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Abstract 

Both non-determinism and multi-level networks can be used to 
compactly characterize logic structures as well as all the 
flexibilities allowed for optimizing them. Synthesis results can be 
improved by allowing the manipulation of a larger class of 
networks, called ND networks. These are multi-level logic 
networks which embody both non-determinism and multi-valued 
signals, and thus enhance compactness and expressiveness.  We 
develop a complete theory for representing and manipulating ND 
networks. It is shown that an ND network’s behavior can be 
classified into at least three types, all of which coalesce when the 
network becomes deterministic. The theory addresses the classical 
transformations commonly applied to optimize deterministic 
binary networks, such as node minimization, elimination, and 
decomposition. These are analyzed with respect to their effects on 
each type of network behavior, leading to modifications of some 
operations to make them safe, i.e. guaranteeing that the new 
behavior remains within the network’s specification. Finally, it is 
proved that all three types of behaviors can be used in a 
hierarchical synthesis paradigm. 

1 Introduction 

The broad goal of this paper is to develop and document a 
complete theory for non-deterministic networks. The need for this 
was motivated first during our implementation of a new logic 
synthesis system, MVSIS, which supports the manipulation and 
synthesis of multi-valued networks. Non-determinism arises 
naturally in such networks since the maximum flexibility derived 
when optimizing a node is non-deterministic; in the binary case 
this non-determinism is derived from don’t cares and gives rise to 
incompletely specified functions (ISFs). This flexibility can be 
used to create a minimum deterministic or non-deterministic 
replacement for the node. During the development and debugging 
of MVSIS, the need for a better understanding of such networks 
became apparent after encountering problems that appeared to be 
coding errors. These turned out to be misunderstandings about 
how ND networks should behave during some of the classical 
methods of manipulating logic networks.  

A non-deterministic (ND) network is similar to a deterministic 
Boolean (binary) network. In both cases, each node has a single 
output. The ND networks are different in the following ways:  

(1) a node can have a multi-valued (MV) output (instead of a 
binary output), and 

(2) a node’s functionality is represented by a non-
deterministic relation (instead of a completely specified 
logic function).  

A single-output non-deterministic relation is such that there can 
be several output values for the same input minterm. In the binary 
case, an input minterm whose output can take any value, {0,1}, is 
called a don’t care and gives rise to ISFs. If, in the binary case, a 
node function is an ISF, then the binary network is non-
deterministic. In the multi-valued case, a don’t care is a limited 
form of non-determinism where the output for a don’t care input 
can take any value allowed for that variable. If the output can take 
any value in a strict subset containing more than one value, it is 
called a partial care; the resulting function could be called a 
partially specified MV function. 

A concept close to a non-deterministic relation is that of a 
Boolean relation, which arises only when multiple-output binary 
functions are considered. Similar to an ND relation, for each 
minterm, a Boolean relation can evaluate to one of a set of output 
vectors. If each possible output vector of the Boolean relation is 
decoded uniquely to one of a set of multiple values, then a 
Boolean relation becomes a single-output multi-valued ND 
relation. For example, output vector (101) might be decoded into 
output value 5. If for a minterm, the Boolean relation can evaluate 
to (011) or (101), then the ND relation would non-
deterministically evaluate to either 3 or 5.  

The generalization from a single Boolean relation to a set of 
Boolean relations was discussed in [36]. Sakallah [31] discusses a 
generalizastion from a single binary function to a set of binary 
functions. Such a set was called a partially specified Boolean 
function. These arise when one chooses to ignore functional 
dependence on certain variables (functional abstraction). 
Operations (conjunction, disjunction, substitution) are provided 
for manipulating such partial functions. However, arbitrary sets of 
functions or relations are impractical since there is no compact 
way of representing them. On the other hand, a single ISF, an ND 
relation, or a Boolean relation can represent a set of functions 
compactly. For example, an ISF is a set of functions in a function 
interval and can be represented by the least function and the 
greatest one, or by the onset and the offset.  
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An ND relation with k output values can be represented by k 
functions, one for each output value indicating when that value 
can occur. Networks where the output of a node, module or black 
box is only partially specified as a function of its inputs have been 
used in the verification community to provide abstractions. For 
example, uninterpreted functions have been used to model 
memory and datapaths [7].  In Section 3.5, we comment further on 
the relation between ND networks, and equivalence or CTL model 
checking for incomplete binary-valued designs as studied in 
[26][28][34]. Optimization of networks with black boxes was 
considered in [17] and [14]. 

As mentioned, the proposed theory applies to binary networks 
containing ISFs. ISFs occur in the initial specification of some 
RTL designs because internal nodes are allowed to have don’t 
cares. Don’t cares can also be computed for an internal node using 
its surrounding environment or they may exist due to user-
specified constraints between internal signals. Similarly, a 
Boolean relation for a set of nodes can be computed from its 
surrounding network. Non-determinism can be used to model 
incomplete designs (e.g. designs with black boxes), which occur 
in the early stages of a design process where some components in 
a hierarchy have not been designed yet. The treatment of the 
equivalence checking of incomplete designs in [34] uses two 
notions of simulation, which are limited forms of two of the 
simulation types defined in the present paper (see Section 3.5).  

Non-determinism also arises naturally in a sequential synthesis 
setting. For example, a system’s specification may be given by an 
FSM (possibly non-deterministic), along with a set of known 
components (possibly non-deterministic if they are not fully 
specified). To be synthesized is an unknown component that 
interacts with the known parts to provide a combined behavior 
that satisfies an external specification. The set of all permissible 
sequential behaviors of the unknown component can be derived 
compactly as a single ND automaton, using classical methods of 
complementation and composition for automata [38].  Although 
this derivation is not detailed in the present paper, it is remarkably 
similar to the derivation of the maximum flexibility (see Section 
4) for a node as an ND relation. 

In the future, an interesting application of ND network theory 
might provide a way of treating circuits where the network is 
subject to extreme process and environmental variations as is 
predicted for DSM technologies. Such variations might be 
modeled usefully with non-determinism.   

Logic synthesis deals with the manipulation of logic networks to 
obtain smaller, faster, more efficient ones, which finally are 
mapped into netlists of logic gates (e.g. standard cells, FPGAs, 
etc.) for implementation in hardware.1 When synthesis concepts 
are generalized to account for non-determinism and multi-
valuedness, operations for manipulating such networks must be 
generalized. Even though the final synthesis target still may be 
binary-valued hardware, the use of multi-valued ND networks can 
lead to smaller final deterministic binary implementations because 
they allow optimization algorithms to explore larger spaces [21]. 

In developing our theory for ND networks, we found that  

                                                                 
1 The target implementation can be software [2][13] also. Software is 

more naturally multi-valued than hardware, and logic synthesis has been 
shown to be useful in this context. 

1. the definition of the “behavior” of an ND network is not 
obvious, 

2. the changes in behavior caused by logic synthesis operations 
in the presence of ND nodes need to be understood, and 

3. some operations need to be modified or controlled to account 
for the presence of non-determinism. 

The results of this paper clarify all of these issues. 
A behavior (of a network) is defined to be the set of all primary-

input/primary-output (PI/PO) pairs of minterms, which can occur 
during the “simulation” of a network. A simulation starts with an 
evaluation (minterm) at the primary inputs and in topological 
order evaluates each node in the network. Since a node can be 
non-deterministic, its evaluation can have different interpretations. 
Unlike the case for deterministic (completely specified) nodes, 
non-determinism allows several possible PO minterms for the 
same PI minterm. We will discuss three types of network 
simulation models (NS, NSC, SS) for ND networks2, which lead to 
three interpretations of a network’s behavior. We will refer to 
these as the network’s B-behavior, { , , }B NS NSC SS∈ . All the 
types of behaviors reduce to the same unique behavior if the 
network is deterministic. Depending on the application, any one 
of these can be appropriate, but in most cases, NS is the natural 
interpretation (each node randomly chooses an allowed value) 
while the other two can be seen as over-approximations that are 
easier to manipulate.  

We prove results about how an ND network’s B-behavior can 
change under the classical logic network operations, such as 
decompose, substitute, eliminate, collapse, node minimize, and 
merge [35]. We also study the limits for changing the relation at a 
node in an ND network (its flexibility, which is like don’t cares 
for binary networks) without violating the external specification 
of the network. We provide algorithms for computing the 
maximum relation representing the complete flexibility (CF) of a 
node. The CF depends on the type of simulation or behavioral 
model that is being used; hence we obtain B-CFs, 

{ , , }B NS NSC SS∈ . We prove that the B-CF contains all 
behaviors (including ND behaviors) allowed at the node that are 
permissible in the sense that the resulting network’s B-behavior 
satisfies the external specification. 

The derivation of the complete flexibility relation at a node 
leads to the problem of finding a small implementation of an ND 
relation. We provide a new method to find an exact minimum ND 
representation of a given ND relation, analogous to the Quine-
McCluskey procedure for finding a minimum SOP for a binary 
ISF. This is useful since ND representations are often 
substantially smaller than the exact minimum deterministic ones. 
This fact is another reason that motivates allowing ND relations at 
nodes in a network. 

