represents the finite alphabet, and � � �� � � � is the next state relation, such that � 	 � is a next state
of present state � 	 � on symbol � 	 � iff ��� �� �� 	 �. The initial or reset state is � 	 � and " � � is the set of
final or accepting states. A variant of FAs allows the introduction of �-moves, meaning that � � �� � ���
 � � � �.

The next state relation can be extended to have as argument strings in �
 (i.e., � � �
 � � � �) as follows:
�#�� $� $��� 	 � iff there exists $� 	 � such that �#� $� $�� 	 � and ��� $�� $��� 	 �.

6

A string
 is said to be accepted by the FA ! if there exists a sequence of transitions corresponding to
 such that
there is a state �� 	 " for which ��
� �� ���. The language accepted by ! , designated ���! �, is the set of strings
�
 ���� 	 " 	��
� �� ���

. The language accepted or recognized by $ 	 �, denoted � ��! �$� or ���$� when ! is
clear from the context, is the set of strings �
 ���
� �� $�
.

If for each present state � and symbol � there is at least one next state � such that ��� �� �� 	 �, the FA is said to
be complete.

An FA is a deterministic finite automaton (DFA) if for each present state � and symbol � there is exactly one next
state � such that ��� �� �� 	 �. The relation � can be replaced by the next state function Æ, defined as Æ � ��� � �,
where � 	 � is the next state of present state � 	 � on symbol � 	 � iff � � Æ��� ��. An FA that is not a DFA is a
non-deterministic finite automaton (NDFA).

A string
 is said to be accepted by the DFA ! if Æ�
� �� 	 ". The language accepted by ! , designated � ��! �, is
the set of strings �
 �Æ�
� �� 	 "
. The language accepted or recognized by $ 	 �, denoted � ��! �$� or ���$� when
! is clear from the context, is the set of strings �
 �Æ�
� �� � $
.

The languages associated with finite automata are the regular languages, defined by means of regular expressions.

Definition 2.3 The regular expressions over an alphabet � are defined recursively as follows:

1. � is a regular expression and denotes the empty set.

2. � is a regular expression and denotes the set ��
.

3. For each � 	 �, � is a regular expression and denotes the set ��
.

4. If � and $ are regular expressions denoting the languages % and �, respectively, then ��� $�, ��$� and �� �� are
regular expressions that denote the sets % � �, %� and %�, respectively.

The sets denoted by regular expressions are the regular languages.

Regular languages are closed under union, concatenation, complementation and intersection. Also regular languages
are closed under projection, lifting and restriction, because they are closed under substitution [14]. Regular languages
are closed under expansion, because Sec. 3.2 describes an algorithm that, given the finite automaton of a language,
returns the finite automaton of the expanded language.

2.3 Classes of Languages

We introduce several classes of languages used later in the paper.

Definition 2.4 A language � over alphabet � is prefix-closed if �	 	 � � �
 	 � 		
 	 �� 	 	 �
� Equivalently,
� is prefix-closed iff � � ���&���.

Definition 2.5 A language � over alphabet � � � �� is �-progressive if

�	 	 �� �� 	 � �' 	 � 		 	 �� 	 ��� '� 	 �
�

Definition 2.6 A language � over alphabet � �� is ��-defined if ��
 � ��.

If a language over � � � �� is �-progressive it is also ��-defined, but the converse does not hold.

Example 2.2 The language � � �� � ��'� � ��'����'��
�
 is ��-defined, but not �-progressive, as witnessed by

	 � ��'� 	 � and � � �� for which there is no ' such that 	 �' 	 �.

Definition 2.7 A language � over alphabet � � � �� is Moore with respect to alphabet � , if

�	 	 � ���� '� 	 � ����� '�� 	 � 		 ��� '� 	 �� 		 ���� '�� 	 �� 	 ���� '� 	 �

�

Definition 2.8 A language � � ����� over alphabet � � � (� and � disjoint) is ��-prefix-closed if

�	 	 ����� ��' 	 �� 		 �' 	 �� 	 	 �
�

7

Definition 2.9 A language � � ����� over alphabet � � � (� and � disjoint) is ��-progressive if

�	 	 ����� �� 	 � �' 	 � 		 	 �� 	 �' 	 �
�

Definition 2.10 A language � � ��� ���� over alphabet � � � � � (� , � and � disjoint) is � ��-progressive if

�	 	 ������� �� 	 � �
 	 �� �' 	 � 		 	 �� 	 �
' 	 �
�

Example 2.3 a) Let � � ���� ��
, � � �'�� '�
 and � � ���� ��
. The language � � ��������
���'� � ���

�
�'��

�

is ���-progressive, since any word in � can be extended to a word in � by suffixes starting with either � � or ��. The
corresponding automaton is shown in Fig. 2(a).

b) Let � � ���� ��
, � � �'�� '�
 and � � ���
. The language � � ����'��� � ���'��
����

�
�'�����

�
�'��

�
 is not
���-progressive, since the words in the set �����

�'�����
�
�'��

�
 are in �, but when � � �� there is no
 	 �� and no
' 	 � such that 	 �
' 	 � (e.g., 	 � ����'� cannot be extended by any suffix starting with ��). The corresponding
automaton is shown in Fig. 2(b).

Definition 2.11 A language � over alphabet � � � (� and � disjoint) is ��-defined if ��
 � ��.

An ��-progressive language is ��-defined, so is an ���-progressive language, but the converse does not hold.

Definition 2.12 A language � over alphabet � � � (� and � disjoint) is � -deadlock-free if

�	 	 �� � ��� �� 	 � �
 	 �� �
 	 � 		� 	 �� 	�

 	 �
�

Any language � � ��� ���� is � -deadlock-free (because no word ending by a symbol � 	 � belongs to the lan-
guage).

Example 2.4 a) Let � � ���, � � ���� ��
, � � �'�� '�
 and� � ���� ��
. The language� � ���������
����

�'��
��

�������
�
����

�'��
������

�
�
 is � -deadlock-free, because any word in the language terminating by � � or �� can be ex-

tended by suffix �� to a word in the language terminating by '�. The corresponding automaton is shown in Fig. 2(c).
b) Let � � � � �, � � ���� ��
, � � �'�� '�
 and � � ���� ��� ��
. The language � � ��������

����
�'��

� �
�������

�
����

�'��
������

�
� � �������

�
����

�'��
������

�
����

�
�
 is not � -deadlock-free, since the words in the collection

���������
����

�'��
������

�
����

�
�
 cannot be extended to words in � (e.g., 	 � ��������). The corresponding automa-

ton is shown in Fig. 2(d).

Definition 2.13 A language � over alphabet � � � (� and � disjoint) is � -convergent if �	 	 � � the language
		� � � is finite, otherwise it is � -divergent.

Example 2.5 The language � � ����'
 where � � ��� '
 and � � ��
 is � -divergent, as witnessed by the
string 	 � �' 	 � whose expansion includes the infinite set ����'
 coinciding with �: �		�
 � ���'�	��

 �
������'��
 � ����'
 � �.

2.4 Composition of Languages

Consider two systems � and (with associated languages ���� and ��(�. The systems communicate with each other
by a channel � and with the environment by channels � and �. We introduce two composition operators that describe
the external behaviour of the composition of ���� and ��(�.

Definition 2.14 Given the disjoint alphabets �� ���, language �� over � � � and language �� over � � �, the
synchronous composition of languages �� and �� is the language 1 	�����	 � �����

�
�	 , denoted by �� �
�	��,
defined over � ��.

Definition 2.15 Given the disjoint alphabets �� ���, language �� over � � � and language �� over � � �, the
parallel composition of languages �� and �� is the language 	����		 � ����	

�
�	, denoted by �� �
�	 ��,
defined over � � �.

Given alphabets �� ���, language �� over � �� and language �� over � ��, the �-bounded parallel composi-
tion of languages �� and �� is the language 	����		 � ����	
 � �� ����	�����
�
�	 , denoted by �� ����� ��, defined
over � � �.

1Use the same order � � � �� in the languages ������ and ������ .

8

�	�

��

�� ���

�

���

��

� ��

��

��

��

� ��

��

��

��

�

��

��

�

��

�

��

�
�

��

��
��

��

��

Figure 2: (a) Finite automaton of the language described in Example 2.3-a); (b) Finite automaton of the language
described in Example 2.3-b); (c) Finite automaton of the language described in Example 2.4-a); (d) Finite automaton
of the language described in Example 2.4-b).

9

For ease of notation, we will omit the alphabet from the symbol of synchronous and parallel composition, unless
unclear from the context. By definition of the operations �� , �� , �� , 	� , 	����� it follows that � � � � � � � � �,
� �� � � � � � �, � �� � � � �� � � �.

When � � � the definition of �-bounded parallel composition reduces to the definition of parallel composition of
languages, because then �� � ���	����� becomes �� � � � ���, that is the universe over � � � � � , and so it can be
dropped from the conjunction.

Comment The definition of parallel composition justifies a-posteriori why the expansions operator � is not defined
to be a substitution, i.e., ���� �� ��
. Consider a language � � ���'��������� and a language (whatsoever. The par-
allel composition of � and (should be equal to the language ��'� �, because (should not affect the � �� behavior of
�. Now suppose (� ��
. If we would define ���� � ��
, then it would be ��(
�	 � ���'������������
	
�	 �
���'������������
 � ��
; if we define instead ��
	
�	 � ������ then it is ��(
�	 � ���'������������
	
�	 �
���'��������� � �� � '�� � ��'��, that is the expected result.

Variants of synchronous composition are introduced in [6] as product, � (with the comment sometimes called
completely synchronous composition), and in [21] as synchronous parallel composition, . Variants of parallel com-
position are introduced in [6] as parallel composition, ! (with the comment often called synchronous composition),
and in [21] as interleaving parallel composition, !; the same operator was called asynchronous composition in [29].
These definitions were usually introduced for regular languages; actually they were more commonly given for finite
automata.

It has also been noticed by Kurshan [21] and Arnold [1] that asynchronous systems can also be modeled with the
synchronous interpretation, using null transitions to keep a transition system in the same state for an arbitrary period
of time. Kurshan [21] observes that: “While synchronous product often is thought to be a simple -even uninteresting!-
type of coordination, it can be shown that, through use of nondeterminism, this conceptually simple coordination
serves to model the most general ‘asynchronous’ coordination, i.e., where processes progress at arbitrary rates relative
to one another. In fact the ‘interleaving’ model, the most common model for asynchrony in the software community,
can be viewed as a special case of this synchronous product.” A technical discussion can be found in [22].

In the sequel it will be useful to extend some properties of languages to the composition of two languages. As
examples, we illustrate the extension for �-progressive and � ��-progressive languages.

Definition 2.16 Given a language � over alphabet � �� , a language (over alphabet � �� is �-compositionally
�-progressive if the language � � ��	 � (�
 over alphabet � � � � � � � is �-progressive, i.e., �	 	 � � �� 	
� ���� '� 	 � �� 		 	 �� 	 ��� �� '� 	 �
.

Definition 2.17 Given a language � over alphabet � � � , a language (over alphabet � � � is �-compositionally
���-progressive if the language � � ��	 � (�
 � ������� over alphabet � � � � � � � (� , � and � disjoint)
is ���-progressive, i.e., �	 	 ��� ���� �� 	 � �
 	 �� �' 	 � 		 	 �� 	 �
' 	 �
.

Defn. 2.17 ensures that the composition does not fall into a deadlock.
When clear from the context, instead of �-compositionally we will write more simply compositionally.

2.5 Solution of Equations over Languages

2.5.1 Language Equations under Synchronous Composition

Given the disjoint alphabets �� ���, a language � over alphabet ��� and a language � over alphabet ���, consider
the language equation

� �� � �� (1)

Definition 2.18 Given disjoint alphabets �� ���, a language � over alphabet � �� and a language � over alphabet
� ��, language (over alphabet � �� is called a solution of the equation � �� � � iff � �(� �. A solution is
called the largest solution if it contains any other solution. (� � is the trivial solution.

Theorem 2.1 The largest solution of the equation � �� � � is the language � � � � �.

Proof. Consider a string 	 	 �� � ���, then 	 is in the largest solution of � � � � � iff � � �	
 � � and the
following chain of equivalences follows:

� � �	
 � � �

10

���	 � �	
�
��
�	 � � � � � �)�'�� ������ � � ���� ��
�	

���	 � �	
�
��
�	 � ���� ��
�	 � � � �)�'�� ����*� $��+� ����� ��
�	��� � ���

���	 � �	
�
 � ��� ��
�	 � � � �)�'�� ��
� �

��	 � �	
�
 � ��� � � � �)�'�� ��
� �

���	 � �	
�
 � ��� ����	 � � � �)�'�� ����*� $��+� �	
�
 � ���	
�
����	��

��	
�
����	 � ���	 � ��� ����	 � � � �)�'�� ������ ��	
�
����	 � �	

�	
 � ���	 � ��� ����	 � � �

	 �	 ���	 � ��� ����	 �

	 	 ���	 � ��� ����	 �

	 	 � � �

Therefore the largest solution of the language equation � �� � � is given by the language

� � � � �� (2)

�

Corollary 2.2 A language (over alphabet � �� is a solution of � �� � � iff (� � � �.

Let � be the largest solution of the equation � � � � �. It is of interest to investigate subsets of � that satisfy
some further properties, e.g., being prefix-closed, progressive, etc.

If � is prefix-closed then � is the largest prefix-closed solution of the equation. However, not every non-empty
subset of � inherits the feature of being prefix-closed. If � is not prefix-closed, then denote by Pref��� the largest
prefix-closed subset of �. The set Pref��� is obtained from � by deleting each string that has a prefix not in �.