It is advantageous if a theory can deal with hierarchy; this 
allows smaller parts of a network to be synthesized separately and 
then re-composed to create a network that still satisfies its 
specification. We show that all B-behaviors can be used in a 
hierarchical manner when manipulating and optimizing ND 
networks. In particular, we prove that if the NS or NSC behavior 
of a sub-part of a hierarchical design is not increased by a set of 

                                                                 
2 In the binary case, one of these simulation models (SS) is analogous to 

ternary-valued simulation using values {0,1,X} [1]. 
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synthesis operations, then the corresponding behavior of the 
whole design is not increased. Therefore, conformance to the 
external specification of the overall network is maintained. For 
SS, a slight modification (detailed in Section 9) of a sub-network’s 
SS-behavior (considering its PIs to be set inputs) makes SS 
appropriate for use in hierarchical synthesis.  

In this paper, the development of the theory is interspersed with 
a few informal observations about implementation issues and 
observed runtimes that we experienced with MVSIS [25] for the 
various methods and choices of how to interpret different forms of 
non-deterministic behavior. However, the details of these 
implementations are not in the scope of the present manuscript. 

The paper is organized as follows. In Section 2, an ND network 
is defined and some notation is provided. Section 3 discusses the 
three methods of simulation for interpreting the behavior of an 
ND network. Section 4 provides methods for computing the 
different complete flexibilities (B-CFs) at a node. Section 4.3 
develops several methods for finding a minimum well-defined 
(possibly non-deterministic) sub-relation of a relation; Section 
4.3.3 presents a method for finding a small deterministic sub-
relation. Section 5 discusses the node elimination operation. 
Section 6 considers division, which includes extraction, 
decomposition, and merging. Section 7 compares the relative 
merits of the three simulation methods. Since some operations 
may cause some B-behaviors to increase, possibly causing the 
network to violate its external specification, Section 8 provides 
methods to control this, so that all operations are safe. Section 9 
analyzes how the theory applies in a hierarchical setting. Section 
10 concludes the paper, summarizing the contributions and listing 
longer-term goals for applying this theory. 

2 ND Networks 

Definition: An ND network is a directed acyclic graph (DAG). 
A node represents an ND relation between the node’s inputs and 
its single multi-valued output. An edge is directed from node i to j 
if the relation at node j depends syntactically on the variable yi 
associated with node i. The output of node i can take values from 
domain {0, , 1}= −!i iD n .  

The difference between an ND network and a Boolean network 
is that the latter has only binary signals and has functions at the 
logic nodes, instead of ND relations.  

 Primary input nodes (PI) are those with no inputs. Primary 
output nodes (PO) are those observable by the environment. 
Single input and output storage nodes have the latch input (LI) 
variables as inputs, and the latch output (LO) variables as outputs. 
Since this paper is concerned only with the combinational portion 
of an ND network, the set {PI, LO} will be denoted just by PI and 
represented by the vector X, and the set {PO, LI} will be denoted 
by PO and represented by the vector Z. An assignment of values 
to a vector, Y, is called a minterm and is denoted Ym . 

An ND relation can be represented by a single characteristic 
function relating its inputs and outputs. An external specification 
of a network is given by a characteristic relation ( , )specR X Z , 
which describes the set of all acceptable (PI,PO) minterm pairs, 
( , )X Zm m , i.e. ( , ) 1=spec

X ZR m m  if Zm  is allowed at the PO when 
the PI is  Xm . 

Definition: A relation is well-defined if for each input minterm, 
there exists at least one output minterm in the relation.  

A relation where all the variables are binary has been called a 
Boolean relation [36]. A “compatible”, or output-symmetric, 
relation has an additional “symmetry” restriction. 

Definition: Let {( ) | ( , ) 1}Xm
i Z i X ZS m R m m= = . ( , )R X Z  is 

output-symmetric in Xm  if 

1 | |[( , ) ( , )] X Xm m
X Z Z Zm m R X Z m S S∈ ⇔ ∈ × ×! . 

Example. Consider a network with two binary outputs, z1 
and z2. Suppose, for some input minterm m, the values the 
outputs can take are {00, 01}. The relations R(X, Z) is 
output-symmetric for this minterm, because 1 {0}mS =  and 

2 {0,1}mS = , and every combination from the set 
{0}×{0,1}={00, 01} belongs to the relation. If the same 
outputs take values {00, 01, 11} for another minterm, it 
would not be output-symmetric because 1 {0,1}mS =  and  

2 {0,1}mS = ; thus there would exist a combination {10} in 
{0,1}×{0,1}={00, 01, 10, 11}, which is not in the relation. 

An output-symmetric relation has been called “compatible”3 
because the choice of value at one output can be made 
independently of the choice at any other output. In contrast, for a 
general relation, once a choice is made at one output for a 
minterm, the choices at another output may be restricted for that 
minterm. Output-symmetric relations have the advantage that a set 
of individual single-output relations, one for each PO, can be used 
to represent them. Otherwise, a single monolithic relation must be 
used, which can easily become too large. 

For implementation as well as conceptual purposes, it is often 
convenient to represent a node’s relation as a set of deterministic 
binary-output functions, such that the ith function takes value 1 for 
the input minterms producing value i at the output. These 
functions are called the i-sets of the (single-output) relation and 
can be represented as multi-valued sums-of-products (MVSOPs), 
as multi-valued decision diagrams (MDDs), etc.  

In single-output binary relations, the overlap between the 0-set 
and the 1-set is called the don’t care set. For completely specified 
functions, the 0-set is typically the default i-set.  

In synthesis, often we are concerned with representing a node’s 
functionality in a way that correlates well with some 
implementation. Sometimes a smaller representation can be 
obtained by designating one of the i-sets as the default. In many 
cases, there is no need to represent the default i-set, since it can be 
implemented by an invertor or NOR gate as the complement of 
the union of the other i-sets. However, not all ND relations can be 
represented this way because this representation requires that the 
default i-set be disjoint from all the rest.  

Definition: An ND network conforms with its external 
specification ( , )specR X Z  if, when the network is simulated with 
each possible input Xm , any possible output minterm Zm  that 

can be produced, satisfies ( , ) ( , )∈ spec
X Zm m R X Z .  

                                                                 
3 An output-symmetric Boolean (binary) relation can be expressed using 

compatible don’t cares. 
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We define three types, or models, of simulations of an ND 
network: {NS, NSC, SS}, all of which are the same as the usual 
notion of simulation when the network is deterministic. These 
simulation models differ in how the choice allowed by a non-
deterministic node is generated and propagated to its fanouts. 
Note that the definition of conformance is with respect to a given 
simulation model. A network that conforms is also said to be 
compliant. 

Definition: The B-behavior of an ND network is the set of all 
input-output pairs that can be simulated using the simulation of 
type { , , }B NS NSC SS∈ . 

The behavior of a network with respect to the simulation of type 
B is denoted ( , )BR X Z .  

Definition: A network B-conforms with the external 
specification if ( , ) ( , )B specR X Z R X Z⊆ . 

For ease of notation, the arguments of a relation are often used 
to identify it, e.g. ( , )jR X Y  and ( , )j jR Y y  denote different 
relations, even though each is named R. The relation at a node j in 
an ND network is a relation between its immediate inputs (fanins) 

jY  and its output jy  It is denoted ( , )j j jR Y y .  

A binary-output, multi-valued-input function can be minimized 
effectively using a program such as Espresso-MV [4][30]. This 
results in a minimized MV sum-of-products (MVSOP) expression 
for the function.  

Definition: An MVSOP is a disjunction of MV-products. An 
MV-product is a conjunction of MV-literals. An MV-literal of an 
MV variable, say y, is the binary function Sy , which is 1 
whenever y takes any value from the subset S of the range of y, 
and 0 otherwise.  

For example, if the range of y is {0,1,2,3,4,5,6}  and 
{0,3,5}S = , then the MV-literal, {0,3,5}y ,  has value 1 if and only 

if y = 0 or y = 3 or y = 5. 

3 Different Types of Behaviors of ND 
Networks 

A behavior (or complete behavior)4 of a network is defined to 
be the complete set of all input/output minterms that can occur. As 
stated above, it is not obvious how an ND network should choose 
an output value at an ND node and propagate this choice to its 
fanouts. Different interpretations associated with different ways to 
simulate an ND network can be used to define different behaviors. 
We will discuss three methods of simulation, some of which have 
an analogy with similar concepts existing in the literature for 
binary circuits. These methods are listed in the order of increasing 
amount of behavior: 

1. Behavior by normal simulation (NS-behavior). 
2. Behavior by normal simulation made compatible (NSC-

behavior).  
3. Behavior by set simulation (SS-behavior). 

                                                                 
4 We will use the term “behavior “ when complete behavior is meant, but 

also sometimes write “complete behavior” to emphasize this point. 

We define each simulation model and discuss its relative merits. 
Each of the three types of behaviors is treated equally, since no 
one dominates the others in terms of usefulness. Conceptually, 
and based on most applications, it is appropriate to view NS as the 
real behavior, and the others as easier-to-compute over-
approximations. Thus, NS is the most realistic and the tightest 
one, while SS is the easiest to compute but it is also the loosest. 
NSC fits in between. In the future, different behaviors may 
dominate as the most useful in different applications and 
algorithmic developments.  

Besides the above three, other interpretations of simulation can 
be proposed; an example, scattered simulation, is outlined in 
Section 3.3.3. In this paper, we do not pursue other types of 
simulations because the ones that we have examined appear to be 
less intuitive and/or harder to compute. 

In manipulating and optimizing a network, it is typical to 
compare its behavior periodically with the external specification, 
e.g. to check the containment ( , ) ( , )B specR X Z R X Z⊆ . Any 
simulation model can be used in this. However, the same model 
should be used consistently during synthesis since an ND network 
may conform under one simulation type but not under another. 
Switching between behavior types could lead to non-
conformance.5  

In the following, we discuss each of the three behaviors, and 
state and prove theorems related to computing their complete 
behaviors efficiently. 