Proposition 2.6 If Pref��� �� �, then Pref��� is the largest prefix-closed solution of the equation � �� � �.
If Pref��� � �, then the equation � �� � � has no prefix-closed solution.
If the language � does not include the empty string, then � �� � � has no prefix-closed solution.

If � is � -progressive (� is a language over alphabet � � �), then � is the largest � -progressive solution of
the equation. However, not each non-empty subset of � inherits the feature of being � -progressive. If � is not � -
progressive, then denote by Prog��� the largest � -progressive subset of �. The set Prog��� is obtained from � by
deleting each string 	 such that, for some � 	 � , there is no ' 	 � for which 	��� '� 	 �.

Proposition 2.7 If Prog��� �� �, then the language Prog��� is the largest � -progressive solution of the equation
� �� � �.
If Prog��� � �, then the equation � �� � � has no � -progressive solution.

2.5.2 Language Equations under Parallel Composition

Given pairwise disjoint alphabets �� ���, a language � over alphabet � � � and a language � over alphabet � � �,
consider the language equation

� �� � �� (3)

Definition 2.19 Given pairwise disjoint alphabets �� ���, a language � over alphabet � �� and a language � over
alphabet � ��, language (over alphabet � �� is called a solution of the equation � �� � � iff � �(� �. The
largest solution is a solution that contains any other solution. (� � is the trivial solution.

Theorem 2.2 The largest solution of the equation � �� � � is the language � � � ��.

Proof. Consider a string 	 	 �� � ���, then 	 is in the largest solution of � � � � � iff � � �	
 � � and the
following chain of equivalences follows:

� � �	
 � � �

11

��		 � �	
	
��
�	 � � � � � �)�'�� ����+� � � ��	� ��
�	

��		 � �	
	
��
�	 � ��	� ��
�	 � � � �)�'�� ����*� $��+� ���	� ��
�	�	� � �	�

��		 � �	
	
 � �	� ��
�	 � � � �)�'�� ��
�*�

�		 � �	
	
 � �	� � � � �)�'�� ��
�*�

��		 � �	
	
 � �	� ����	 � � � �)�'�� ����*� $��+� �	
	
 � ���	
	
����	�	

��	
	
����	 � ��		 � �	� ����	 � � � �)�'�� ����+� ��	
	
����	 � �	

�	
 � ��		 � �	� ����	 � � �

	 �	 ��		 � �	� ����	 �

	 	 ��		 � �	� ����	 �

	 	 � ��

Therefore the largest solution of the language equation � �� � � is given by the language

� � � ��� (4)

�

Corollary 2.3 A language (over alphabet � � � is a solution of � �� � � iff (� � ��.

Proposition 2.8 If � is � -convergent, then � is the largest � -convergent solution of the equation, and a language
(�� � is a � -convergent solution iff (� �.

When � is not � -convergent the largest � -convergent solution does not exist, and any finite subset of � is a � -
convergent solution. An analogous proposition and remark hold for �-compositionally � -convergent solutions.

2.5.3 Language Equations under Bounded Parallel Composition

Theorem 2.3 The largest solution of the equation � � � � � � is the language

� � ��		 � �	���������	 �

Proof.

� �� �	
 � � �

��		 � �	
	
 � �� � ���	�������
�	 � � � � �

�		 � �	
	
 � �	����� � � �

	 �	 ��		 � �	���������	 �

	 	 ��		 � �	���������	

�

3 Equations over Finite Automata

3.1 Equations over Mathematical Machines

Language equations can be solved effectively when they are defined over languages that can be manipulated algo-
rithmically. Usually such languages are presented through their corresponding mathematical machines, e.g., finite
automata for regular languages. In the following sections, equations over various classes of automata are studied, like
FAs and FSMs, specializing the theory of equations to their associated languages. A key issue to investigate is the
closure of the solution set with respect to a certain type of language, e.g., when dealing with FSM language equations
we require that the solutions are FSM languages. This cannot be taken for granted, because the general solution of
abstract language equations is expressed through the operators of complementation and composition, which do not
necessarily preserve certain classes of languages.

12

3.2 Solution of Equations over Regular Languages

Two well-known results [14] are that non-deterministic finite automata are equivalent (w.r. to language equality)
to deterministic ones and that regular expressions are equivalent to finite automata. By applying the algorithm of
subset construction one converts a NDFA into an equivalent DFA (complete by construction). Given an NDFA ! �
������� �� "�, the process of subset construction builds the DFA ! � � ��� ��� Æ� ��"��, where 1) the states �$ 	 �� are
the subsets of �, 2) the transition relation is Æ��� �$� � ���	��$� � ��� $� $�� 	 �
 and 3) a state is final, i.e., �$ 	 "� � ��,
iff �$ � " �� �. Since many of the states in �� are unreachable from the initial state, they can be deleted and so the
determinized automaton usually has fewer states than the power set. To make a NDFA complete it is not necessary to
apply the full-blown subset construction, but it suffices to add a new non-accepting state $ � whose incoming transitions
are ��� $� $�� for all �� $ for which there was no transition in the original automaton. By a closure construction [14], an
NDFA with �-moves can be converted to an NDFA without �-moves; subset construction must be applied at the end to
determinize it.

The equivalence of regular expressions and finite automata is shown by matching each operation on regular ex-
pressions with a constructive procedure that yields the finite automaton of the result, given the finite automata of the
operands. For the most common operations (union, concatenation, complementation, intersection) see [14]. Here we
sketch the procedures for projection, lifting, restriction and expansion:

projection (�) Given FA ! that accepts language � over ��� , FA ! � that accepts language ��� over � is obtained
from ! by replacing each edge ��
� ��� $� $ �� by the edge �
� $� $�� and then applying subset construction to
determinize it.

lifting (�) Given FA ! that accepts language � over � , FA ! � that accepts language ��� over � � � is obtained
from ! by replacing each edge �
� $� $ �� by the edges ��
� ��� $� $��� �� 	 � .

restriction (�) Given FA ! that accepts language � over ��� , FA ! � that accepts language ��� over � is obtained
from ! by the following procedure:

1. �
 	 �
� , change every edge �
� $� $ �� into the edge ��� $� $��, i.e., replace the symbols
 	 �
 � by �.

2. Apply the closure construction to obtain an equivalent deterministic finite automaton without �-moves (by
a procedure similar to the subset construction, where the states of the final automaton are subsets of the
states of the original automaton, and �-moves are handled by the mechanism of �-closure [14]).

expansion (�) Given FA ! that accepts language � over � , FA ! � that accepts language �	� over ��� (� �� �
�) is obtained from ! by adding for each state $, �� 	 � , the edge (self-loop) ��� $� $�.

�-expansion (��) Given FA ! that accepts language � over � , FA ! � that accepts language �	�����, � integer, over
� � � (� � � � �) is obtained from ! by the following procedure:

1. The set of states � � of ! � is given by

�� � � � ��$� ,� � $ 	 �� � " , " �
�

2. The next state relation �� of ! � is given by

�� � � � ���� $� �$� ��� � � 	 �� $ 	 �

� ���� �$� ,�� �$� , � ��� � � 	 �� $ 	 �� � " , � �

� ��
� �$� ,�� $�� � �
� $� $�� 	 �� � " , " �
�

3. �� � � and "� � ".

The procedures for projection, lifting and restriction guarantee the substitution property ���� � �.
Given that all the operators used to express the solution of regular language equations have constructive counter-

parts on automata, we conclude that there is an effective way to solve equations over regular languages.
As an example, given a regular language equation � �� � �, where � is a regular language over alphabet � �� ,

� is over � ��, and the unknown regular language � is over � ��, an algorithm to build � follows.

Procedure 3.1 Input: Regular language equation � �� � �; Output: Largest regular language solution �

13

1. Consider the finite automata ! ��� and ! ��� corresponding, respectively, to regular languages � and �.

2. Determinize ! ��� by subset construction, if it is a NDFA. The automaton ! ��� of � is obtained by interchang-
ing the sets of accepting and non-accepting states of the determinization of ! ���.

3. Lift the language � to � by replacing each label ��� �� of a transition of ! ��� with all triples ��� �� '�, ' 	 �.
Lift the language � to � by replacing each label ��� '� of a transition of ! ��� with all triples ��� �� '�, � 	 � .

4. Build the automaton ! �� � �� of the intersection � � �. The states are pairs of states of the lifted automata
! ��� and ! ���, the initial state is the pair of initial states, and a state of the intersection is accepting if both
states of the pair are accepting. There is a transition from the state �$�� $�� to the state �$��� $

�
�� labelled with

action ��� �� '� in ! �� � ��, if there are corresponding transitions labelled with ��� �� '� from state $ � to state
$�� in ! ��� and from $� to $�� in ! ���.

5. Project ! �� � �� to � � � to obtain ! �� � �� by deleting � from the labels ��� �� '�. Projection in general
makes the finite automaton non-deterministic.

6. Determinize ! �� � �� by subset construction, if it is a NDFA. The automaton ! �� � �� corresponding to the

regular language solution � � � � � is obtained by interchanging the sets of accepting and non-accepting
states of the determinization of ! �� � ��.

Notice that Proc. 3.1 holds for any regular language, not only for prefix-closed languages as in restricted versions
reported in the literature.

A companion procedure to solve the regular language equation under parallel composition � �� � � is obtained
from Proc. 3.1, after replacing the cartesian product with union, projection with restriction and lifting with expansion.
The largest solution of parallel equations for prefix-closed regular languages had been known already in the process
algebra literature [25, 32, 24],

4 Equations over Finite State Machines

4.1 Finite State Machines

Definition 4.1 A finite state machine (FSM) is a 5-tuple � � ��� �� �� -� �� where � represents the finite state
space, � represents the finite input space, � represents the finite output space and - � � ������ is the transition
relation. On input �, the FSM at present state � may transit to next state � and produce output ' iff ��� �� �� '� 	 - .
State � 	 � represents the initial or reset state. We denote the projection of relation - to ����� (next state relation)
by -� � � � � � �, i.e., ��� $� $�� 	 -� � �' ��� $� $�� '� 	 - ; similarly, we denote the projection of relation - to
����� (output relation) by -� � �����, i.e., ��� $� '� 	 -� � �$� ��� $� $�� '� 	 - . Sometimes Æ is used instead
of -� and . instead of -�. If at least one transition is specified for each present state and input pair, the FSM is said
to be complete. If no transition is specified for at least one present state and input pair, the FSM is said to be partial.
An FSM is said to be trivial when - � �, denoted by ��.

It is convenient to think of the relations -� and -� as functions -� � � � � � �� and -� � � � � � �	.

Definition 4.2 An FSM � � � ���� � �� ��� - �� ��� is a submachine of FSM � � ��� �� �� -� �� if � � �, � � � � ,
�� � �, �� � �, and - � � - , i.e., - � is a restriction of - to the domain of definition � � � �� � �� ���.

Definition 4.3 A deterministic FSM (DFSM) is an FSM where for each pair ��� �� 	 � ��, there is at most one next
state � and one output ' such that ��� �� �� '� 	 - , i.e., there is at most one transition from � under �. An FSM that is
not a DFSM is a non-deterministic finite state machine (NDFSM).

In a DFSM the next state � and the output ' can be given, respectively, by a next state function � � - ���� �� and an
output function ' � -���� ��.

Definition 4.4 An NDFSM is a pseudo non-deterministic FSM (PNDFSM) [38], or observably non-deterministic
FSM [8], or observable FSM [34], if for each triple ��� �� '� 	 � � � � �, there is at most one state � such that
��� �� �� '� 	 - .

14

The qualification “non-deterministic” is because for a given input and present state, there may be more than one
possible output; however, edges (i.e., transitions) carrying different outputs must go to different next states. The further
qualification “pseudo” non-deterministic is because its underlying finite automaton is deterministic. In a PNDFSM
the next state �, if it exists, is unique for a given combination of input, present state and output, so it can be given by
a partial next state function � � -���� �� '�. Since the output is non-deterministic in general, it is represented by a
relation -� � � � � ��.

Definition 4.5 A complete FSM is said to be of Moore type if ��� �� �� '� 	 - implies that for all � � there is �� such
that ���� �� ��� '� 	 - 2.

The transition relation - of an FSM can be extended in the usual way to a relation on � � � � � � � ��: given a
present state � and an input sequence �� � � � �
 	 ��, ��� � � � �
� �� �� '� � � � '
� 	 - iff there is a sequence $� � � � $
��
such that $� � �� � � � � $
�� � � and for each , � �� � � � � / it holds that ��� � $� � $���� '�� 	 - . A similar extension can
be defined for -� and -�.

In this paper FSMs are assumed to be pseudo non-deterministic, unless otherwise stated. It is always possible to
convert a general NDFSM into a PNDFSM by subset construction.

4.2 Languages of FSMs

We now introduce the notion of a language associated to an FSM. This is achieved by looking to the automaton
underlying a given FSM. For our purposes, we define two related languages: one over the alphabet ��� and the other
over the alphabet � � �, naturally associated, respectively, with synchronous and parallel composition, as it will be
seen later.

For a language over � � �, the automaton coincides with the original FSM where all states are made accepting
and the edges carry a label of the type ��� '�.

For a language over � � �, the automaton is obtained from the original FSM, by replacing each edge ��� $� $ �� '�
by the pair of edges ��� $� �$� ��� and �'� �$� ��� $�� where �$� �� is a new node (non-accepting state). All original states
are made accepting. The automaton is deterministic because from ��� $� $ ��� '�� and ��� $� $��� '�� the edges ��� $� �$� ���,
�'�� �$� ��� $

�
�� and �'�� �$� ��� $

�
�� are obtained (the same edge ��� $� �$� ��� works in both cases).

Definition 4.6 Given an FSM � � ��� �� �� -� ��, consider the finite automaton ! ��� � ��� ������ �� ��, where
���� '�� $� $�� 	 � iff ��� $� $�� '� 	 - . The language accepted by ! ��� is denoted ��

� ���, and by definition is the
�-language of � at state �. Similarly ��

� ��� denotes the language accepted by ! ��� when started at state $, and
by definition is the �-language of � at state $.

Definition 4.7 Given an FSM � � ��� �� �� -� ��, consider the finite automaton ! ��� � �� � �� � ��� � �
���� �� ��, where ��� $� �$� ��� 	 � # �'� �$� ��� $�� 	 � iff ��� $� $�� '� 	 - . The language accepted by ! ��� is
denoted ��

� ���, and by definition is the �-language of � at state �. Similarly ��
� ��� denotes the language ac-

cepted by ! ��� when started at state $, and by definition is the �-language of � at state $. By construction,
��� ��� � �����, where �� denotes the set ��' � � 	 �� ' 	 �
.

In both cases, � 	 ����� because the initial state is accepting. An FSM � is trivial iff ����� � ��
.

Definition 4.8 A language � is an FSM language if there is an FSM � such that the associated automaton ! ���
accepts �. The language associated to a DFSM is sometimes called a behaviour 3.

Remark When convenient, we will say that FSM � has property � if its associated FSM language has property � .

Definition 4.9 State & of FSM �� is said to be a reduction of state $ of FSM �� (�� and �� are assumed to have
the same input/output set), written & $ $, iff ������ � ������. States & and $ are equivalent states, written & %� $,
iff & $ $ and $ $ &, i.e., when ������ � ������. An FSM with no two equivalent states is a reduced FSM.

Similarly, �� is a reduction of ��, �� $��, iff ���
, the initial state of �� , is a reduction of ���

, the initial
state of ��. When �� $�� and �� $�� then �� and �� are equivalent machines, i.e., ��

%� ��.

2Notice that this definition allows for NDFSMs of Moore type, contrary to the more common definition of Moore type: for each present state �
there is an output 	 such that all transitions whose present state is � carry the same output 	.

3The language associated to a NDFSM includes a set of behaviours.

15

For complete DFSMs reduction and equivalence of states coincide. Given an FSM language, there is a family of
equivalent FSMs associated with it; for simplicity we will usually speak of the FSM associated with a given FSM
language. In this paper, FSMs are assumed to be reduced, unless stated otherwise.

An FSM language is regular, whereas the converse is not true.

Theorem 4.1 A regular language over alphabet � � � is the language of a complete FSM over input alphabet �
and output alphabet � iff � is prefix-closed and �-progressive. A regular language that is prefix-closed, but not
�-progressive, is the language of a partial FSM.

Notice that the coincidence of the notions of complete FSM and �-progressive associated language is due to the fact
that FSMs are assumed to be PNDFSMs, i.e., their underlying automaton is deterministic, therefore a word has a
unique run (sequence of transitions), from which an extension is possible under any input.

Theorem 4.2 A regular language over alphabet � � � is the language of a complete FSM over input alphabet � and
output alphabet � iff � � �����, � is ��-prefix-closed and ��-progressive. A regular language � � ����� that is
��-prefix-closed, but not ��-progressive, is the language of a partial FSM.

Given a regular language � over alphabet � ��, an algorithm follows to build � ��� , the largest subset of � that
is the �-language of an FSM over input alphabet � and output alphabet �.

Procedure 4.1 Input: Regular Language � over � ��; Output: Largest FSM language � ��� over � ��.

1. Build a deterministic automaton � accepting �.

2. Delete all nonfinal states together with their incoming edges.

3. If the initial state has been deleted, then ���� � �. Otherwise, let �� be the automaton produced by the
procedure and ���� the language that �� accepts. If there is no outgoing edge from the initial state of ��, then
�� accepts the trivial FSM language ���� � ��
, otherwise it accepts a nontrivial FSM language ���� . Any

FSM language in � must be a subset of ���� .

To obtain the largest subset of � that is the language of a complete FSM we must apply one more pruning algorithm.

Procedure 4.2 Input: FSM Language���� over ���; Output: Largest �-progressive FSM language)�'0����� �
over � ��.

1. Build a deterministic automaton � accepting ���� .

2. Iteratively delete all states that have an undefined transition for some input (meaning: states such that �� 	 �
with no ' 	 � for which there is an outgoing edge carrying the label ��� '�), together with their incoming edges,
until the initial state is deleted or no more state can be deleted.

3. If the initial state has been deleted, then)�'0����� � � �. Otherwise, let �� be the automaton produced by the
procedure and)�'0����� � the language that �� accepts. Any �-progressive FSM language in ���� must be
a subset of)�'0����� �.

Theorem 4.3 Procedure 4.2 returns the largest �-progressive subset of ���� .

Proof. Define a state $ of the automaton� representing���� as ��-nonprogressive if for some � 	 � and for all ' 	 �
there is no state reached from $ under a transition labeled with ��� '�. State $ is �
-nonprogressive, / 1 �, if for some
� 	 � and for all ' 	 � each state reached from $ under the transition labeled ��� '� is � �-nonprogressive, , � /. State
$ is �-nonprogressive if it is �
-nonprogressive for some / & �. The language)�'0����� � is represented by the
automaton)�'0���, obtained from � by removing iteratively the �-nonprogressive states and the related transitions.

We must prove that if 2 � ���� and 2 is �-progressive then 2 �)�'0����� �. The proof goes by induction.
If 2 is �-progressive, there is no string in 2 that takes the automaton � from the initial state to an � �-nonprogressive
state. Suppose now by induction hypothesis that no string in 2 takes � to an �
-nonprogressive state, / & �. We must
conclude that, if 2 is �-progressive, there is also no string that takes � to an �
��-nonprogressive state, otherwise, by
definition of �
��-nonprogressive, 2 has a string that takes � to some �� -nonprogressive state, , " /. Therefore no
string in 2 takes the automaton � to a nonprogressive state, i.e., 2 �)�'0����� �. �

16

Proposition 4.1 An FSM whose language is ���� or)�'0����� � can be deduced trivially from �� (obtained
according to Proc. 4.2) by interpreting each label ��� '� as an input/output pair �3'.

Proposition 4.2 Given a regular language � over alphabet ���, let � be an FSM over input alphabet � and output
alphabet �. The language ��

� ��� of � is contained in � iff ��
� ��� � ���� .

Proof. Show that ��
� ��� � �� ��� ��� � ���� . Indeed ��

� ��� is an FSM language contained in � and ����

is by construction the largest FSM language contained in �. So ��
� ��� � ���� .

��� ��� � ���� � ��� ��� � �, since by definition ���� � �. �

Given a regular language � over alphabet � � �, an algorithm follows to build � ��� , the largest subset of � that
is the �-language of an FSM over input alphabet � and output alphabet �.

Procedure 4.3 Input: Regular language � over � � �; Output: Largest FSM language � ��� over � � �.

1. Build a deterministic automaton � accepting � � �����.

2. Delete the initial state if it is a nonfinal state.

3. Delete all nonfinal states having incoming edges labelled with symbols from alphabet �, together with their
incoming edges.

4. If the initial state has been deleted, then ���� � �. Otherwise, let �� be the automaton produced by the
procedure and ���� the language that �� accepts. If there is no outgoing edge from the initial state of ��, then
�� accepts the trivial language ���� � ��
, otherwise it accepts a nontrivial FSM language ���� . Any FSM

language in � must be a subset of ���� .

To obtain the largest subset of � that is the language of a complete FSM we must apply one more pruning algorithm.

Procedure 4.4 Input: FSM Language���� over ���; Output: Largest ��-progressive FSM language)�'0����� �
over � � �.

1. Build a deterministic automaton � accepting ���� .

2. Iteratively delete all states that are final and for which �� 	 � with no outgoing edge carrying the label �, together
with their incoming edges, until the initial state is deleted or no more state can be deleted. Delete the initial state
if �� 	 � with no outgoing edge carrying the label �.

3. If the initial state has been deleted, then)�'0����� � � �. Otherwise, let �� be the automaton produced by the
procedure and)�'0����� � the language that �� accepts. Any ��-progressive FSM language in ���� must
be a subset of)�'0����� �.

Theorem 4.4 Procedure 4.4 returns the largest ��-progressive subset of ���� .

Proof. Similar to the proof of Theorem 4.3. �

Proposition 4.3 An FSM whose language is ���� or)�'0����� � can be deduced trivially from �� (obtained
according to Proc. 4.4) by replacing pairs of consecutive edges labelled, respectively, with � and ' by a unique edge
labelled �3'.

Proposition 4.4 Given a regular language � over alphabet � ��, let � be an FSM over input alphabet � and output
alphabet �. The language ��

� ��� of � is contained in � iff ��
� ��� � ���� .

The proof is the same as the one of Prop. 4.2.
Finally we characterize the Moore FSMs that are the reduction of a given FSM. Notice that the language of a

Moore FSM is a Moore language.

Procedure 4.5 Input: Complete FSM � ; Output: Largest submachine of � that is a Moore FSM, denoted by
Moore���, if it exists.

17

Given a state $ 	� , define the set 2� � �' 	 � � �� 	 � �$� 	� $�&� ��� $� $�� '� 	 -�
, 2� � �.

1. Iterate for each state $ 	� until � does not change.

(a) Compute the set 2� � �.

(b) If 2� �� � delete from -� each transition ��� $� $�� '� such that ' �	 2�;
if 2� � � delete $ with all its incoming edges from � .

2. If the initial state has been deleted then there is no submachine of � that is a Moore FSM, otherwise Moore��� �
� .

Theorem 4.5 Any Moore FSM � � that is a reduction of � is a reduction of Moore���, the output of Proc. 4.5.

Proof. Define a state $ of FSM � as �-nonMoore if 2� � �. State $ is /-nonMoore, / 1 �, if for some � 	 � and for
all ' 	 � each state reached from $ under the transition labeled ��3'� is ,-nonMoore, , � /. State $ is nonMoore if
it is /-nonMoore for some / & �. Moore��� is obtained from � by removing iteratively the nonMoore states and,
from the remaining states $, the transitions ��� $� $ �� '� such that ' �	 2�. Notice that by construction Moore��� is
guaranteed to be complete.

We must prove that if ��� �� � ���� and ��� �� is Moore then ��� �� � ��Moore����. The proof goes by
induction. If ��� �� is Moore, there is no string in ��� �� that takes the FSM � from the initial state to a �-nonMoore
state. Suppose now by induction hypothesis that no string in ��� �� takes � to a /-nonMoore state, / 1 �. We must
conclude that, if ��� �� is Moore, there is also no string that takes � to a �/ � ��-nonMoore state, otherwise, by
definition of �/ � ��-nonMoore, ��� �� has a string that takes � to some ,-nonMoore state, , " /. Therefore no
string in ��� �� takes the FSM � to a nonMoore state, i.e., ��� �� � ��Moore����. �

Moore machines play a role in guaranteeing that the composition of FSMs is a complete FSM (see Theorem 4.6).

4.3 Composition of Finite State Machines

Different types of composition between pairs of FSMs may be defined, according to the protocol by which signals are
exchanged. For a given composition operator and pair of FSMs we must establish whether the composition of this pair
is defined, meaning that it yields a set of behaviours that can be described by another FSM. In general, the composition
of FSMs is a partially specified function from pairs of FSMs to an FSM. In our approach we define the composition
of FSMs by means of the composition operators over languages introduced in Sec. 2. Thus the FSM yielded by the
composition of FSMs �� and �� is the one whose language is obtained by the composition of the FSM languages
associated to �� and �� . The synchronous composition operator models the synchronous connection of sequential
circuits, while the parallel composition operator models an exchange protocol by which an input is followed by an
output after a finite exchange of internal signals. The latter model, introduced in [29], abstracts a system with two
components and a single message in transit. At any moment either the components exchange messages or one of them
communicates with its environment. The environment submits the next external input to the system only after the
system has produced an external output in response to the previous input.

4.3.1 Synchronous Composition of FSMs

Consider the pair of FSMs

1. FSM �� has input alphabet �� � � , output alphabet � � �� and transition relation -�;

2. FSM �� has input alphabet �� � � , output alphabet � ��� and transition relation -� .

We define a synchronous composition operator � that associates to a pair of FSMs �� and �� another FSM �����

such that

1. the external input alphabet is �� � �� � � ;

2. the external output alphabet is �� ��� � �.

18

Recall that, by definition of synchronous composition of languages, a sequence 	 	 �� � � �� � �� � ���
� is in the

language of the synchronous composition of ����� and ����� iff 	 is in the projection onto �� � �� ��� ��� of
the intersection of the liftings, respectively, of ����� over �� ��� and of ����� over �� ���

4:

	 	 ����� � ����� iff

	 	 	������
��	�
� ������
��	�

�
�	�

Notice that the liftings ������
��	�
and ������
��	�

are needed to have the languages of �� and �� defined
on the same alphabet; e.g., ����� is defined over �� � � � � � ��, and the lifting � �� � �� defines it over
�� � �� � � � � ��� ���.

Lemma 4.1 If ����� and ����� are FSM �-languages, then ����� � ����� is an FSM �-language.

Proof. ����� � ����� is prefix-closed, because prefix-closed FSM �-languages are closed under � composition.
Notice that ����� ������ does not need to be progressive, because partial FSMs are allowed. �

Therefore we can state the following definition.