3.1 Behavior by Normal Simulation (NS) 
NS is the most intuitive and realistic simulation of an ND 

network. It proceeds in topological order starting with a minterm, 
Xm , at the PIs. At each ND node, j, the simulation non-

deterministically selects one of the choices of output values 
allowed by the minterm at its fanins, 

jYm . This choice of value is 

propagated to all the nodes in the fanout of j. The next node, k, in 
topological order has at the time of evaluation, a minterm, 

kYm , at 
its fanins, and hence the simulation can proceed. 

For NS, it is easy to simulate single pairs ( , )X Zm m  of (PI, 
PO) minterms. However, it is much more difficult to obtain all 
pairs that could ever be simulated, which is often required. In fact, 
of the three methods, NS seems to be the most computationally 
complex simulation on to use in practice.  

The complete NS-behavior can be given by the MV Boolean 
relation, 

 internal nodes
( , ) ( , )

i

NS
j j jy

j

R X Z R Y y
∈

≡ ∃ ∏ .              (3.1a) 

This is not easy to compute, and cannot be obtained by the 
classical elimination of nodes in some order (which is how it is 
done for Boolean networks) since here, an existential 
quantification on an internal node variable has the effect of 
creating a relation which merges all fanout nodes into a single 
multi-output node; thus a (multi-output) Boolean relation must be 

                                                                 
5 Usually, as synthesis proceeds, the network is continuously refined 

leading to less and less non-determinism, until the final network is 
deterministic. Hence, the final conformance check is independent of the 
behavior used. 
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derived for this new node. After all quantifications are completed, 
the result is one monolithic MV Boolean relation (3.1a) for the 
entire circuit. A pair ( , )X Zm m  is in the MV Boolean relation 

( , )NSR X Z  precisely if mX is given at the PI, and at each node 
there exists a choice that is propagated to its fanouts, such that 
finally the vector mZ appears at the POs.  

Although “early” quantification can be used to make the 
computation of (3.1a) more efficient, it is still problematic since 
finally there is a single relation, which relates all PIs with all POs. 
In contrast, we will see that the other two types of behaviors, NSC 
and SS, can be represented by N independent relations, each 
connecting PI vectors, Xm , with only one PO, , {1, , }∈ !kz k N .  
Since they will be shown to be output-symmetric, the set of output 
vectors of POs related to Xm  can be obtained as the cross product 
of the sets of values at the individual POs related to Xm .  

3.1.1 Input Determinization (ID) 
Since the computation of the NS behavior is difficult, we 

propose a simpler method, which is also better from a conceptual 
point of view. Non-determinism is similar to randomness and can 
be interpreted using additional inputs. These are called pseudo-
inputs and lead to the concept of input determinization used for 
binary networks with don’t cares as well as in formal verification. 
We generalize this concept to ND networks.  An MV pseudo-
input variable pi is introduced at each ND node yi, where the range 
of pi is the same as that of yi. Then the relation at the node is made 
deterministic using ip  to control the choice of the output value.6 
The new relation at the node is simply, 

( , , ) ( , )( )i i i i i i i i iR Y p y R Y y p y= =" , 

where { } { }{0} {0}( ) p pk k
i i i i i ip y p y p y= ≡ + +! . We observe that  

( , ) ( , , )
ii i i p i i i iR Y y R Y p y= ∃ " .                     (3.1b) 

Example: Let the range of yi be {0,1,2,3} and let {0,2} be 
the allowed output values for a fanin minterm 

iYm . Thus, 
{0,2}( , ) ( , )∈

iY i i i im y R Y y . This relation is input-determinized 
by adding pi to control the ND choice, replacing 

{0,2}( , )
iY im y  with {0} {0} {2} {2}( , )

iY i i i im p y p y+ . Note that the 

function is not defined for input {1,3}( , )
iY im p , i.e. there is 

not output value 
iym associated with these inputs.  

After input-determinization of just the ND nodes, the circuit is 
completely deterministic although only partially defined. If the 
circuit is now collapsed,7 a global partial (not well-defined) MV 
function is obtained at each output kz  in terms of X and the vector 
of pseudo-inputs P; ( , )k kz G X P= . This is precisely what can be 

                                                                 
6 Another way to think about ip  is that it remembers the value of iy  

chosen at the ND node. Later ip  coordinates the value to be the same at 
all POs when existential quantification is done in Equation 3.1c. 

7 Collapsing means that all internal nodes are eliminated in some order. 
For deterministic networks, the order of elimination is immaterial. A more 
general elimination procedure applicable to ND networks is discussed in 
Section 5, but roughly it is the process of substituting a node’s relation into 
its fanouts’ relations. 

simulated in the NS mode, since at each internal ND node i, the 
output, controlled by ip , can take all permissible values. For a 
value of iy  that is not permissible, the function is not defined. 
Thus, it can be easily proved that 

 
1

( , ) ( ( , ))
N

NS
P k k

k

R X Z z G X P
=

= ∃ =∏ . (3.1c) 

3.2 Behavior by NS made Compatible (NSC) 
This kind of simulation logically comes next since its behavior 

contains NS and is contained in SS. The NSC simulation model is 
the same as NS, except that it treats each PO independently, one at 
a time. At the end for each minterm, each PO has a set of values 
obtained. The full behavior for the entire network for that minterm 
is defined as the cross product of all the sets at the outputs. The 
resulting behavior is output-symmetric.  

Since each PO is NS-simulated separately, we can use input 
determinization, as with NS, but each output can be converted into 
a separate relation to obtain a set of compatible relations:  

 ( , ) ( ( , ))= ∃ =NSC
k k P k kR X z z G X P  (3.2) 

for each PO, 1, ,= !k N . This increases the behavior over NS 
since the existential quantification of P is done independently at 
each PO; there is no correlation between POs. Equation (3.2) 
represents a behavior called NSC-behavior. Thus, if there is only 
one PO, then NS and NSC are the same.  

Compared to NS, NSC is relatively easier to compute. 
Theorem 3.1: The NSC-behavior is equivalent to collapsing the 
network in reverse topological order. 

Proof. The proof is by induction in reverse topological order. 
According to Equation 3.1b, the relation at the output of each 
node in the network is the same whether the relation is 
determinized first, followed by existential quantification of the 
pseudo-inputs, or left alone.  

Assume that after n steps of elimination in reverse topological 
order, the relation at each PO k also has this property; it is the 
same, whether input determinization is used or not. Let ( , )n

k k kR Y z  
be the relation at PO k after the n steps with no input 
determinization. The next node to be eliminated, fans out only to 
PO nodes (since elimination is in reverse topological order) and, 
in particular, suppose to node k. Elimination of node i into fanout 
k yields, 

( , ) ( , )∃
i

n
y i i i k k kR Y y R Y z . 

On the other hand, with input determinization, we get  
( , , ) ( , , )n i i

n n
p y i i i i k k kP

R Y p y R Y P z∃ ∃ ∃ " "  

where ( , , )i i i iR Y p y"  is the determinization of ( , )i i iR Y y  using the 
pseudo-input ip , and Pn is the vector of pseudo-inputs introduced 
in the first n nodes eliminated. Interchanging the quantifiers, using 
(3.1b) and the induction hypothesis, 

( , , ) ( , )n
n n n
k k k k k kP

R Y P z R Y z∃ =" , we get at output k the same result 
as eliminating yi in fanout zk. Thus, by induction, collapsing an 
output in reverse topological order is the same as introducing 
pseudo-inputs, collapsing that output and then eliminating the 
pseudo-inputs. Since input determinization followed by collapsing 
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provides the NSC-behavior, collapsing reverse topological order 
also does the same.  

Q.E.D.  
Theorem 3.1 reveals that input determinization is not necessary 

if NSC-behavior is used. Another property (not proved here) is 
that collapsing in reverse topological order yields the smallest 
output-symmetric relation that contains the NS behavior of the 
network. Since collapsing is a relatively straight-forward 
operation, NSC is an easy-to-compute over-approximation of NS. 
The output-symmetric property makes it easy to use since each 
PO can be represented separately in the computations. 

An easy way to view NSC behavior is to consider the fanin cone 
of each PO output as being cut away from the network and 
simulated independently by NS. The set of values of an internal 
node during NSC simulation by a PI vector Xm  is exactly the set 
of values that the node can assume during NS, since for any PO, 
this set is the same.  

The difference between NS and NSC is that NSC simulation of 
the whole network allows different fanouts of an internal node i to 
have different values propagated to their fanouts during the same 
simulation cycle as long as these values propagate along paths to 
different POs. If the fanouts of node i go ultimately to different 
POs, then NSC has the effect that different values may appear on 
the fanouts of i during the same simulation round. 

Let image be the set of all possible assignments of some set of 
internal variables under all possible PI minterms Xm . We observe 
that the image for set of fanins Yi of a node i is the same for both 
the NSC and NS models since NSC is simply NS done each output 
at a time. This observation is used later in computing the 
flexibility of a node.  