Definition 4.10 The synchronous composition of FSMs �� and �� yields the FSM �� ��� with language

���� ���� � ����� � ������

If the language ����� � ����� � ��
, then �� ��� is a trivial FSM.

The previous definition is sound because the language ����� � ����� by Lemma 4.1 is an FSM language, which
may correspond to a complete or partial FSM according to whether the language ��� �� � ����� is �-progressive
or not. Then by subset construction and reduction we produce a reduced observable FSM. In summary, we convert
from the FSMs �� and �� to the automata accepting their FSM languages, operate on them and then convert back
from the resulting automaton to an FSM; then we produce a reduced PNDFSM (we assume that �� and �� are
PNDFSMs), because subset construction determinizes the underlying finite automaton.

Example 4.1 a) Synchronous composition of two FSMs defining a complete FSM.
Consider the FSMs �� � ���� �� � �� � � ��� -�� $�� and �� � ��� � �� �� -�� $�� with �� � �$�� $�� $�
,

-� � ��1 -� $�� $�� ���, ���� $�� $�� ���, ���� $�� $�� ���, �- 0� $�� $�� ���, �- 1� $�� $�� ���, �- 1� $�� $�� ���,
�- 0� $�� $�� ���
, �� � �$�� $
, -� � ���� $�� $�� ��, �� $� $ ��, ��� $ � $�� ��, ��� $ � $ � ��
 5.

Then ����� � ���� � ����� � ��� ��� -��� � �$�� $���with ���� � ��$�� $��,�$�� $ �,�$�� $ �
 and -��� �
���� �$�� $��� �$�� $ �� ��, ��� �$�� $��� �$�� $ �� ��, ��� �$�� $ �� �$�� $ �� �� ��� �$�� $ �� �$�� $ �� ��, �-� �$�� $ ��
�$�� $��� ��
 is a complete FSM.

b) Synchronous composition of two FSMs defining a partial FSM.
Modify the transition relation of �� as follows: -� � ���� $�� $�� ��, �� $� $ ��, ��� $ � $�� ��, ��� $ � $ � ��
.

Then -��� � ���� �$�� $��� �$�� $ �� ��, ��� �$�� $��� �$�� $ �� ��, ��� �$�� $ �� �$�� $ �� �� ��� �$�� $ �� �$�� $ �� ��

defines a partial FSM (no transition from state �$�� $ �).

Theorem 4.6 Let �� be a complete FSM over input alphabet �� � � and output alphabet �� � � and let �� be a
complete Moore FSM over input alphabet �� � � and output alphabet �� � � . Then the composition �� ��� is a
complete FSM.

Proof. Consider a string 	 	 ������
��	�
� ������
��	�

. Suppose that from the initial state �� reaches state $
under the string 	�
������	�

and similarly that �� reaches state & under the string 	�
������	�
. Let the external

input ���� ��� 	 �� � �� be applied next. For any � 	 � there is a transition ���� &� &
�� '��� in �� , because �� is

a complete FSM; similarly, for any � 	 � there is a transition ����� $� $
�� '��

�� in ��, because �� is a complete
FSM. Moreover, given the input ���

�, there is a transition ����
�� &� &��� '��� with the same output '�� of transition

����� &� &
�� '���, because �� is a Moore FSM. Therefore �� and � are matching internal signals, i.e., the string 	 can

be extended by ���� ��� �
�� �� '�� '��. �

4Use the same order �� � �� � � �
 ��� ��� in the languages �����������
and �����������

.
5� denotes input or output don’t care conditions.

19

4.3.2 Parallel Composition of FSMs

Consider the pair of FSMs 6

1. FSM �� has input alphabet �� � � , output alphabet � � �� and transition relation -�;

2. FSM �� has input alphabet �� � � , output alphabet � � �� and transition relation -� .

We define a parallel composition operator � that associates to a pair of FSMs �� and �� another FSM �� ���

such that:

1. the alphabet of the external inputs is �� � �� � � ;

2. the alphabet of the external outputs is �� � �� � �.

Recall that, by definition of parallel composition of languages, a sequence 	 	 ��� �������������
� is in the language

of the parallel composition of ����� and ����� iff 	 is in the restriction onto �� � �� ��� ��� of the intersection
of the expansions, respectively, of ����� over �� ��� and of ����� over �� � ��:

	 	 ����� ������ iff

	 	 	�����	
��	�
� � �����	
��	�

�
�	 �

Notice that the expansions �����	
��	�
and �����	
��	�

are needed to have the languages of �� and �� defined
on the same alphabet; e.g., ����� is defined over �� � � � � � ��, and the expansion � �� � �� defines it over
�� � �� � � � � � �� � ��.

Lemma 4.2 If ����� and ����� are FSM �-languages, then ����� ������ � ����� is an FSM �-language.

Proof. ����� � ����� � ����� is ��-prefix-closed, because ��-prefix-closed �-languages are closed under �
composition. Indeed, a state of the finite automaton corresponding to an FSM �-language is accepting iff it is the
initial state or all its ingoing edges are labelled by symbols in �. The property is preserved by intersection and
restriction over � ��. The intersection with ����� makes sure that in the strings of the resulting FSM �-language an
input is always followed by exactly one output, so that a corresponding FSM (with edges labelled by pairs ��3'�� can
be reconstructed. Notice that ����� � ����� � ����� does not need to be ��-progressive, because partial FSMs
are allowed. �

Therefore we can state the following definition.

Definition 4.11 The parallel composition of FSMs �� and �� yields the FSM �� ��� with language

���� ���� � ����� ������ � ������

If the language ����� ������ � ����� � ��
, then �� ��� is a trivial FSM.

The previous definition is sound because the language ����� ������� ����� by Lemma 4.2 is an FSM language,
which may correspond to a complete or partial FSM according to whether the language ��� �� ������ � ����� is
��-progressive or not. Then by subset construction and reduction we produce a reduced observable FSM.

Example 4.2 a) Parallel composition of two FSMs defining a complete FSM.
Consider the FSMs �� � ���� �� � �� � � ��� -�� $�� and �� � ��� � �� �� -�� $�� with �� � �$�� $
,

-� � ����� $�� $�� '��, ���� $�� $�� '��, ���� $�� $�� ���, ���� $�� $ � ���, ���� $ � $ � ���, ���� $ � $ � '��,
���� $ � $�� '��, ���� $ � $�� '��
, �� � �$�� $�
, -� � ����� $�� $�� ���, ��� $�� $�� ���, ���� $�� $�� ���,
���� $�� $�� ���
.

Then the composition �� ��� � ���� � ����� � ��� ��� -��� � �$�� $��� with ���� � ��$�� $��, �$ � $��,
�$�� $��, �$ � $��
 and -��� � ����� �$�� $��� �$�� $��� '��, ���� �$�� $��� �$ � $��� '��, ���� �$ � $��� �$�� $��� '��,
���� �$ � $��� �$�� $��� '��, ���� �$�� $��� �$�� $��� '��, ���� �$�� $��� �$ � $��� '��, ���� �$ � $��� �$�� $��� '��,
���� �$ � $��� �$�� $��� '��
 is a complete FSM.

Fig. 3 shows some steps and the result of the computation of �� ���.
b) Parallel composition of two FSMs defining a partial FSM.
Modify the transition relation of �� as follows: -� � ����� $�� $�� ���, ��� $�� $�� ���, ���� $�� $�� ���,

���� $�� $�� ���
. Then -��� � ����� �$�� $��� �$�� $��� '��, ���� �$�� $��� �$ � $��� '��, ���� �$ � $��� �$�� $��� '��,
���� �$ � $��� �$�� $��� '��, ���� �$�� $��� �$�� $��� '��
 defines an incomplete FSM (no transition from state �$�� $��
under input ��).

6For simplicity the alphabets ��� ������ ��� ��
 are assumed to be disjoint.

20

�

�����
�����

�����

�����

�	�

�

��

����

� � �

�

�

��

��

����

���
�

���
�

���
�

���
�

���
�
���
�

���
�
���
�

���
�

���

���

���
�

���
�

���
�

�� 	�

	� ��

�� 	�

�
�

	�
�����

���
�
���
�

���
�
���
�
�����

���
�

�����

���

�

�

�� ��

��

��

��

���

�

��� ��

��

�

��� ��

� 	

�

��

����

� � �

�

�

���

��� ���
��
�

��� ���
��
�

��� ���
��
�
��� ���
��
�

��� ���
��
�

��

��

����

���

Figure 3: Illustration of parallel composition �� ��� � ���� of Example 4.2-a). (a) FSM ��; (b) FSM ��; (c)
Automaton of � (�-language of ��); (d) Automaton of ((�-language of ���; (e) Automaton of (
��	�

; (f) FSM
�� ��� � ���� ; (g) Reduced FSM �� ��� � ���� .

21

4.4 Definition of Equations over FSMs

Consider the network of FSMs shown in Fig. 4, where FSM �� has input signals �� and � and output signals � and
��, and FSM �� has input signals �� and � and output signals � and ��. The network implements a specification
�� with input signals ��� �� and output signals ��� ��. Supposing that �� and �� are known and �� is unknown,
we want to define an equation of the type �� � �� � �� , to capture the FSMs �� that in place of �� let the
network of �� and �� match the specification �� . Through Definitions 4.6 and 4.7 we have seen two different

�

��

��

��

��

��� �� ��� ��

��

��

��

��

Figure 4: General Topology.

ways to associate an FSM language to a given FSM, and related composition operators � and � have been introduced
in Sec. 4.3; therefore we introduce two types of equations over FSMs:

�� ��� $��

and
�� ��� $�� �

and solve them by building first the related language equations

����� � ����� � �����

and
����� � ����� � ����� � ������

where ����� and ����� are the FSM languages associated with FSMs �� and �� . The latter language equation
is justified by the following chain of equivalences

�� ��� $�� �

���� ���� � ����� � � 4��� ����

����� ������ � ����� � ����� �

����� ������ � ����� � ������

The last equivalence uses the set-theoretic equality �(� � � � � � �(7.
When there is no ambiguity we will denote by � � � � � and � � � � � � ����� the language equations

����� � ����� � ����� and ����� � ����� � ����� � �����, where �����, ����� and ����� are,
respectively, the �-languages and �-languages associated with the FSMs ��, �� and �� .

4.5 FSM Equations under Synchronous Composition

4.5.1 Largest FSM Solutions

Given alphabets ��� ��� �� ����� ��, an FSM �� over inputs �� � � and outputs � � ��, and an FSM �� over
inputs �� � �� and outputs �� ���, consider the FSM equation

�� ��� $�� � (5)

7In one direction, �� � � � ����� � ���� � � � ���� � � � ���. In the other direction, � � ��� � ����� �
� �� � �� � � , because �� 	� �.

22

whose unknown is an FSM �� over inputs ���� and outputs � ���. Sometimes the shortened notation � � �����
and � � �� ��� will be used.

Definition 4.12 FSM �� is a solution of the equation �� ��� $ �� , where �� and �� are FSMs, iff �� �
�� $�� .

Converting to the related FSM languages, we construct the associated language equation

����� � ����� � ������ (6)

where ����� is an FSM language over alphabet �� � � � � � ��, ����� is an FSM language over alphabet
�� � �� ��� ��� and the unknown FSM language is over alphabet �� �� � � ���. The previous equation can be
rewritten for simplicity as

� �� � �� (7)

We want to characterize the solutions of � �� � � as FSM languages. We know from Theorem 2.1 that the largest

solution of the equation � �� � � is the language � � � � �.
When � and � are FSM languages, the following property holds.

Theorem 4.7 � �� �.

Proof. FSM languages are not closed under complementation, because the complement of an FSM language does
not include the empty string �, so it cannot be an FSM language. So � does not include � and neither does � ���� .
Then the intersection ��
��	�

� ����� does not include the empty string, neither does its projection �� �
��	�
�

����� ��
������	�
, that is � � �. Therefore � � � includes the empty string, i.e., � 	 � �� �. �

Example 4.3 Consider the FSMs �� � ���� ����� ����� -�� $�� and �� � ��� � �� �� -� � $��with �� � �$�
,
-� � ����� $�� $�� ���, ���� $�� $�� ���, ���� $�� $�� ���, ���� $�� $�� ���
, �� � �$�
, -� � ���� $�� $�� ��,
��� $�� $�� ��
. The equation �� ��� $�� yields the language equation � �� � � with solution � � ��
, i.e.,
the corresponding FSM solution �� produces only the empty word.

It is also true that if �� produces only �, then �� produces only �.

In general � is not an FSM language. To compute the largest FSM language contained in �, that is � ��� , we
must compute the largest prefix-closed language contained in �.

Theorem 4.8 Let � and � be FSM languages. The largest FSM language that is a solution of the equation ��� � �

is given by ���� , where � � � � �. ���� is obtained by applying Procedure 4.1 to �. � ��� contains at least the
string �.

Thus, a synchronous FSM language equation is always solvable, since the solution includes at least the empty string
and so its prefix-closure does too. This corresponds to the trivial FSM being always a solution of a synchronous FSM
equation.

Example 4.4 Consider the equation �� ��� $�� , with �� and �� shown, respectively, in Fig. 5(a) and 5(c).
The automata of the related languages are shown, respectively, in Fig. 5(b) and 5(d). The intermediate steps to
compute the solution are demonstrated in Fig. 5(e)-(g). The automaton generating the largest language solution,

� � �� � ������ ����� , is portrayed in Fig. 5(h). Notice that it is not prefix-closed, since string �������� 	 �,
but ���� �	 �; its largest prefix-closed sublanguage yields the largest FSM solution �� shown in Fig. 5(i). The
composition of any DFSM reduction of �� with �� produces the trivial machine.

For logic synthesis applications, we assume that �� and �� are complete FSMs and we require that the solution
is a complete FSM too. This is obtained by applying Procedure 4.2 to � ��� , yielding)�'0����� �, the largest
��� � ��-progressive FSM language� ��� � � � � � ���. Notice that an ��� � ��-progressive solution might not
exist, and in that case Procedure 4.2 returns an empty language.

Proposition 4.5 FSM �� is a solution of the equation �� ��� $�� , where �� and �� are FSMs, iff �� is a
reduction of the FSM �� associated to ���� , where ���� is obtained by applying Procedure 4.1 to �, where � �

� � �. If ���� � ��
 then the trivial FSM is the only solution. The largest complete FSM solution ���������	 � is
found, if it exists, by applying Procedure 4.2. A complete FSM is a solution iff it is a reduction of the largest complete
solution ���������	 �.

23

���

�	�

���

�������
�
�������
�

������
� ������
�

���

	�

�

�������
�

������
� 	

��

�� 	�

	�
������
�

������
�
������
�

������
�

������
�

������
�

��
�

	�

��� 	�

	�

��� 	�

���

����

����

���

����

����

���

����

��������

��

����
���

���
�

���
� �

���

� �
�� ��
�

�� ��
�
�� ��
�
�� ��
�

���

	�

����

����

������

����

����

����

	�

�������

���
�
��
�

�
�

��

����

����

����

���

���
�����

�����

�����

���

����

Figure 5: Illustration of Example 4.4. (a) FSM ��; (b) FA (finite automaton) of � � ��
� ����; (c) FSM �� ; (d) FA

of � � ��� ����; (e) FA of ����� ; (f) FA of � � ����� ; (g) FA of �� � ����� ����� ; (h) FA of largest solution

� � �� � ����� ����� ; (i) Largest FSM solution �� .

24

Example 4.5 (Variant of Ex. 4.3) Consider the FSMs �� � ���� ����� ����� -�� $�� and�� � ��� � �� �� -� � $��
with �� � �$�
, -� � ����� $�� $�� ���, ���� $�� $�� ���, ���� $�� $�� ���, ���� $�� $�� ���
, �� � �$�
,
-� � ���� $�� $�� ��, ��� $�� $�� ��
. The equation �� ��� $ �� yields the language equation � � � � �
with solution � � ������
, i.e., the corresponding FSM solution �� produces the set of strings of input/output pairs
���3���
, and so the equation has no complete FSM solution.

4.5.2 Computational Complexity

Consider the equation � � � � �, where � and � are FSM languages. We know that the largest unconstrained

solution is given by � � � � �. Given the rectification topology in Fig. 1(d) with �� as the unknown �� , the
solution has in the worst-case �������

��
 �

states, where �� is the number of states of FA � and �� is the number of
states of FA �. The exponent ���
� appears when � is non-deterministic, to account for the determinization needed
to compute �; otherwise if � is deterministic, in place of � ��
� we have ��� �, because complementation becomes a
linear operation. The product ��������
 � is due to the product of automata � and �. Then to complete the computation
of the � operator we must project the product on the internal signals � and � ; as a result we may get again a non-
deterministic automaton, and therefore a new determinization is needed before performing the final complementation:
this explains the outer exponential �������

��
 �

.
There are “easier” topologies, like supervisory control, where there is no projection onto a subset of signals of the

product automaton; therefore non-determinism is not introduced and so the final complementation is linear, resulting
in the complexity of ������

��
 �. Moreover, if �� is deterministic, the exponential ���
 � is replaced by ��� �, and so
the final complexity of supervisory control is bounded by only �������� �.

The operations on the language � to extract from it an FSM language, a complete FSM language or a Moore
solution (see below) are linear in the number of edges of the automaton representing �.

4.5.3 Largest FSM Compositional Solutions

It is interesting to compute the subset of compositionally �-progressive solutions (, i.e., such that � �
��	�
�(�
��	�

is an �-progressive FSM language � �� � � � � � ���. Thus the composition (after projection on the external
signals) is the language of a complete FSM over inputs �� � �� and outputs �� � ��. Since ��
��	�

� ����
�
��	�

is prefix-closed and hence corresponds to a partial FSM, we have to restrict it so that it is also �-progressive, which
corresponds to a complete FSM. If ���� is compositionally �-progressive, then ���� is the largest compositionally
�-progressive solution of the equation. However, not every non-empty subset of � ��� inherits the feature of being
compositionally �-progressive. If ���� is not compositionally �-progressive, then denote by +)�'0�� ��� � the
largest compositionally �-progressive subset of ���� . Conceptually +)�'0����� � is obtained from ���� by
deleting each string 	 such that, for some � 	 � , there is no ��� �� '� 	 � � � � � for which it holds 	 ��� �� �� '� 	
��
��	�

� ����
�
��	�

. The following procedure tells how to compute +)�'0�� ��� �.

Procedure 4.6 Input: Largest prefix-closed solution � ��� of synchronous equation � � � � � and context �;
Output: Largest compositionally �-progressive prefix-closed solution +)�'0�� ��� �.

1. Initialize � to 1 and � � to ���� .

2. Compute %� � ��
��	�
� ��

�
��	�
.

If the language %� is �-progressive then +)�'0����� � � ��.

Otherwise

(a) Obtain)�'0�%��, the largest �-progressive subset of %�, by using Proc. 4.2.

(b) Compute - � � ��
 �%�
)�'0�%����
������	�
.

3. If - � ��� � � then +)�'0����� � � �.

Otherwise

(a) Assign the language - � ��� to ����.

(b) Increment � by 1 and go to 2.

Theorem 4.9 Proc. 4.6 returns the largest compositionally �-progressive (prefix-closed) solution, if it terminates.

25

Theorem 4.10 Proc. 4.6 terminates.

The proofs can be found in [40].
A sufficient condition to insure that ��
��	�

� ����
�
��	�

is an �-progressive FSM language is that ����
�
��	�

or
��
��	�

satisfy the Moore property (see Theorem 4.6 for a related statement proved for complete FSMs). If � ���

is Moore then it is the largest Moore solution of the equation. However, not every non-empty subset of � ��� inherits
the feature of being Moore. If ���� is not Moore, then denote by Moore����� � the largest Moore subset of ���� .
The set Moore����� � is obtained by deleting from ���� each string which causes ���� to fail the Moore property.

Proposition 4.6 If Moore����� � �� �, then it is the largest Moore solution of the equation � �� � �. Otherwise
the equation � �� � � has no Moore solution.

To compute the largest Moore FSM that is a solution, it is sufficient to apply Procedure 4.5 to the FSM � ���	

associated to ���� , as justified by Theorem 4.5. The result is the largest Moore FSM solution, of which every
deterministic Moore solution is a reduction.

Example 4.6 Consider the equation �� ��� $�� , with �� and �� shown, respectively, in Fig. 6(a) and 6(b).
The largest FSM solution �� is shown in Fig. 6(c), whereas Fig. 6(d) shows the largest Moore FSM solution
Moore����. Moore FSM solutions are portrayed in Fig. 7(a)-(b), whereas nonMoore FSM solutions are pictured
in Fig. 7(c)-(d).

4.6 FSM Equations under Parallel Composition

4.6.1 Largest FSM Solutions

Given alphabets ��� ��� �� ����� ��, an FSM �� over inputs ���� and outputs � ���, and an FSM �� over inputs
�� � �� and outputs �� � ��, consider the FSM equation

�� ��� $�� � (8)

whose unknown is an FSM �� over inputs ���� and outputs � ���. Sometimes the shortened notation � � �����
and � � �� � �� will be used.

Definition 4.13 FSM �� is a solution of the equation �� ��� $ �� , where �� and �� are FSMs, iff �� �
�� $�� .

Converting to the related FSM languages, we construct the associated language equation (see Sec. 4.4)

����� ������ � ����� � ������ (9)

where ����� is an FSM language over alphabet �� � � � � � ��, ����� is an FSM language over alphabet
�� � �� � �� � �� and the unknown FSM language is over alphabet �� � � � � � ��. The previous equation can be
rewritten for simplicity as

� �� � � � ������ (10)

We want to characterize the solutions of � �� � � � ����� that are FSM languages. We know from Theorem 2.2

that the largest solution of the equation � �� � � � ����� is the language � � � � �� � ������.
In general � is not an FSM language. To compute the largest FSM language contained in �, that is � ��� , we

must compute the largest prefix-closed language contained in � � ��� � � ���� � ����
�.

Theorem 4.11 Let � and � be FSM languages. The largest FSM language that is a solution of the equation � �� �

� � ����� is given by ���� , where � � � � �� � ������. If � � � then �FSM � �; if � �� �, ���� is obtained
by applying Procedure 4.3 to �. If ���� � � then the FSM language equation � �� � � � ����� has no solution.

Proof. The first step of Procedure 4.3 computes the intersection of � with ��� � � ���� � ����
� to enforce that the

solution, if it exists, is an FSM language with input alphabet �� � � and output alphabet � � ��. Since � and � are
regular languages, � � ���� ����� �����

� is a regular language too and, by construction, Procedure 4.3 extracts the
largest FSM language contained in it. �

26

	�
		���

�

	���	
����	

����	
	���	

		���
�	��� 	��	�

���

�	�	�
		�	�

���	�
�	���

� �

	�� 	�	
��	

���

� �

�	�

���

��

��

���

���

���

	�	

	�	
���

	�	

��	

	��

	��

��� 	�

�

	�

��� 	�

��� ��

�� 	��

��	

	��

��	

��

��

	��

	�	

���

���

���

	��

	�	

	�	
���

��	 	����	

	�	

���

��	
	��

��	

	����	

	��

	��

��� 	�

�

	�

��� ����� 	�

��� ��

��

��� �
�

���
	��

	��

Figure 6: Illustration of Example 4.6. (a) FSM ��; (b) FSM �� ; (c) Largest FSM solution �� ; (d) Largest Moore
FSM solution Moore����.

27

��

���

���

���

	�	
	��

	��

�

	�

��� 	�

��� ��

�� 	��
	��

��	

��	

��

��

	�	
��	

	�	

��	

	��

	��

��� 	�

���� 	�

��� ��

���

��

���

���

���

	�	

	�		�	

��	

	����� 	�

�

	�

��� 	�

��� ��

�� 	��

��	

	��

��	

��	

��

��

	��

���

���

��	 	��

	�	

���

��	

	��

	��

��� 	�

�

	�

��� ����� 	�

��� ��

��

��� �	�

�
�

���

	��
���

	�	
��	

��	

	��
	�	

��	

Figure 7: Illustration of Example 4.6. (a)-(b) Moore FSM solutions; (c)-(d) Non-Moore FSM solutions.

28

Example 4.7 Consider the FSMs �� � ���� ����� ����� -�� $�� and �� � ��� � �� �� -� � $�� with �� � �$�
,
-� � ���� $�� $�� '��, ��� $�� $�� ��
, �� � �$�
, -� � ���� $�� $�� '��
. The equation �� ��� $�� yields
the language equation � �� � � � ����� whose solution � becomes empty under prefix-closure, because � does
not contain �, even though it contains the string ��. Thus there is no solution.

By Proposition 4.3, it is easy to derive an FSM ����	 associated to ���� . This allows us to talk about FSMs that
are solutions of FSM equations, meaning any reduction of the FSM ����	 , as guaranteed by Prop. 4.4.

Example 4.8 Consider the equation �� � �� $ �� , with the language of ��, i.e., � � ��� ����, and the
language of �� , i.e., � � ��� ����, represented by the automata shown, respectively, in Fig. 8(a) and 8(b). The

automata generating the largest language solution, �� � �� � ������	��� ����� � ��� �� and its largest prefix
closure are portrayed, respectively, in Fig. 8(c) and 8(d).

Figs. 9 and 10 show the intermediate steps of the computation. Notice that in Fig. 8(d) there are two don’t care
states, dc1 non-accepting and dc2 accepting, obtained by “splitting” the accepting dc state in Fig. 10(b), due to the
intersection with the automaton of ��� ��.

For logic synthesis applications, we assume that �� and �� are complete FSMs and we require that the solution
is a complete FSM too. This is obtained by applying Procedure 4.4 to � ��� , yielding)�'0����� �, the largest
��� � ���� � ���-progressive FSM language� ���� � ���� �����

�.

Proposition 4.7 FSM �� is a solution of the equation �� ��� $�� , where �� and �� are FSMs, iff �� is a
reduction of the FSM ����	 associated to ���� , where ���� is obtained by applying Procedure 4.3 to �, where

� � � � �� � ������. If ���� � � then no FSM solution exists. The largest complete FSM solution ���������	 �

is found, if it exists, by Procedure 4.4. A complete FSM is a solution iff it is a reduction of the largest complete solution
���������	 �.

The worst-case complexity of computing the largest solution of a parallel equation is of � ������
��
 �

as for a syn-
chronous equation. The same analysis applies (restriction plays the same role as projection in introducing nondeter-
minism).

4.6.2 Largest FSM Compositional Solutions

It is interesting to compute the subset of compositionally � ��-progressive solutions (, i.e., such that �	
��	�
�

(
��	�
������	��� is an ���-progressive FSM language� ������ �����. Thus the composition (after restriction

to � � �) is the language of a complete FSM over inputs �� � �� and outputs �� � ��. Since �	
��	�
� (
��	�

�
�����	��� (after restriction to � � �) is ��-prefix-closed and ence corresponds to a partial FSM, we have to restrict
it so that it is also ���-progressive, which corresponds to a complete FSM.