The next theorem will be useful reducing the size of a network 
and will help in proving some later results. 
Theorem 3.2: The NS and NSC behaviors of a network are not 
changed by eliminating a deterministic node. 
Proof. Let N denote the original network and N"  the result of 
eliminating a deterministic node i into node k. Suppose, in an NS 
simulation, node i produces value id  in N. Let kY"  be the set of 

fanins of node k in N" . Under this simulation, the values kD"  of 
ˆ( \ )k k i i k iY Y y Y Y Y= ∪ ≡ ∪"  are the same in N and N" . Since 

( , ) ( , ) ( , )
ik k k y i i i k k kR Y y R Y y R Y y= ∃" " " "  and ( , )i i iR Y y  is deterministic, 

then  
ˆ ˆ ˆ( , ) ( , ) ( , , ) ( , , ) ( , , )k k k i i i k k i k k k i k k k i kR D y R D d R D d y R D d y R D d y= = =" " " " "

Thus the values of  and k ky y"  are the same in both networks 

proving that all values in N and N"  are the same. 
Since NSC is NS performed one output at a time, and the NS-

behavior is unchanged, then the NSC-behavior is unchanged, too.  
Q.E.D. 

3.3 Behavior by Set Simulation (SS) 
The last simulation considered is set simulation, which was 

inspired by several concepts from classical logic synthesis. One is 
ternary-valued simulation, used in testing and timing analysis. 
The third value, X, represents the set of values {0,1}. We will 
prove that SS-behavior contains the other two types of behavior. 

Set simulation is performed as follows. Every signal will be 
assigned a set value instead of a single value. The simulation 
starts at the PIs. For each PI minterm mX to be simulated, PI xk is 
assigned the singleton set {( ) }X km . The simulation proceeds in 
topological order. The next node to be evaluated then has each of 
its fanins assigned a set of values. The output of the node is the set 
of all values possible under all inputs in the cross-product of the 
input sets. For example, suppose each input has a set of values, 

ki
S . The output of a node i is evaluated as the following set, 

1 2 | |
{ | ( , ) 1, }

Yii i i i i i iS v R V v V S S S= = ∈ × × ×! . 

Each fanout edge i j→  is assigned the set iS  and the 
computation continues in a topological order. When the sets for 
all POs have been computed, the cross product of the PO sets 
forms the set of minterms { Zm } allowed for Xm . Such a pair 
( , )X Zm m  is in the SS-behavior of the network.8 

The SS-behavior is an output symmetric relation since it is 
formed as the cross-product of sets obtained at the POs. Thus, it 
can be represented by a set of independent single output relations, 
one for each output.9 Similar to NSC, a key advantage of SS is that 
the network can be manipulated as a network of single-output MV 
nodes. In contrast, NS-behavior leads either to multi-output nodes 
and MV Boolean relations at these nodes, or leads to introducing a 
potentially large number of pseudo-inputs, which eventually need 
to be quantified out. 

3.3.1 Binary Interpretation 
A useful way to view SS-behavior is to consider the ND 

network as a set of binary deterministic nodes, one for each i-set 
of each MV node in the network. For example, a node j with 3 
values has a 0-set, a 1-set and a 2-set. Each is represented by an 
MV-input binary-output SOP (MVSOP). In the binary network 
interpretation, each internal MV signal and each PO is replaced by 
a bundle of binary signals, one for each i-set. Each literal in any 
MVSOP is converted to a sum of binary literals, e.g. 

{1,3,5}
1 3 5= + +y y yy b b b , where y

jb  is the binary signal controlled by 
the jth i-set of y; it is 1 whenever y = j and 0 otherwise. This 
resulting network is deterministic and can be manipulated like any 
other Boolean network.10  
Theorem 3.3: The SS-behavior of an ND network is obtained by  
1. treating each i-set as a separate binary function,  
2. collapsing the network (in any order), and  
3. merging the appropriate sets of binary outputs to form the MV 

outputs. 

                                                                 
8 Set simulation is similar to ternary simulation where values 0,1,X are 

propagated. X stands for the set {0,1}. Using X is similar to propagating 
the set of both values. The truth table for each gate is made conservative; a 
logic function produces X only if the vector of inputs with non-X values 
can determine the output value unambiguously, i.e. they are a controlling 
set. It is easy to see that this is the same as selecting inputs minterms from 
the cross product of the input sets and producing, as the output set, all 
values that can be obtained this way. 

9 Hence each output can be represented by its deterministic i-sets. 
10 The PI are still MV, but could have been converted in a similar 

manner to binary signals. It was not done here because it is not necessary 
for the arguments. 
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Proof. To show that the behavior of the original MV ND 
network and the resulting binary network is the same, we show 
that any PI/PO combination of minterms appearing in one of them 
can also appear in the other.  

Suppose the PI minterm mx was applied to the original network 
and produced the PO minterm mz. Suppose each internal node j 
has the value set {si}. If some value v belongs to {si}, it means 
that this value was produced by node j under the given 
combination of the node inputs, using the SS model. This means 
that the sets of allowed values at the inputs of node j contain an 
input minterm, for which the v-th i-set of node j takes value 1. 
According to the construction of the binary network, in this case, 
the v-th binary output of node j will also produce value 1. Thus, 
for each node, the binary network will have the corresponding 
combination of variables at each internal node. In particular, the 
outputs of the binary network will contain a minterm, which 
corresponds to the minterm of the original network. 

The proof in the other direction is similar. 
Q.E.D.  

Theorem 3.3 leads to a very efficient way of computing the SS-
behavior of a network and corresponds to the implementation 
done in MVSIS. 

3.3.2 Elimination in Topological Order 
Like NSC, SS-behavior can be computed by collapsing the 

network, but in a different order.11 We will discuss later why SS is 
easier to compute than NSC even though each is related to 
collapsing the network. 
Theorem 3.4: The SS-behavior of a network is exactly that 
obtained by eliminating the nodes in topological order. 

Proof. We prove first that eliminating one node i into another j 
has the same effect as creating a new copy of i, say ij and 
assigning the fanout i j→ to this copy, i.e. i j→  is eliminated 
and ij j→  is created. Let the relation of the copy be ( , )i i ijR Y y . 

Then eliminating this leads to ˆ( , ) ( , ) ( , )
ijj j j y i i ij j j jR Y y R Y y R Y y= ∃" "  

where ˆ
jY  is the same as jY  but with iy  replaced with ijy . This is 

the same as ( , ) ( , )
iy i i i j j jR Y y R Y y∃ , i.e. that of eliminating i into j. 

Since the nodes are eliminated in topological order, at each 
elimination step, all fanins of the node i to be eliminated next, are 
PIs. The elimination results in a new relation 

( , ) ( , ) ( , )
ij j j y i i j j jR Y y R X y R Y y= ∃" "  

where i jy Y∈ . Since this is done independently at each fanout of 

iy , the effect is to make a different “copy” of ( , )i iR X y  for each 
of its fanouts. Although the “copies” are simulated with identical 
PI input values, if i is an ND node, the effect on relations 

( , )j j jR Y y" "  is as if each fanout of iy  receives an independent set 
of values. This is precisely set simulation where a set is broadcast 
to each fanout but there is no correlation about how the values in 
each of the sets are used in the next node. Thus the behavior of the 
network is preserved when iy  is eliminated. It follows that 

                                                                 
11 This illustrates a difference between ND and deterministic networks, 

where for the latter, one gets the same behavior independent of the order in 
which internal nodes are eliminated. 

eliminating nodes in topological order preserves the network’s SS-
behavior.  

Q.E.D. 
The same effect can be obtained by unfolding the network; in 

reverse topological order, each multiple fanout node is duplicated 
where each copy has exactly one fanout. When an ND node is 
encountered in this process, each fanout has a unique path to some 
PO. Since eliminating the ND node is the same as making a copy 
for each fanout, the effect that an ND node can have on the SS-
behavior is directly related to the set of all paths from the ND 
node to the POs. This observation often provides good intuition 
about SS-behavior. 

3.3.3 Scattered Simulation 
It is possible to come up with other ways of simulating the ND 

network leading to other behaviors. Another simulation, which we 
studied, is briefly described in this section. We mention it here to 
illustrate other simulation possibilities. 

“Scattered” simulation is seemingly related to SS,. In contrast to 
SS, which propagates a subset of output values for all fanouts, 
scattered simulation chooses randomly only one value for each 
fanout. Thus, each fanout can have a different value in the same 
simulation round, unlike NS which has the same value for all 
fanouts (also chosen randomly). It might seem that this 
independent random choice on each fanout would have the same 
effect as propagating the set of values.  

 
Figure 1. An ND network used for illustration. 

Example. The network in Figure 1 illustrates that SS and 
scattered simulation are different. The two-input node on 
the right is an XOR gate while the left-most node is a 
single-input ND node, producing 0 when its input is 0 and 
{0,1}, when its input is 1. Under scattered simulation, for 
any input, the output of the circuit is 1. Under SS, for 
input 1, the output is the set {0,1}. Note that the buffer 
plays an important role in this example. If the buffer is 
removed, the two fanouts of the ND node could receive 
different values during scattered simulation, which will 
make the total behavior the same as in the case of SS. 

 
Scattered simulation gives a behavior between NSC and SS, 

NSC SCAT SS⊆ ⊆ , but it is not clear how to compute the 
corresponding behavior, nor does it appear to be useful in 
practice. We do not consider scattered simulation in the rest of the 
paper. 

3.4 External Specification 
A network’s external specification provides the set of allowed 

network behaviors as observed from the outside; any behavior of a 
synthesized network should be well-defined and be contained in 
the specification. The specification can be output-symmetric 
(composed of independent relations for each output, which are 
similar to compatible don’t cares) or general (an MV-Boolean 
relation relating all outputs at once). Another situation of an 
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external specification is related to hierarchical specification and is 
discussed in Section 9. Some operations on an ND network can 
change some or all of its B-behaviors. Any decrease in behavior is 
always allowed as long as it remains well-defined, but an increase 
is not allowed if it is not contained in the specification. Thus the 
specification provides the upper bound while well-definedness 
provides the lower bounds. 