If ���� is compositionally ���-progressive, then ���� is the largest compositionally � ��-progressive solu-
tion of the equation. However, not every non-empty subset of � ��� inherits the feature of being compositionally
���-progressive. If ���� is not compositionally � ��-progressive, then denote the largest compositionally � ��-
progressive subset of ���� by +���)�'0����� �. Conceptually, the language +� ��)�'0 ����� � is obtained
from ���� by deleting each string 	 such that, for some � 	 � , there is no �� � ��� 	 �� � � �� and no ' 	 � for
which 	 ��� � ���' 	 �	
��	�

� ����
	
��	�

� �����	��� holds. We expect that a procedure to compute the largest
compositionally ���-progressive prefix-closed solution, +)�'0����� �, can be designed following the pattern of
Proc. 4.6, but as yet have not worked out the details. A procedure to compute the largest compositionally progressive
solution of a parallel equation over regular languages for the rectification topology was provided in [20].

To characterize subsets of solutions well-behaved with respect to deadlocks and livelocks (endless cycles of internal
actions), we introduce a few more language definitions.

Definition 4.14 A solution (of Eq. 10 is �-compositionally prefix � ��-progressive if

Init���	
��	�
� Init�(�	
��	�

� Init�������	���

is ���-progressive.

A compositionally prefix � ��-progressive solution yields a composition that allows �� � ��� cycles without exit, yet
every sequence in � �� followed by an input in � must be followed by a ������ cycle that can be exited (by an output).

29

���

���

�

��

	

�� ��� ��

�

�

�� ��

�

���

� ��

��

	�
��

��

��

��
��� ��

��� ��

��

��

��
��

��

��

��
��

��

�
�

� �

�

��

��

��

��

��� ��

��� ��

��

�

�

	�

�

�	�

��

��� ��

�� ��� ��

��

����

���
�� ��

Figure 8: Illustration of Example 4.8. (a) FA of � � ��
� ����; (b) FA of � � ��

� ����; (c) FA of

�� � �� � ������	��� ����� � ��� ��; (d) FA of prefix-closure of �� � �� � ������	��� ����� � ��� ��.

30

�

��
�

�

�

�

�

��
�

�

���

� � � �

�

��� ��� ��� ��
��� ��� ��� ��

�
��
�

�
��� ��� ��� ��

�

�
�

���

��� ��� ��� ��

��� ��

��

��

��

��

���

��

�

��

��

�

��

��

��

��

�

�

��
��� ��

��

��

��

��

�� 	�

��

�

��

	�

��

� ��

�� 	�

��

�

�� 	�

�

��

�

��

�

�

�

�

�

��
�

�

�	�

Figure 9: Illustration of Example 4.8. (a) FA of �; (b) FA of � � ���� �; (c) FA of �� � ������	��� ; (d) FA of
� � �� � ������	��� .

31

��

�

��� ��

��

��

��

��
�� 	�

��

�

����

	�

��

��

��

��
��� ��

��

��

��

�� 	�

�

��

���

��

	�

��

��

��� �� ��
�� 	�

��

��

	�

��

��

��
��� ��

�� 	�

�

��

	�

��

�	�

��

��

��

��
��

��

��

�

�

�

�

�

��� �����

�

�

��� ��
��� ��� ��

��� ��

��

�� ��� ��

�

��� ��

��� ��� ��

��� ��

��� �����

��� �����

��� �����

�

�

�

�

��
�

��

��� ��

���
�� ��

��� ��

���
�� ��

��

��� ��

��
��

��

��

��� ��

��
��

��

�� ��� ��

�� ��� ��

Figure 10: Illustration of Example 4.8. (a) FA of �� � �� � ������	��� ����� ; (b) FA of

�� � �� � ������	��� ����� .

32

Definition 4.15 A solution (of Eq. 10 is �-compositionally prefix �� � � �-deadlock-free if

Init���	
��	�
� Init�(�	
��	�

� Init�������	���

is �� � � �-deadlock-free.

A compositionally prefix �� � � �-deadlock-free solution yields a composition that has no �� � �� � cycles without
exit.

Definition 4.16 A solution (of Eq. 10 is �-compositionally prefix �� � � �-convergent if

Init���	
��	�
� Init�(�	
��	�

� Init�������	���

is �� � � �-convergent.

A compositionally prefix �� � � �-convergent solution yields a composition that has no �� � �� � cycles, i.e., it is
livelock-free. A compositionally prefix �� � � �-deadlock-free solution does not need to be compositionally prefix
�� � � �-convergent.

Example 4.9 Consider the equation �� ��� $ �� , where FSMs �� and �� and the largest solution ��

are shown in Fig. 11(a)-(b)-(c). Fig. 11(d)-(e) shows the related automata � and (
��	�
� (��
���
, whereas

Fig. 11(f)-(g) portrays the automata representing the languages �	
��	�
�(
��	�

� �����	��� � ��(��
���
 �
�����	��
���
 and ���&���	
��	�

����&�(�	
��	�
����&�������	��� � ���&�������&�(�	��
���
����&�������	��
���
.

If FSM �� answers by � to the external input � then FSMs �� and �� fall into an infinite dialogue, so we
would like to classify their composition as neither �� � � �-convergent nor �� � � �-deadlock-free. However the
language � � (��
���
 � �����	��
���
 � ���'��
 is both �� � � �-convergent and �� � � �-deadlock-free. To
overcome this modeling problem, we introduce the operator ���& (guarantees prefix-closure) and rewrite the previous
language composition as ���&�������&�(�	��
���
����&�������	��
���
. The latter language is neither �� �� �-
convergent (since �	��
���
 includes ���� � ��� that is a subset of the language) nor �� � � �-deadlock-free (��
cannot be extended to a string ending by ', against the definition of �� � � �-deadlock-free).

Finally 11(h) shows a language that is �� � � �-deadlock-free, but not �� � � �-convergent.

Theorem 4.12 Let (be an �������� ����-progressive solution of ��� � ������� and let � be ����� �������-
progressive. If (is compositionally prefix ���� �-convergent, then (is compositionally prefix ���� �-deadlock-free.

Proof. Since the components� and (are progressive, their composition Init��� 	
��	�
� Init�(�	
��	�

� Init�������	���
is deadlock-free, i.e., it never stops because a component does not have a transition under a given input. If the compo-
sition is also �� � � �-convergent, there can be no livelocks, i.e., there are no cycles labeled with actions from the set
� � � . Therefore an external input, after a finite path labelled with internal actions, must be followed by an external
output. �

The computation of the largest subset of compositionally prefix �� �� �-deadlock-free solutions and of the largest
subset of compositionally prefix �� � � �-convergent solutions requires further investigation. The former problem
appears similar to the one of finding the largest subset of compositionally � ��-progressive solutions. About the
latter problem, when ���� is not compositionally prefix �� �� �-convergent, then the largest compositionally prefix
���� �-convergent solution does not exist and each finite ��-prefix-closed subset of � ��� is a compositionally prefix
�� � � �-convergent solution. It is an open question whether there is the largest complete prefix �� � � �-convergent
solution.

4.6.3 FSM Equations under Bounded Parallel Composition

Here we discuss the solutions whose composition with the context produces an external output after at most � internal
actions. One could build an analogy with Moore solutions of synchronous equations. We provide in the sequel the key
steps to solve FSM equations under bounded parallel composition.

Definition 4.17 The �-bounded parallel composition of FSMs ��, over input alphabet �� �� and output alphabet
�� � � , with ��, over input alphabet �� � � and output alphabet �� �� , yields the FSM �� �� �� with language

���� �� ��� � ����� �� ����� � �����

� 	�����	
��	�
� �����	
��	�

� �� � ���	�������
�
�	 � ������

33

��� �	�

���

���

���
����
 ��
 �����

� 	
�

��

�

�

�
�

�� �� �� 	�
� �

 �

�

�

�

���

�� �� �� 	�

 �

�� �

�� �� �� 	�
�

�

� �

���

� �

��

�

���

�
��

Figure 11: Illustration of Example 4.9. (a) FSM ��; (b) FSM �� ; (c) FSM ��; (d) FA of � � ��
� ����; (e) FA of

(��
���
, where (� ��
� ����; (f) FA of � � (��
���
 � �����	��
���
; (g) FA of ���&��� � ���&�(�	��
���
 �

���&�������	��
���
; (h) FA of prefix �� � � �-deadlock-free, but not prefix �� � � �-convergent language.

34

When � ��, it reduces to the definition of parallel composition of FSMs.

Proposition 4.8 FSM �� is a solution of the equation �� ���� $�� , where �� and �� are FSMs, iff �� is a
reduction of the FSM ����	 associated to ���� , where ���� is obtained by applying Procedure 4.3 to �, where

� � ��	
��	�
� �� � ������	���������
����� �	�

. If ���� � � then no FSM is a solution. ���� is the largest
compositionally �� �� �-convergent solution of �� ���� $�� . The largest complete FSM solution ���������	 �

is found, if it exists, by Procedure 4.4.

Theorem 4.13 A solution �� of �� �� �� $ �� is also a compositionally �� � � �-convergent solution of
�� ��� $�� .

If �� and �� are also complete FSMs, then �� is a compositionally prefix � ��-progressive and compositionally
���-progressive solution of �� ��� $�� .

Proof. By construction, a solution �� of �� �� �� $ �� is compositionally �� � � �-convergent. A solution
�� of �� �� �� $ �� is also a solution of �� ��� $ �� , because when � � � the operator �� becomes the
operator �.

By Theorem 4.12, the fact that �� is compositionally �� �� �-convergent, together with the completeness of ��

and �� , imply that �� is compositionally prefix � ��-progressive and therefore compositionally � ��-progressive. �

However, in general ����� $�� may be solvable despite the fact that ������ $�� has no solution. For
instance, this may happen when �� ��� $ �� has no compositionally � ��-progressive solution. If the equation
�� �� �� $ �� has no complete solution, it is open whether there is a compositionally � ��-progressive solution
of �� ��� $�� .

5 An Example: Solving the Protocol Mismatch Problem

A communication system has a sending part and a receiving part that exchange data through a specific protocol. A
mismatch occurs when two systems with different protocols try to communicate. The mismatch problem is solved
by designing a converter that translates between the receiver and the sender, while respecting the overall service
specification of the behaviour of the composed communication system relative to the environment. We formulate the
problem as a parallel language equation: given the service specification � of a communication system, a component
sender and a component receiver, find a converter � whose composition with the sender and receiver � meets the
system specification after hiding the internal signals: � �� � �.

As an example we consider the problem of designing a protocol converter to interface: an alternating-bit (AB)
sender and a non-sequenced (NS) receiver. This problem is adapted from [20] and [12]. A communication system
based on an alternating bit protocol is composed of two processes, a sender and a receiver, which communicate
over a half duplex channel that can transfer data in either directions, but not simultaneously. Each process uses a
control bit called the alternating bit, whose value is updated by each message sent over the channel in either direction.
The acknowledgement is also based on the alternating bit: each message received by either process in the system
corresponds to an acknowledgement message that depends on the bit value. If the acknowledgement received by a
process does not correspond to the message sent originally, the message is resent until the correct acknowledgement
is received. On the other hand, a communication system is non-sequenced when no distinction is made among the
consecutive messages received or their corresponding acknowledgements. This means that neither messages nor their
acknowledgements are distinguished by any flags such as with the alternating bit.

Fig. 12 shows the block diagram of the composed system. Each component is represented by a rectangle with
incoming and outgoing labeled arrows to indicate the inputs and outputs, respectively. The sender consists of an AB
protocol sender (PS) and of an AB protocol channel (PC). Meanwhile, the receiving part includes an NS protocol
receiver (PR). The converter � must interface the two mismatched protocols and guarantee that its composition with
)�,)� and)% refines the service specification (SS) of the composed system. The events Acc (Accept) and Del
(Deliver) represent the interface of the communication system with the environment (the user). The converter �
translates the messages delivered by the sender PS (using the alternating bit protocol) into a format that the receiver
PR understands (using the non-sequenced protocol). For example, acknowledgement messages � delivered to the
converter by the receiver are transformed into acknowledgements of the alternating bit protocol (a0xc to acknowledge
a 0 bit and a1xc to acknowledge a 1 bit) and passed to the sender by the channel (a0cs to acknowledge a 0 bit and a1cs
to acknowledge a 1 bit); data messages are passed from the sender to the channel (d0sc for a message controlled by

35

���

���

���

�

�	��
����

�� ��

��

��

� �
!��"#�"

	��

���

���

Figure 12: Communication system described in Sec. 5.

a 0 bit and d1sc for a message controlled by a 1 bit) and then from the channel to the converter (d0cx for a message
controlled by a 0 bit and d1cx for a message controlled by a 1 bit) to be transformed by the converter into a data
message 4 for the receiver.

We model the components as I/O automata [23], which recognize prefix-closed regular languages, and we solve
their language equations. Fig. 13 shows the automata of the components of the communication system. Missing
transitions go to a trap (non-accepting) state, that loops to itself under any event.

Fig. 14 shows the largest prefix-closed solution � �)� �)� �)% � �� of the converter problem. Notice that
all missing transitions go to an accepting trap state dc, that loops to itself under any event; e.g., the initial state has
a transition to state dc under events �� ��
+� ��
+� *�+
. These transitions are not indicated in the state transition
graph of the automaton of the solution language to avoid cluttering the picture. State dc can be termed the don’t care
state, because it is introduced during the determinization step to complete the automaton)� �)� �)% ���, before
the final complementation. It is reached by transitions that cannot occur due to impossible combinations of events in
the composition of)� �)� �)% and �, and so it does not matter how � behaves, once it is in state dc (thus the
qualification don’t care state). This makes the largest solution � non-deterministic. The solution presented in [20]
and [12] does not feature this trap accepting state and so it is not complete (in [20] and [12] all missing transitions of
the solution are supposed to end up in a non-accepting trap state, a fail state); without the above dc state, one gets only
a subset of all solutions.