Output-symmetric specifications are easier to use, since they 
can be stored individually for each output, e.g. as a set of binary-
output i-set functions. Such specifications occur when compatible 
don’t cares are given for each PO. Non-output-symmetric 
specifications may require a single global Boolean relation, 
relating all inputs and outputs, which can easily become too large. 
Although Boolean relations can be determinized using pseudo-
inputs and, therefore, stored individually at each output, many 
pseudo-inputs might be required, making this representation 
cumbersome. If the external specification is not output-symmetric, 
an option is to under-approximate it with an output-symmetric 
relation; this leads to a sound but conservative approach. 

We saw that NSC-behavior can be defined in terms of NS-
behavior: ( , ) ( , , )= ∃NSC NS

k k P k kR X z R X P z . Thus, NS-behavior is 
contained in NSC-behavior. Also, NSC is a subset of the SS-
behavior, since in NSC some copies of ND relations, which lead 
to the same PO, are kept correlated (by the parameters P) during 
the collapsing process. On the other hand, with SS, all correlations 
between different fanouts of an ND node are lost when the node is 
eliminated since independent copies are made. Defining for the 
entire network,  

( , ) ( , )NSC NSC
k k

k PO

R X Z R X z
∈

≡ ∏ , 

we have the observation that 
 ( , ) ( , ) ( , )⊆ ⊆NS NSC SSR X Z R X Z R X Z . (3.3) 

In Section 4, it is shown that this ordering has the reverse effect 
on a node’s optimization potential since any behavior is checked 
for containment in the external specification. Then, for example, 
if SS-behavior is used, it is larger and harder to contain.  
Therefore, use of SS behavior would lead to less flexibility in 
implementing a node that if NSC of NS behavior were used. 

3.5 Additional Observations 
A parallel development [34] discusses equivalence checking for 

incomplete binary-valued designs. They treat multiple output 
nodes and introduce two types of simulations. 

The first type, called Z-simulation, treats the node as completely 
unspecified and effectively replaces all outputs of a multi-output 
node by a single output. Then, the simulation proceeds as X-
simulation (or ternary-valued simulation), which is equivalent to 
SS-simulation for binary circuits. This is conservative because 
ternary simulation is used and the multiple outputs are replaced by 
a single one.  

The second type of simulation, called iZ -simulation, treats each 
output i of a multi-output node separately and introduces a 
corresponding value iZ . In addition, a correlation is kept, unlike 
X-simulation. For example, if both inputs of an XOR gate have 
value iZ , the output of the XOR is 0. iZ -simulation is the same 
as that obtained by, 

1. replacing each output by a node i  and  
2. introducing pseudo-inputs ip  for each of the nodes to 

“input-determinize” it (as in Section 3.1.1),  
3. setting the node function to be i iX p= .  

iZ -simulation is a limited form of NS-simulation because each 
signal is binary and the only form of non-determinism is to have 
nodes that are a don’t-care for all input minterms. Thus, Z-
simulation is a form of SS-simulation, and iZ -simulation is a form 
of NS-simulation. Recently these two types of simulation were 
applied to CTL model checking [26][28].  

All behaviors can be viewed from the point of view of 
quantifying out internal variables in different orders.  

1. NS: conjoin all relations and existentially quantify all 
internal variables: 

 internal
( , )

i
j j jy

j

R Y y
∈
∃ ∏ . 

2. NSC: intermix the products and existential 
quantifications independently for each output cone, so 
that the quantifications are done in reverse topological 
order. Thus the same variable may be quantified several 
times. 

3. SS: intermix the products and existential quantifications 
independently for each output cone, so that the 
quantifications are done in topological order. The same 
variable may be quantified several times. 

Finally, we prove some additional useful results. 
Theorem 3.5: If every node in a network is well-defined then the 
network is well-defined. 

Proof. A network is well-defined if for each PI minterm Xm , 
there exists at least one PO minterm Zm  such that 

( , ) ( , )∈ B
X Zm m R X Z . Since ⊆ ⊆NS NSC SSR R R , it is only 

necessary to prove that NSR  is well-defined. For this, we 
determinize the network by introducing pseudo-inputs P. This 
deterministic network is well-defined as a function of the input 
variables (X,P) because all internal nodes are well-defined. 
Therefore collapsing the network creates well-defined output 
nodes, which are functions of X and P only. This network has the 
NS-behavior of the original network, so the original is well-
defined.  

Q.E.D. 
Theorem 3.6: For an ND leaf-DAG12 network, the NS, NSC and 
SS behaviors coincide. 

Proof. Since a leaf-DAG only one output, the NS and NSC  
behaviors are the same. Since inputs are deterministic and except 
for the inputs the leaf-DAG is a tree, it is easy to see that 
eliminating in topological order and reverse topological order are 
the same (no copies are needed). Hence, the SS-behavior also 
coincides with the NS-behavior. 

Q.E.D. 

                                                                 
12 A leaf-DAG is a single rooted tree except for the leaf nodes which can 

have multiple fanout. 
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4 Node Minimization 

In the next four sections, we will analyze the common network 
operations (node minimization, elimination, and division) and 
study how they may change each of the three B-behaviors of the 
overall network. Section 7 summarizes these results (Table 1). 

Node minimization is a powerful but complicated operation that 
can be used to optimize a network. This operation consists of  
a) deriving a flexibility (don’t cares, for binary circuits) for the 

node being minimized, and  
b) replacing the current logic representation at the node with a 

smaller well-defined one contained in the flexibility.  
We first examine a) how a flexibility is computed for each B-

behavior, and then the changes possible when the current 
representation is replaced by a well-defined sub-relation of the 
flexibility. Step b), finding a minimum well-defined contained 
relation, is the subject of Section 4.3. 

In general, a node flexibility is a non-deterministic relation. 
Figure 2(a) shows the initial function at a node in a multi-valued 
network. The node has two MV inputs with ranges {0,1,2,3} and 
{0,1,2,3,4}, and the MV output with range {0,1,2,3,4,5,6,7}. 
Represented using algebraic notation, the relation is  

{0} {3} {1} {1} {0} {3} {2} {0} {0}

{3} {0,1,2} 1} {4} {3} {0,2,3,4} {5} {1,2} {3}

{6} {1,2} {0} {7} {1,2} {2,4}

                     
            
         

z x y z x y z x y
z x y z x y z x y
z x y z x y

= = =

= = =

= =

 

Using the program MVSIS [25], the maximum flexibility for 
this node in its network was computed, shown in Figure 2(b).  

 
x\y 0 1 2 3 4 
0 2 3 3 1 3 
1 6 3 7 5 7 
2 6 3 7 5 7 
3 4 0 4 4 4 

(a) original multi-valued function at a node in MV-ND network 

 

x\y 0 1 2 3 4 
0 012345 012345 01234567 012345 135 
1 6 135 7 1357 67 
2 6 135 1357 1357 67 
3 024 024 0246 4 012345

(b) maximum flexibility of this node as a non-deterministic 
function 

 
x\y 0 1 2 3 4 
0 5 5 5 5 5 
1 6 5 7 7 7 
2 6 5 7 7 7 
3 4 4 4 4 4 

(c) a possible new function after minimization 
 

Figure 2. Illustration of node minimization using internal 
flexibilities. 

 
Figure 2(c) shows a possible result of node minimization using 

the flexibility. Note that the result reduced the range {4,5,6,7} of 
the node and its table structure is simplified considerably. Using 
algebraic notation, the result is, 

{4} {3} {5} {0} {0,1,2} {1}

{6} {1,2} {0} {7} {1,2} {2,3,4}

          
   

z x z x x y
z x y z x y

= = +

= =
 

Note that using only don’t cares, of which only one occurs at 
(x,y) = (0,2), the function in Figure 2(a) cannot be minimized. 

4.1 Deriving Complete (Maximum) Flexibilities 
For any of the types of behaviors, there exists a maximum one 

in the sense that all other flexibilities of that type are contained in 
it. The computation of the maximum or complete flexibility, CF, 
at a node iy  in an ND network can be described generically for 
the NS and NSC behaviors, since these are similar in many ways. 
The case for SS is more complicated and is described in Section 
4.1.2. 

4.1.1 Flexibilities for NS and NSC 
The following definition is needed to present the computation of 

the complete flexibility (CF) in MV ND networks. 
Definition. The network cut at node i (or cut network) is the 

network derived from the original network by replacing the output 
node i by the new variable yi and adding variable yi as an 
additional (independent) PI iy . 

The computation of the complete flexibility is based on the 
requirement that the B-behavior of the cut network, ( , , )B

iR X y Z , 

complies with the network specification, ( , )specR X Z . The 
( , )iX y  conditions under which this holds is captured in the 
following relation, 

 ( , ) ( ( , , ) ( , ))B B spec
i Z iR X y R X y Z R X Z≡ ∀ ⇒ . (4.1) 

This relation can be called the Observability Partial Cares (OPCs) 
for the node, in analogy with the observability don’t care set for a 
node in a binary network.  

The following theorem proves that this relation is globally 
maximum in the sense that all other valid relations must be 
contained in this one.  
Theorem 4.1: For { , }B NS NSC∈ , ( , )B

iR X y  is maximum, in the 
sense that if a deterministic function ( )=i iy f X  is used to 

replace node i such that ( ( )) ( , )= ⊄ B
i i iy f X R X y , then in the new 

network N" , ( , ) ( , )B specR X Z R X Z⊄" . 

Proof. Suppose there exists a minterm Xm , such that 

( )=
iy i Xm f m , but ( , ) 0=

i

B
X yR m m . Let Zm  be any output 

minterm, such that ( , ) 1B
X ZR m m ="  ( R"  is the B behavior of N" ). 

Since ( )=i iy f X  is deterministic and ( , ) 1B
X ZR m m =" , the cut 

network of N"  also satisfies ( , , ) 1
i

B
X y ZR m m m =" . Since this is the 

same as the original cut network, ( , , ) 1=
i

B
X y ZR m m m . Using this, 

Equation 4.1, and ( , ) 0=
i

B
X yR m m  we get ( , ) 0spec

X ZR m m =  and 

thus the B-behavior of N"  does not satisfy the specification.  
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Q.E.D. 
Note that from Equations 3.3 and 4.1 it follows that,  

 ( , ) ( , )NSC NS
i iR X y R X y⊆ . (4.2) 

 Next we bring in the “satisfiability don’t cares” (SDC) to derive 
a local maximum (“complete”) flexibility (CF). Define 

( , )B
iM X Y  as the relation (or image) between PI minterms and 

vectors of values that the fanin variables of iy , iY , can take 
during B-simulation of the network.13 Using this, the CF is 
computed as 

 ( , ) ( ( , ) ( , ))= ∀ ⇒B B B
i i X i iR Y y M X Y R X y . (4.3) 

Using (4.2) and NSC NSM M= , 
 ( , ) ( , )NSC NS

i i i iR Y y R Y y⊆ . (4.4) 

In general, the CFs, ( , )B
i iR Y y , are ND relations, and since the 

current relation, ( , )i i iR Y y , is well-defined and 

( , ) ( , )⊆ B
i i i i iR Y y R Y y 14, then also ( , )B

i iR Y y  is well-defined. 

In Section 2, it is shown that NS (NSC) allows the current 
relation to be replaced by any well-defined sub-relation of NS-CF 
(NSC-CF). The situation for SS is different. Using Equations 4.1 
and 4.3 with B=SS would also define a type of CF (call it SS’-
CF). Unfortunately, this has the property that even if a 
deterministic function contained in the SS’-CF is used to replace 
the relation at node i, in general the resulting network’s SS-
behavior may not conform to the specification. In the next section, 
Equation 4.1 is modified to obtain ( , )SS

jR X y . When this is used 

with Equation 4.3, ( , )SS
i iR Y y  is obtained (the SS-CF) which has 

the desired property, i.e. it allows any well-defined ND sub-
relation to be used as the new representation of the node with 
conformance to the specification maintained . Thus Equation 4.3 
is common for all three behaviors; it is just Equation 4.1 needs to 
be modified for SS. 

4.1.2 Flexibility for SS 
The problem with Equation 4.1 when used with SS-behavior is 

that, when computing ( , , )SS
j kR X y z  for the cut network, the 

variable yj should represent a set of the output values of node j. 
This is what occurs at the output of node j during SS-simulation of 
the original network. If we were to use Equation 4.1 as it is, the 
cut signal jy  would be treated like any PI and would take only 
one value at a time, not more generally a set of values.  

To correct this, we introduce a set of new binary variables { }jb  
to encode subsets of the domain jD  of jy . For example, if there 

are three values in the domain jD , three binary signals 

0 1 2{ , , }j j jb b b  would be used as additional inputs to the cut network, 
e.g. values (1,0,1) of these variables encode the set of output 

                                                                 
13 Note that  ( , ) ( , )NS NSC

i iM X Y M X Y=  since NSC is just NS done one 
output at a time (see comment in Section 3.2 on images). 

14 This assumes that the current network conforms to the specifications. 
If the B-behavior of the current network does not conform, then 

( , )B
i iR Y y  may not be well-defined (see Theorem 10.1). 

values {0,2}. By cutting the network at jy  and introducing a new 

MV-output node, say jn , with inputs 0 1 2{ , , }j j jb b b  (treated as PIs) 

and with output jy  fanning out to the fanouts of node j, we obtain 

the the possibility of having a set at jy . The node relation at node 

jn , ( , )set j
jR b y , is the relation that translates the 0 1 2{ , , }j j j jb b b b≡  

into subsets of jD . 

Example: (0,1,1,1) and (0,1,1,2) are in 0 1 2( , , , )set j j j
jR b b b y , 

but (0,1,1,0) is not, because (0,1,1) is the encoding of the 
set {1,2}. 

The complete flexibility in the global space is derived as the 
multi-output Boolean relation, relating the global minterms with 
the combinations of variable bj allowed for these minterms: 

( , ) ( ( , , ) ( , ))
k

SS j SS j spec
z k k kR X b R X b z R X z= ∀ Π ⇒ . 

This equation is analogous to (4.1). Relation ( , )SS jR X b  relates 
minterms in the PI space, X , with the allowed subsets of jD . 

Since, for a given minterm Xm , ( , ) ( , )j
SS j

X b
m m R X b∈  may not 

be unique, there may be several maximal subsets associated with 
Xm .  

Example: Consider the circuit in Figure 1 and assume 
that the external specification is constant 1 for all inputs. 
If we compute ( , )SS jR X b  for the single-input node on 
the left, for input 1 there are two possible maximal output 
sets: {0} and {1}. In each case, the output is constant 1. 
However, the set {0,1} does not belong to ( , )SS jR X b . In 
terms of variables bi, {0} = (10) and {1} = (01) are in 

( , )SS jR X b , while {0,1} = (11) is not.  
This is different from that encountered previously, where the set 

output of a node during SS-simulation is unique. To use the 
relation to compute an SS-CF, it is necessary to choose one of its 
maximal subsets, say ( , )SS jR X b" . This choice, combined with 

( , )set j
jR b y   

 ( , ) ( , ) ( , )j
SS set j SS j

j jb
R X y R b y R X b= ∃ "  

thereby transforms the result into a single-output MV relation, 
( , )SS

jR X y . However, because of the choice of the maximal set, 
this may lead to some loss of flexibility. Thus we can’t state a 
result similar to Theorem 4.1 claiming the maximality of the 
result. 

The final step in computing SS-CF is to use Equation 4.3 with B 
= SS. 

4.1.3 Relationship with SDCs 
Satisfiability don’t cares, SDCs, are derived from the transitive 

fanin of a node and are effectively are added via Equation 4.3 in 
those cases where a fanin minterm, 

jYm , cannot appear during a 

B-simulation (assuming the B-behavior) when Xm is applied at the 
PIs. In this case, for fanin minterm 

jYm , the node iy  can be 

allowed to produce any value in the range of jy , and thus such a 

jYm  is a don’t care. Since, in general, ( , )B
jM X Y  is ND, 
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( , )B
X jM m Y  may produce a set of values, 

jYS , and similarly 

( , )B
X jR m y  may produce a set 

jyS  of values for yj. To better 

understand the effect these have, consider Equation 4.3 in double 
complemented form, 

 ( , ) ( , ) ( , )B B B
j j X j jR Y y M X Y R X y= ∃ ∩ . 

The expression under the outer complement relates for each Xm , 

j jY Ym S∈  with the values jyS  not allowed for iy . Then, all the 

pairs ( , )
j jY ym v  that are not so related are put in ( , )B

j jR Y y . Thus, 

increasing ( , )B
jM X Y  (e.g. by making some nodes ND, or 

changing from NS to NSC to SS behaviors) causes two effects;  
1. it decreases the SDC, and  
2. it puts more values in the sets 

jYS thereby increasing the 

pairing of values with jyS  and thus reducing the 
number of pairs in the complement. 

4.1.4 Compatibility 
A classical method of node minimization for binary circuits, has 

been to compute compatible don’t cares (CODCs). The main 
advantage was that these could be computed more efficiently than 
computing maximum don’t cares. Here we discuss compatibility 
for ND networks and relate this to the classical CODC 
computations. This leads to a new method for compatible don’t 
cares in binary networks. 

CODC background: A CODC computation starts at the POs 
and computes a global CODC at each node in reverse topological 
order. Although the CODCs are usually expressed in terms of the 
fanins of the fanout cone for each node j, for purposes of 
comparison, we can assume that the CODCs are computed in 
terms of the cutset (X, jy ). The result is analogous to ( , )B

jR X y . 

When CODCs have been computed for all nodes, a forward 
traversal is made in topological order, to compute the local don’t 
care at each node. Then, this is used to minimize the node 
function. The local don’t care computation derives the image of 
the complement of the CODC for that node into the local fanin 
space and thereby derives the local care set of the node. Note that, 
unlike ND networks, the image computation is done for a 
deterministic network.  

The computation of the global CODCs guarantees compatibility 
of the resulting CODCs [5]. Compatibility means that each node 
can be changed within the CODC flexibility without changing the 
validity of the other CODCs. As a result, the CODCs of other 
nodes do not have to be recomputed when a node changes. 
However, compatibility holds only for the global CODCs, since 
the local DCs are based on an image computation. The image 
depends on the node representations in the fanin cone at the time 
of the computation. Thus, if a node changes in the fanin cone, it 
may change the local DC of the node. Thus local DCs are not 
compatible. 