Fig. 15 shows another view of the largest prefix-closed solution � �)� �)� �)% � �� of the converter prob-
lem, with the dc state included and the fail state excluded.

Fig. 16 shows the largest prefix-closed 2-bounded solution of the converter problem.
Fig. 17 shows the composition)��)��)%��	�� �!"�
 of the communication system)��)��)% and of the

largest converter �. The largest prefix-closed solution � is compositionally �� ���-progressive and compositionally
prefix �� � � �-deadlock-free, but not compositionally prefix �� � � �-convergent.

6 Comparison with Previous Approaches

6.1 Equations under Synchronous Composition

Sequential synthesis offers a collection of problems that can be modeled by FSM equations under synchronous com-
position. Some have been attacked in the past with various techniques in different logic synthesis applications.
Hierarchical Optimization and Don’t Care Sequences
The goal of hierarchical optimization is to optimize the FSMs of a network capturing the global network information
by means of don’t care conditions.

This paradigm generalizes what is done already in multi-level combinational synthesis [9, 7], where a lot of effort
has been invested in capturing the don’t cares conditions and devising efficient algorithms to compute them or their

36

���
�	�

���

�
�

���

���$

���$

�	�$

�	�$

���

�

	$�

�$� ���

���

���

�

�������$

�	���	�$

	��

�$�

	$�

���

Figure 13: Automata of communication system described in Sec. 5 (a) Automaton of)�; (b) Automaton of)%; (c)
Automaton of)�; (d) Automaton of ��.

37

�	��
	��

� �

��

� �

��

	��
	��
	������ ���� ����

�
���

�	���	���	���	��
���
���
���

� ���� ����

����

�

� �

�	�� �	��

����

�

����

����

�

�

�

Figure 14: Largest prefix-closed solution � �)� �)� �)% � �� of the converter problem of Sec. 5.

38

�	��

� �

��

� �

��

	��
	��
	������ ���� ����

���

�	���	���	���	��
���
���
���

����

�

�

�

�

�

�� �	��

�����
���

	�� ��
	��

���

��

��

���
���

���

��

��

���

��
	��

���

��
	��

�� �	��

�����
	��

�� �	��
�����
���

�����
���

�� �	��
�����
���

�� �	���� �	��
�����
	��

�� �	��
�����
	�� �����
	��

�� �	��

�

��
	��

Figure 15: Largest prefix-closed solution � of the converter problem of Sec. 5. It shows explicitly the transitions to
the dc state.

39

�	��

��

��

�������

�
�

�� �	��

�����
���

	�� ��
	��

���

��

��

���
���

���

��

��

���

��
	��

���

��
	��

�� �	��

�����
	��

��
	��

Figure 16: Largest prefix-closed 2-bounded solution of the converter problem of Sec. 5.

subsets. In particular input controllability don’t cares and output observability don’t cares 8 have been defined for
multi-level combinational networks (see [26] for an introduction to the topic).

When the theory is extended to sequential circuits, don’t care sets become sequences of inputs instead of single
inputs, since sequential circuits transform input sequences into output sequences 9.
Input Don’t Care Sequences
Consider a cascade interconnection of two FSMs �� and ��, where the driving FSM �� feeds the input patterns
to the driven FSM ��. Then input controllability don’t cares are the sequences of outputs not produced by � �:
they restrict the controllability of the driven FSM �� and are used to modify �� obtaining an FSM ��� such that
the cascade interconnection does not change, i.e., �� � ��� � �� � ��. Kim and Newborn [17] were the first
to give a procedure to compute all input controllability don’t care sequences for a series topology. Later on, H.-Y.
Wang [36] showed that input don’t care sequences for a component in a network of FSMs with an arbitrary topology
can be exploited in the same way as in a series topology and that computing input don’t care sequences for an arbitrary
topology can be reduced to computing them for a series topology. The theory of input don’t care sequences was
developed independently in Russia by Yevtushenko [41].
Output Don’t Care Sequences
Output observability don’t cares are the sets of sequences of inputs of � � that cannot be distinguished by the outputs
of ��, i.e., the sequences of a set cannot be distinguished from each other by looking to the outputs of � �: they
restrict the observability of the driving FSM �� and are used to modify �� obtaining an FSM ��� such that the
cascade interconnection does not change, i.e., ��� ��� � �� ���. An interesting procedure to compute a subset
of the sequential output don’t cares is due to H.-Y. Wang [37]. For a survey on the topic refer to [13].

The complete flexibility for the head FSM of a series composition was derived by Yevtushenko and Petrenko [41,
31, 30] by means of a NDFSM whose states are the cartesian product of the components’ states, and whose transition
relation is unspecified for the inputs such that no internal signal produces the reference output, otherwise it includes
all transitions with allowed internal signals.

The first result [41] solved the special case of Moore FSMs where the tail component produces different outputs
for different states. Consider a series composition �� � �� of two Moore FSMs �� � ���� �� �� Æ�� .�� ���
and �� � ��� � ���� Æ� � .� � ���, such that �$�� $� 	 �� $� �� $� implies .��$�� �� .��$��. The FSM
representing all behaviours that can be realized at the head component is given by the NDFSM �! � ��� �

8The input controllability don’t care set, �
��� , includes all input patterns that are never produced by the environment at the network’s
inputs. The output observability don’t care sets, �
���	, denote all input patterns that represent situations when an output is not observed by
the environment.

9The input controllability sequential don’t care set, �
�
���� , includes all input sequences that are never produced by the environment at the
network’s inputs. The output observability sequential don’t care sets, �
�
����	 , denote all input sequences that represent situations when an
output is not observed by the environment at the current time or in the future.

40

�

�

�	���	��
���
���
���

�

�

	��
	������ ����
	������ ����
	��

��� �	���	��

�

�

�

�

���

���

���

���

�	��

���

���

����

	��

���

Figure 17: Composition)� �)� �)%��	�� �!"�
 of communication system)� �)� �)% and largest converter
� of the converter problem of Sec. 5.

41

�� � �� �� Æ!� .! � ���� ����, where Æ!��$�� $��� �� � �Æ��$�� ��� Æ��$� � .��$���� and .!�$�� $�� � �� � Æ��$� � �� �
Æ��$� � .��$���
, i.e., the output of �! at state �$�� $�� is the set of � 	 � that drive �� from $� into the same
state to which .��$�� does.

Theorem 6.1 �� ��� � �� ��� iff �� is a reduction of �!.

The method was then extended to arbitrary tail machines through two more contributions [31, 30]. The first
one [31] proposes an algorithm for output don’t care sequences dual to the one by Kim and Newborn for input don’t
care sequences.

Consider a series composition�� ��� of two FSMs �� � ���� �� �� Æ�� .�� ��� and �� � ��� � ���� Æ� � .� � ���.
The FSM representing all classes of input sequences equivalent with respect to �� (�� produces the same output
sequence under these input sequences, which are the don’t care output sequences of �) is given by the NDFSM � ! �
��� � �� � �� �� -� ���� ����, where the transition ���$� � �$��� ��� ��� ��$

�
� � �$���� 	 - iff .���$� � ��� � .���$� � ���,

�$�� � Æ���$� � ��� and �$�� � Æ���$� � ���. In other words, the output sequences produced by FSM �! under a given
input sequence 	 are those under which �� produces the same output sequence that it generates under 	.

Theorem 6.2 �� ��� � �� ��� iff �� is a reduction of the product of �� and �!.

The latter contribution [30] builds directly the NDFSM capturing all the flexibility. Consider a series composi-
tion �� � �� of two FSMs �� � ���� �� �� Æ�� .�� ��� and �� � ��� � ���� Æ� � .� � ���. The FSM rep-
resenting all behaviours that can be realized at the head component is given by the NDFSM �! � ��� � �� �
�� � �� �� -� ���� �� � ����, where ��$�� �$� � �$��� �� �� �$

�
�� �$�� � �$���� 	 - iff the output of �� ��� at state �$�� �$��

under input � is equal to the output of �� at state �$� under input �, and �$��� �$�� � �$��� are the successor states respec-
tively in �� ��� and ��.

Theorem 6.3 �� ��� � �� ��� iff �� is a reduction of �!.

Computation of the Permissible Behaviors with the E-machine
Given the network topology shown in Fig. 1(d), a fixed-point computation was been defined by Watanabe and Brayton
in [38] to compute a PNDFSM that contains all behaviors �� (DFSMs) whose composition with the given machine
�� is contained in the specification �� . The PNDFSM so obtained has been called the E-machine, where the prefix
E stands for environment. An alternative computation, credited to A. Saldanha, builds an equivalent NDFSM (see [15]
for a detailed exposition). The authors have also investigated the issue of logical implementability of the DFSMs
contained in the E-machine, i.e., the problem of finding those contained DFSMs �� such that there exists a pair of
circuit implementations of �� and �� with no combinational cycles created by connecting them together by the
internal signals � and �. These DFSMs are called permissible.
FSM Network Synthesis by WS1S
WS1S (Weak Second-Order Logic of 1 Successor) is a logic with the same expressive power as regular languages [5,
35, 18]. The WS1S formalism enables one to write down easily equations that characterize the set of (functionally)
permissible behaviors at a node for different topologies, as pointed out by A. Aziz et al. in [3]. We present the
equations for some FSM networks shown in Figure 1. In all equations �� represents the specification; in a given
equation, we label the unknown FSM by a superscript �. According to the WS1S syntax, the FSMs must be encoded
to appear in the equations.

1-Way Cascade (a) - Fig. 1(c) 5��
�

���� �� � �����	5
�� ������� 5�
 ���� ���
�

The machine �

� is exactly the one produced by the construction due to Kim and Newborn [17].

1-Way Cascade (b) - Fig. 1(c) 5��
�

������ � �����	5������ ��� 5�
 ���� ���
�

Supervisory Control - Fig. 1(e) 5��
�

���� ��� � � � 5��������� 5�
 ���� ����
The restriction to Moore solutions was investigated in [2].

2-Way Cascade (a) - Fig. 1(b) 5��
�

���� �� �� � �����	5
�� ��� ������ 5�
 ���� ���
�

2-Way Cascade (b) - Fig. 1(b) 5��
�

��� ����� � �����	5
�� ���� �� ��� 5�
 ���� ���
�

Rectification (a) - Fig. 1(d) 5��
�

��� � � � ����� ���	5
������ �� ������ 5�
 ���� ���
�

Rectification (b) - Fig. 1(d) 5��
�

���� �� ����� � 5�� ��� � �� 5�
 ���� ����

42

Going beyond previous ad hoc approaches, the fact of embedding logic synthesis problems into WS1S formulas allows
one to state them in a common frame, enabling easily proof of correctness and completeness of the proposed solutions.
Then the computations are performed upon the related automata applying to them the operations that correspond to
the standard logical connectives (however the result may be a regular language that is not an FSM language, an issue
addressed by Th. 4.8).

In contrast, the theory of synchronous and parallel equations is built upon the primitive notions of language and
language composition, and models naturally a larger spectrum of language equations and their specialized solutions.
Model Matching by Simulation Relations
The model matching problem in control theory seeks to design a controller �� so that the composition of a plant
�� with �� matches a given model �� (see the controller’s topology in Fig. 1(e)). A procedure for deriving the
largest solution for complete FSMs �� (DFSM) and �� (PNDFSM) of the equation �� ��� $��# �� for the
discrete model matching problem was proposed in [16, 4], where $ ��# denotes simulation relation 10 (as opposed to
language containment in our approach). Simulation relations in general are stronger than language containment, i.e.,
a simulation relation implies language containment, but not vice versa.

The use of simulation relation instead of language containment avoids determinization and leads to an algorithm of
polynomial complexity bounded by ���������� ���-����-� ��, where ���� (��� �) is the number of states of �� (��)
and �-�� (-�) is the size of the transition relation of �� (��). In [4] a solvability condition is given, based on
the notion of simulation relation between the automata which generate the possible output sequences produced by an
FSM.

6.2 Equations under Parallel Composition

Consider the parallel composition of discrete-event systems � over alphabet � � � and (over alphabet � � � , with
pairwise-disjoint alphabets � , � and � . A number of papers in process algebra [25, 32, 33, 28, 20, 12] solves the
equation � � � � � under various relations �, where � and � are given processes. In this section we focus
on equations defined over process languages, A process language is usually a prefix-closed regular language and is
represented as the language (or set of traces) of a labeled transition system (LTS), which is a finite automaton (with �
moves) where each state is accepting. Some states can also be marked with a partially ordered set of marks.

In [25] the equation � �� � � was studied over LTS languages and the following results were claimed:

Theorem 6.4 The maximal solution of � �� � � over prefix-closed regular languages is given by

� � � ��
� ���

Theorem 6.5 The equation � �� � � is solvable over prefix-closed regular languages iff the language � � � ��

� �� is a solution of the equation, i.e., � � �� ��
� ��� � �.

Theorem 6.4 is not accurate because the largest solution of � �� � � is � � � ��, which is obtained by adding
to the language � � �
 � � � each word 	 	 �� � ��� such that the sets 	�� and ��� are disjoint (these words
cannot occur in the composition). Given the equation � �� � � over prefix-closed regular languages accepted by a
finite automaton with nonaccepting states, a procedure leading to the same incomplete solution � � � � �
 � � �
is presented and argued to be maximal in [11]. Notice that the version of Procedure 3.1 for parallel composition
handles unrestricted regular languages, so it is more general than the ones in [25] or [11]. Safe and compositionally
deadlock-free solutions are considered in [10] and a procedure to derive the largest safe solution is proposed.

A procedure for deriving the largest solution for LTSs � and � of the equation � � � $ $���# � was proposed
in [32], where$$���# denotes either a strong or weak bisimulation relation (as opposed to language containment in our
approach). The authors derive an automaton representing all traces of the parallel composition of � and each sequence
over the alphabet � ��. The final state of each trace of the composition whose � ��-restriction is not a trace of � is
marked as a bad state. To compute the largest solution, the automaton is augmented with a designated don’t care state
that accepts all unfeasible sequences, i.e,. those that do not occur in the composition. Finally the �� � ��-restriction

10� � �� � �� is a simulation relation from an FSM �� �
��� ���� ��� ��� to an FSM �� �
��� ���� ��� ��� if

1. ���� ��� � �, and

2. ���� ��� � � �

 �� �	 ��
�

�
� ���

�
�
����

�
�

�
� � ��

�

�
����

�
�
����

�
�

�
� � ��

�

�
� �

�

�
� � �	 	 �.

If such a � exists, we say that �� simulates ��, or that �� has a simulation into ��, and denote it by �� �
�� �� .

43

of the automaton is derived and the result is determinized by subset construction, where each subset including a bad
state is marked as bad. The largest solution is the subset of all sequences of the �� ���-restriction whose runs do not
end up in bad states.

In [29], the equation � �� � � is solved over complete FSMs. It is shown that the solution over LTSs cannot be
applied directly to FSMs because in general it is not an FSM language (an FSM language must be also prefix-closed
and �-progressive). Moreover, compositionally �� ���-convergent solutions are considered. A technique is proposed
to find the so-called largest candidate solution by deleting from the largest solution the sequences causing deadlocks
in the composition with FSM �. If the obtained solution is compositionally �� � ��-convergent then it is called
the largest solution of the equation; otherwise, the question whether a compositionally �� � ��-convergent solution
exists remains open. In the latter case, as in [28], the authors propose to limit to � the number of internal interactions;
if, for a given �, the largest solution of the equation exists then it is compositionally �� � ��-convergent and also
each of its reductions inherits this property. Notice that in Sec. 4.6.3 we extended to regular languages the procedure
for determining the solution with a limited number of internal interactions. Another restricted solution to parallel
equations over regular languages is considered in [19]. The solution is called the minimally restrictive supervisor, i.e.,
a supervisor that combined with the context matches the largest specification sublanguage.

The equation � � � � � over regular languages, restricted to the case of the rectification topology to model
the protocol conversion problem, was addressed in [20]. The solution was found using the theory of supervisory
control of discrete event systems and looks for a converter sublanguage in the language of �; their technique as it
is does not generalize to topologies such that the unknown component depends also on signals that do not appear in
the component �. Their solution is of the form � � �
 � � � (not the largest solution). Moreover, they gave an
algorithm to obtain the largest compositionally progressive solution by first splitting the states of the automaton of the
unrestricted solution (refining procedure, exponential step due to the restriction operator), and then deleting the states
that violate the desired requirement of progressive composition (linear step). The protocol conversion problem was
discussed also in [12] with the formalism of input-output automata.

In the context of modeling delay-insensitive processes and their environments, a number of concurrency models
use various labelings of states of processes to represent certain properties of states, such as quiescence and error or
violation [24, 27]. The existence of state labels requires a stronger semantics than language semantics and leads to
a reflection operator further refining the language complementation operator. See [24, 27] for discussions on parallel
composition operators for delay-insensitive processes. The largest solution of the equation) ! � " % is the process
��) !�%�, where ! is a composition operator and � is a reflection operator, replacing the complementation operator
used with language semantics. As with language semantics, such a solution might not be compositionally �� � ��-
convergent; it is also of interest to look for solutions exhibiting a property called healthness, capturing correctness
properties according to the chosen parallel composition operator [24].

7 Conclusions

The problem of finding an unknown component in a network of components in order to satisfy a global system
specification was addressed. Abstract language equations of the type � �� � � and � �� � � were investigated,
where � and � are operators of language composition. The most general solution was computed and various types of
constrained solutions were studied. Then specialized language equations were introduced, such as regular and FSM
language equations. The maximal subsets of them closed with respect to various language properties were studied. In
particular the largest compositional solutions were studied; the first algorithm to compute the largest compositionally
�-progressive solution was given.

This approach unifies in a seamless frame the previous reported techniques and appears capable of modeling
problems with various notions of composition and types of language acceptors.

These techniques were applied to a classical synthesis problem of a converter between a given mismatched pair of
protocols, using their specifications, as well as those of the channel and of the required service. This problem was also
addressed in [20, 12] with supervisory control techniques. We were able to derive the largest solution, and the largest
compositionally progressive solution, which were not previously reported in the literature.

Future work includes studying other types of language equations (e.g., as applied to game theory and those modeled
by Petri nets) and building a prototype software package to compute the solutions automatically. To assess the practical
relevance of the method, we plan to test it in different applicative domains and to determine, for each domain, the level
of system “granularity” at which the method is effective. Computing approximations will be the next direction to
explore, after that exact techniques have been exploited fully.

44

8 Acknowledgments

The first author was partly supported by the Russian Ministry of High Education (Grant UR.04.01.018). Both the first
and the third author gratefully acknowledge the support of a NATO travel grant (NATO Linkage Grant No. 971217).
The second author gratefully acknowledges the support of the MADESSII Project (Italian National Research Council).
The fourth author gratefully acknowledges the support of NSERC (Grant OGP0194381).

References

[1] A. Arnold. Finite transition systems : semantics of communicating systems. Prentice Hall, 1994.

[2] A. Aziz, F. Balarin, R.K. Brayton, M.D. Di Benedetto, A. Saldanha, and A.L. Sangiovanni-Vincentelli. Su-
pervisory control of finite state machines. In Proceedings of the International Conference on Computer-Aided
Verification, pages 279–292, July 1995.

[3] A. Aziz, F. Balarin, R.K. Brayton, and A. Sangiovanni-Vincentelli. Sequential synthesis using S1S. IEEE
Transactions on Computer-Aided Design, 19(10):1149–1162, October 2000.

[4] M. Di Benedetto, A. Sangiovanni-Vincentelli, and T. Villa. Model Matching for Finite State Machines. IEEE
Transactions on Automatic Control, 46(11):1726–1743, December 2001.

[5] J.R. Büchi. The collected works of J. Richard Büchi. Springer-Verlag, 1990.

[6] C. C. Cassandras and S. Lafortune. Introduction to discrete event systems. Kluwer Academic Publishers, 1999.

[7] E. Cerny. Controllability and fault observability in modular combinational circuits. IEEE Transactions on
Computers, vol. C-27(10):896–903, October 1978.

[8] E. Cerny. Verification of I/O trace set inclusion for a class of non-deterministic finite state machines. In The
Proceedings of the International Conference on Computer Design, pages 526–530, October 1992.

[9] E. Cerny and M. Marin. An approach to unified methodology of combinational switching circuits. IEEE Trans-
actions on Computers, vol. C-26(8):745–756, August 1977.

[10] J. Drissi and G. v. Bochmann. Submodule construction for systems of I/O automata. Technical Report #1133,
DIRO, Universite’ de Montreal, Canada, 1999.

[11] E. Haghverdi and H. Ural. Submodule construction from concurrent system specifications. Information and
Software Technology, 41(8):499–506, June 1999.

[12] H. Hallal, R. Negulescu, and A. Petrenko. Design of divergence-free protocol converters using supervisory
control techniques. In 7th IEEE International Conference on Electronics, Circuits and Systems, ICECS 2000,
volume 2, pages 705–708, December 2000.

[13] S. Hassoun and T. Villa. Optimization of synchronous circuits. In R. Brayton, S. Hassoun, and T. Sasao, editors,
Logic Synthesis and Verification, pages 225–253. Kluwer, 2001.

[14] J.E. Hopcroft, R. Motwani, and J.D. Ullman. Introduction to Automata Theory, Languages, and Computation.
Addison-Wesley Publishing Company, 2001.

[15] T. Kam, T. Villa, R. Brayton, and A. Sangiovanni-Vincentelli. Synthesis of FSMs: functional optimization.
Kluwer Academic Publishers, 1997.

[16] S. Khatri, A. Narayan, S. Krishnan, K. McMillan, R. Brayton, and A. Sangiovanni-Vincentelli. Engineering
change in a non-deterministic FSM setting. In The Proceedings of the Design Automation Conference, pages
451–456, June 1996.

[17] J. Kim and M.M. Newborn. The simplification of sequential machines with input restrictions. IRE Transactions
on Electronic Computers, pages 1440–1443, December 1972.

45

[18] N. Klarlund. Mona & Fido: The logic-automaton connection in practice. In M. Nielsen and W. Thomas, editors,
Computer science logic : 11th international workshop, CSL ’97, volume 1414 of LNCS, pages 311–26. Springer-
Verlag, 1998.

[19] R. Kumar, V. Garg, and S.I. Marcus. On controllability and normality of discrete event dynamical systems.
Systems and Control Letters, 17(3):157–168, September 1991.

[20] R. Kumar, S. Nelvagal, and S.I. Marcus. A discrete event systems approach for protocol conversion. Discrete
Event Dynamic Systems: Theory & Applications, 7(3):295–315, June 1997.

[21] R.P. Kurshan. Computer-aided verification of coordinating processes. Princeton University Press, 1994.

[22] R.P. Kurshan, M. Merritt, A. Orda, and S.R. Sachs. Modelling asynchrony with a synchronous model. Formal
Methods in System Design, vol. 15(no. 3):175–199, November 1999.

[23] N. Lynch and M. Tuttle. An introduction to input/output automata. CWI-Quarterly, 2(3):219–246, September
1989.

[24] W.C. Mallon, J.T. Tijmen, and T. Werhoeff. Analysis and applications of the XDI model. In International
Symposium on Advanced Research in Asynchronous Circuits and Systems, pages 231–242, 1999.

[25] P. Merlin and G. v. Bochmann. On the construction of submodule specifications and communication protocols.
ACM Transactions on Programming Languages and Systems, 5(1):1–25, January 1983.

[26] G. De Micheli. Synthesis and optimization of digital circuits. McGraw-Hill, 1994.

[27] R. Negulescu. Process spaces. In C. Palamidessi, editor, Proceedings of CONCUR 2000, 11th International
Conference on Concurrency Theory, volume 1877 of LNCS, pages 199–213. Springer-Verlag, 2000.

[28] A. Overkamp. Supervisory control using failure semantics and partial specifications. IEEE Transactions on
Automatic Control, 42(4):498–510, April 1997.

[29] A. Petrenko and N. Yevtushenko. Solving asynchronous equations. In S. Budkowski, A. Cavalli, and E. Najm,
editors, Formal Description Techniques and Protocol Specification, Testing and Verification - FORTE XI/PSTV
XVIII ’98, pages 231–247. Kluwer Academic Publishers, November 1998.

[30] A. Petrenko, N. Yevtushenko, and R. Dssouli. Testing strategies for communicating finite state machines. In
T. Mizuno, T. Higashino, and N. Shiratori, editors, IFIP WG 6.1 International Workshop on Protocol Test Systems
(7th : 1994 : Tokyo, Japan), pages 193–208. Chapman & Hall, 1995.

[31] A. Petrenko, N. Yevtushenko, A. Lebedev, and A. Das. Non-deterministic state machines in protocol confor-
mance testing. In O. Rafiq, editor, IFIP TC6/WG6.1 International Workshop on Protocol Test Systems (6th :
1993 : Pau, France), pages 363–378. North-Holland, 1994.

[32] H. Qin and P. Lewis. Factorisation of finite state machines under strong and observational equivalences. Formal
Aspects of Computing, 3:284–307, Jul.-Sept. 1991.

[33] P. Ramadge and W. Wonham. The control of discrete event systems. Proceedings of the IEEE, Vol. 77(No.
1):81–98, January 1989.

[34] P. H. Starke. Abstract Automata. North-Holland Pub. Co.; American Elsevier Pub. Co., 1972.

[35] J.W. Thatcher and J.B. Wright. Generalized finite automata with an application to a decision problem of second-
order logic. Mathematical Systems Theory, 2:57–82, 1968.

[36] H.-Y. Wang and R.K. Brayton. Input don’t care sequences in FSM networks. In The Proceedings of the Interna-
tional Conference on Computer-Aided Design, pages 321–328, November 1993.

[37] H.-Y. Wang and R.K. Brayton. Permissible observability relations in FSM networks. In The Proceedings of the
Design Automation Conference, pages 677–683, June 1994.

[38] Y. Watanabe and R.K. Brayton. The maximum set of permissible behaviors for FSM networks. In IEEE Inter-
national Conference on Computer-Aided Design, pages 316–320, November 1993.

46

[39] N. Yevtushenko, T. Villa, R. Brayton, A. Petrenko, and A. Sangiovanni-Vincentelli. Solution of parallel language
equations for logic synthesis. In The Proceedings of the International Conference on Computer-Aided Design,
pages 103–110, November 2001.

[40] N. Yevtushenko, T. Villa, R. Brayton, A. Petrenko, and A. Sangiovanni-Vincentelli. Compositionally progressive
solutions of synchronous language equations. In International Workshop on Logic and Synthesis, May 2003.

[41] N.V. Yevtushenko and A.Y. Matrosova. Synthesis of checking sequences for automaton networks. Automatic
Control and Computer Sciences, 25(2):1–4, 1991.

47