CODCs in Binary ND Networks: A mechanism for computing 
compatible local DCs has never been developed. Using the theory 
developed for ND networks, a method to compute compatible 
local DCs (CLDCs) can be proposed. In this, the global CODCs 
(GODCs) are computed (for a binary circuit) at each node. Then, 

each node is visited in some order and the following computation 
is performed: 

( , ) ( ( , ) ( , ))B B
i i i X i iCL Y y M X Y GODC X y= ∀ ⇒  

Note that this is the same computation as discussed in Section 4.x 
except that the GODC of the node is used in place of the 
maximum global flexibility, ( , )B

iR X y . The GODC acts like the 
specification for the output of the node. This computation yields 
an ISF (binary case) which is used to replace the function at node 
i. At the instant when a  node is visited, some of its TFI may hve 
been replaced by an ISF (i.e. ND relations). Thus, the 
computation of BM , which is an image computation, takes this 
into account. When all the nodes have been visited, the ISFs at the 
nodes form a set of compatible local don’t cares (CLDCs) because 
the non-determinism of the nodes in the TFI of a node at the time 
when its CL was computed was accounted for during the image 
computation of BM . Thus, at this point, any node can be changed 
within its CL, while the network as well as all the other CLs 
would remain valid.  

It should be noted that computing the B-CFs (or CLs) and 
leaving them at the nodes reduces the amount of flexibility left for 
other nodes. Like any CODC computation it is is order dependent; 
the nodes whose CLs are computed at the beginning will have 
larger CLs than those computed later. Therefore, flexibilities are 
computed and deposited at the earlier nodes “at the expense” of 
the flexibilities at the later nodes.  

In the above scenario, we computed a CL for a node and used it 
to replace the node function. Note that the same could be done for 
computing and leaving the B-CF at any node. In either case, 
compatibility can be seen as a way of reserving flexibility for later 
use. Once a node is replaced by a non-deterministic relation (in 
either the binary or MV case) subsequent computations must 
honor this and guarantee that whatever is done, should be valid for 
all choices of this non-determinism.  

4.2 Using Different Flexibilities 
In this section, we discuss how the flexibility may be used for 

the various CSs, both local and global, for the three types of 
simulation. In all cases, we use N to denote the original network, 
and N"  to denote a network created from N by replacing the node 
relation at j by a new relation contained in a flexibility. Relations 
for N will be denoted by R and relations for N"  will be denoted 
by R" . The terminology B-conforms is used if the B-behavior of a 
network is contained in the specification, i.e. 

( , ) ( , )B specR X Z R X Z⊆" . In this case, the network is said to be 
compliant. We also provide some comments on our experience 
with the practical implementation of the various flexibility 
computations.  

Note that many of the theorems below have very similar 
statements and sometimes, similar proofs. However, there are 
subtleties that cannot be handled by stating that the proof is 
similar for that case. For completeness and accuracy, we include 
all the theorems and proofs, since this manuscript is meant to be a 
reference source for the theory. 
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4.2.1 NS Behavior 
Theorem 4.2 discusses the case for the global NS-CF and 

Theorem 4.3 the case for the local NS-CF. The theorems in the 
next three subsections discuss the legitimacy of replacing any 
node relation by any well-defined sub-relation contained in a CF. 
For each behavior we discuss this first for the global CF and then 
the local CF. 
Theorem 4.2: If a well-defined ND relation contained in global 
NS-CF, ( , )NS

jR X y , replaces the relation at node jy , and the 

original network NS-conforms, then the resulting network N" also 
NS-conforms. 

Proof. Suppose ( , )NS
jR X y  is used to replace the relation at 

jy  and assume there exists a minterm Xm , which produces an 

output Zm  i.e. ( , ) 1NS
X ZR m m ="  but ( , ) 0spec

X ZR m m = . Let jv  be 

a value obtained for jy  in N"  during NS-simulation when 

( , )X Zm m  appears at the PIs and POs. Thus, ( , ) 1NS
X jR m v =  and, 

for the cut network, ( , , ) 1NS
X j ZR m v m = . Using  

 ( , ) ( ( , , ) ( , ))NS NS spec
j Z jR X y R X y Z R X Z≡ ∀ ⇒ , 

we get ( , ) 1spec
X ZR m m = , which is a contradiction. It follows also 

that any well-defined sub-relation of ( , )NS
iR X y  keeps the 

network compliant.  
Q.E.D. 

Note that this theorem says nothing about the case where 
( , )NS

jR X y  is not well-defined, which could happen if the 
original network does not conform with respect to NS-simulation 
(see Theorem 8.1, which shows how use of various flexibilities 
can cause the network to conform anyway). 
Theorem 4.3: If a well-defined ND relation contained in local 
NS-CF, ( , )NS

j jR Y y , replaces the relation at node j, and the 

original network NS-conforms, then N" , NS-conforms.  

Proof. Let N"  be the network with the relation at node j 
replaced by ( , )NS

j jR Y y . Suppose for some Xm , there exists Zm   

such that ( , ) 1NS
X ZR m m ="  but ( , ) 0spec

X ZR m m = . Let 
jYm  and 

jym  be a pair produced during NS simulation when Xm  is applied 

to N"  and Zm  is the output. Then ( , ) 1=
j j

NS
Y yR m m  and 

( , ) 1=
j

NS
X YM m m . From Equation (4.3),  

( , ) ( ( , ) ( , ))NS NS NS
i i X i iR Y y M X Y R X y= ∀ ⇒ , 

which implies that ( , ) 1=
j

NS
X yR m m . Since the two networks cut 

at jy  are the same and ( , , ) 1
j

NS
X y ZR m m m =" , then 

( , , ) 1
j

NS
X y ZR m m m =  . Since 

 ( , ) ( ( , , ) ( , ))NS NS spec
j Z jR X y R X y Z R X Z⇒∀ ⇒ , 

then ( , ) 1spec
X ZR m m = . This is a contradiction, and hence no 

violation can exist. Clearly, if the relation at j is replaced by any 

well-defined sub-relation of ( , )NS
j jR Y y , the non-violation still 

holds.  
Q.E.D. 

Comments on the Computation with NS 
The computation of ( , )NS

jM X Y  can be done efficiently by an 
image computation using input and output cofactoring [12]. After 

( , )NS
i iR Y y  is minimized, a new minimum well-defined sub-

relation is inserted at the node. If the minimized relation is ND, 
then a new pseudo-input needs to be introduced if NS-behavior is 
used during the synthesis process. As the manipulation continues, 
the set of pseudo-inputs, Q, may be different from those P  of the 
original network. Checking that the new network conforms to its 
specification requires verifying that  

 ( , ) ( ( , )) ( , )NS spec
Q k k

k

R X Z z R X Q R X Z≡ ∃ = ⊆∏" . 

Thus, the verification problem would seem to be a difficult one, 
since two Boolean relations, each relating all PI to all PO, must be 
compared.  

Even though we have not tested this in an implementation, we 
sketch here how the verification problem can be solved using 
Boolean satisfiability for binary networks as shown, for example, 
in [19]. Further experiments might make the use of NS more 
competitive in practice.  

To construct the SAT instance, convert N"  and the specification 
into deterministic binary networks composed of the nodes 
representing i-sets of MV nodes of N"  and the specification, as 
described in Section 3.3.1. Represent the binary networks as it is 
done for SAT-based verification [3], but for each pair of the 
corresponding outputs use an AND gate with a complemented 
input, to express the containment of values sets and a final AND 
gate. It can be shown that this formulation of the verification 
problem corresponds to verifying the containment of NS 
behaviors. By applying this procedure separately to the logic 
cones of the corresponding output pairs, the containment of NSC 
behaviors can be checked. 

Example. Consider the network in Figure 1 with the 
specification equal to the constant 1 Boolean function. 
Suppose the ND node is a black box and we are 
computing the NS-CF for this box. (The NSC-CF is the 
same as NS-CF because the network has only one output.) 
The NS-CF of the box is the relation producing values 
{0,1} for any input because no matter what is the output 
of the black box, with NS only one value is propagated 
along both fanins of the EXOR gate. Since one of the 
fanins complements the value, the output value of the 
EXOR gate is always 1 and hence contained in the 
specification.  

4.2.2 NSC Behavior 
Theorem 4.4: If a well-defined ND relation contained in  the 
global NSC-CF, ( , )NSC

jR X y , is inserted at node j, then 

( , ) ( , )NSC spec
k kR X z R X z⊆" , for all ( )k TFO j∈ .  

Proof. Consider the network N" , where the relation 
( , )NSC

jR X y  replaces the old relation at node j. The NSC-
behavior of this network can be obtained by collapsing in reverse 
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topological order. Because the new node j has only PI fanins X,15 
it can be eliminated last. When node j is about to be eliminated, 
the relation at each fanout is ( , , )k j kR X y z , which is the same as 

for the cut network, ( , , )NSC
j kR X y z .  Eliminating yj yields 

 ( , ) ( , ) ( , , )
j

NSC NSC NSC
k y j j kR X z R X y R X y z= ∃" . 

On the other hand, using Equation 4.1, 
( , ) [ ( , , ) ( , )]NSC NSC spec

j j k kR X y R X y v R X v⇒ ⇒  

for any value kv  in the range of kz . Thus 

 ( , ) ( , , ) ( , )NSC NSC spec
j j k kR X y R X y v R X v⇒ . 

Since this holds for any value that jy  can take, and kv  is an 

arbitrary value for kz , then ( , ) ( , )NSC spec
k kR X z R X z⇒" .Since this 

holds for any PO in TFO(j), N"  is NSC-compliant for those 
outputs. Clearly, if any well-defined sub-relation of ( , )NSC

jR X y  
is put at node j, the same statement holds.  

Q.E.D. 
  Note that the statement Theorem 4.4 only specifies compliance 

for the POs in the TFO(j) . If at the other POs we had compliance 
in N, then N"   is compliant. Now we prove a similar theorem for 
the local CF.  
Theorem 4.5: If a well-defined ND relation contained in local the 
NSC-CF, ( , )NSC

j jR Y y , is inserted at node j, then 

( , ) ( , )NSC spec
k kR X z R X z⊆" , for all ( )k TFO j∈ .  

Proof. Consider the network N" , where the relation 
( , )NSC

j jR Y y  is placed at node j. Suppose for some Xm , there is a 

violation for N"  at some PO kz  in TFO(j) such that 

( , ) 1
k

NSC
X zR m m ="  but ( , ) 0

k

spec
X zR m m = . Let 

jYm  and 
jym  be a 

pair produced during NS-simulation when Xm  is applied to N"  

and when 
kzm  is the output at kz . Then ( , ) 1=

j j

NSC
Y yR m m  and 

( , ) 1
j

NSC
X YM m m = . These imply that ( , ) 1=

j

NSC
X yR m m , since  

( , ) ( ( , ) ( , ))NSC NSC NSC
i i X i iR Y y M X Y R X y= ∀ ⇒ . 

Since the two networks cut at jy  are the same and 

( , , ) 1
j k

NSC
X y zR m m m =" , then ( , , ) 1=

j k

NSC
X y zR m m m  . Since 

 ( , ) ( ( , , ) ( , ))
k

NSC NSC spec
j z j k kR X y R X y z R X z⇒∀ ⇒ , 

then ( , ) 1
k

spec
X zR m m = . This is a contradiction and hence no 

violation can exist at any PO in TFO(j). Clearly, if the relation at j 
is replaced by any well-defined sub-relation of ( , )NSC

j jR Y y , the 
non-violation still holds. Q.E.D. 
 
Comments on the Computation with NSC 

NSC-behavior is computationally easier than NS, since it is 
equivalent to collapsing in reverse topological order, and hence 
there is no need for introducing pseudo-inputs. Alternately, it is 

                                                                 
15 Its relation is ( , )NSC

jR X y . 

possible to perform collapsing in forward topological order, if 
some additional manipulations were done.  

For each ND node, η , with reconvergent fanout, the i-
sets in the fanout cone are computed by forward 
collapsing as global functions in terms of the PI and 
temporary (pseudo-input) MV variables representing the 
ND nodes in TFI(η ). When the forward collapsing 
reaches the final re-convergence point of η  (called the 
assembly point of η ), it is possible to eliminate yη  in the 
global relation of the assembly node by substituting 
instead of  yη the i-sets of η  expressed in terms of the PIs 
and other temporary variables. The temporary variable is 
used to synchronize the behavior of the ND node along 
the reconvergent paths. The resulting behavior is 
compatible with the NSC model.  

This procedure was implemented, but so far it has not been 
successful in making NSC computations competitive with SS. The 
difference shows when the network has many ND nodes. In this 
case, the NSC computation requires using many intermediate 
pseudo-inputs while SS computation can be performed without 
them and is, therefore, more efficient. 

Another problem is the following. In computing and using the 
NSC-CF, a comparison to ( , )specR X Z is required. If this is given 
as a Boolean relation, it is best to project the specification to an 
output-symmetric form a priori, by computing ( , )spec

kR X z  such 

that ( , ) ( , )⊆∏ spec spec
k

k

R X z R X Z . The computation for the 

observability partial cares at a node then becomes, 

1

( , ) ( ( ( , , ) ( , ))).
k

N
NSC NSC spec

j z k j k k
k

R X y R X y z R X z
=

= ∀ ⇒∏  

Note that in computing ( , )NSC
j jR Y y , we can use the fact that 

( , ) ( , )=NS NSC
j jM X Y M X Y  and well-known image computation 

techniques can be used. 

4.2.3 SS Behavior 
Theorem 4.7: Let ˆ ( , )SS jR X b  be any well-defined deterministic 
relation contained in global SS-CF ( , )SS jR X b . If this is inserted 
to the input to ( , )set j

jR b y  at node j, the new network N"  satisfies 

( , ) ( , )SS spec
k kR X z R X z⊆" , for all ( )k TFO j∈ . 

Proof: Let ˆ ( , )SS jR X b  be the relation used at the jb  inputs to 
create N" . Assume there exists a minterm Xm , which produces an 

output Zm  i.e. ( , ) 1
k

SS
X zR m m ="  for all ( )k TFO j∈  but 

( , ) 0
k

spec
X zR m m =  for some output ( )k TFO j∈ . Let jv  be the 

value16 obtained for jb  in N"  during SS-simulation when 
( , )

kX zm m  appears at the PIs and POs. Thus, ˆ ( , ) 1SS j
XR m v =  and, 

for the cut network, ( , , ) 1
k

SS j
X zR m v m = . Using  

                                                                 
16 We do not get a set value during SS-simulation, since ˆ ( , )SS jR X b is 

deterministic. 
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 ˆ ( , ) ( ( , , ) ( , ))
k

SS j SS j spec
z k k kR X b R X b z R X z⊆ ∀ Π ⇒ , 

we get ( , ) 1
k

spec
X zR m m = , which is a contradiction. It follows that 

any well-defined deterministic sub-relation of ( , )SS jR X b  keeps 
the network SS-compliant for those POs in TFO(j).  

Q.E.D. 
Theorem 4.8: Assume that for the current node relation  

( , ) ( , )SS
j j j jR Y y R Y y⊆ . If any well-defined sub-relation of 

( , )SS
j jR Y y  is put at node j, then for all ( )k TFO j∈ , 

( , ) ( , )SS spec
k kR X z R X z⊆" .  

Proof: Suppose ( , )SS
j jR Y y   is used at node j. We will show that 

N"  satisfies the specification at POs ( )k TFO j∈  for any PI 

minterm Xm . Let  
kzS"  be the set at output ( )kz TFO j∈  obtained 

during SS-simulation of N"  under Xm . Thus ( , ) 1
k

SS
X zR m S ="" . 

Let 
jYS  be the set of vectors obtained at the fanins jY  of node j 

under input Xm . Thus ( , ) ( , ) 1
j j

SS SS
X Y X YM m S M m S= =" , since 

this is the same sub-network in both  and N N" . Let 
jyS"  be the set 

output at node j in N" ; thus ( , ) 1
j j

SS
Y yR S S =" . Since 

( , ) ( ( , ) ( , ))SS SS SS
j j X j jR Y y M X Y R X y= ∀ ⇒ , 

in particular, it holds for Xm  and thus  

( , ) ( ( , ) ( , ))
j j j j

SS SS SS
Y y X Y X yR S S M m S R m S= ⇒" " . 

Thus ( , ) 1
j

SS
X yR m S =" . Let jb

m"  be the binary encoding for 
jyS" , 

i.e. ( , ) 1j j

set
yb

R m S ="" . Using  

( , ) ( , ) ( , )j
SS set j SS j

j jb
R X y R b y R X b≡ ∃ , 

and the fact jb
m"  is the unique encoding for the set 

jyS" , we have  

1 ( , ) ( , ) ( , )j jj j

SS set SS
X y y Xb b

R m S R m S R m m= =" "" "  

or ( , ) 1j
SS

X b
R m m =" .  

In N, let 
jyS  be the set obtained at node j  using SS-simulation 

under PI Xm  and 
kzS  be the set obtained at output kz ; thus 

( , ) 1
k

SS
X zR m S = . Let jb

m  be the encoding of 
jyS ; thus 

( , , ) 1j k

SS
X zb

R m m S = . Now observe that if the set corresponding 

to jb
m   is contained in the set corresponding to jb

m" , then 

( , , ) ( , , )j j
SS SS

X k X kb b
R m m z R m m z⊆ " . 

Since ( , ) ( , )SS
j j j jR Y y R Y y⊆ , then 

j jy yS S⊆ "  and thus 

( , , ) 1j
k

SS
X zb

R m m S ="" . Using   

( , ) ( ( , , ) ( , ))
k

SS j SS j spec
z k kR X b R X b z R X z≡ ∀ ⇒ , 

we have, 

( , ) ( ( , , ) ( , ))j j
k k

SS SS spec
X X z X zb b

R m m R m m S R m S= ⇒" "" " . 

Since ( , , ) 1j
k

SS
X zb

R m m S =""  and ( , ) 1j
SS

X b
R m m =" , then 

( , ) 1
k

spec
X zR m S =" . Hence N satisfies the specification for any 

minterm mX and any output ( )kz TFO j∈ . In addition, if any 

relation ( , ) ( , )SS
j j j jR Y y R Y y⊆"  is put at node j it can only 

decrease the output set 
kzS"  at kz , and therefore the specification 

will also continue to hold.  
Q.E.D. 

Comments: Unlike ( , )SS
jR X y , well-defined ND sub-relations of 

( , )SS
j jR Y y  can be used at node j. Also the computation for the 

modification required for the correct SS-CF (in contrast with 
using Equation 4.1 directly), gives a smaller flexibility, since the 
SS-CF requires that the network specification be satisfied under a 
larger set of values at the outputs.  

Example. Consider the network in Figure 1 with the 
specification equal to the constant 1 Boolean function. 
Suppose the ND node is a black box and we are 
computing the SS-CF for this box. The SS-CF is the 
multi-output relation R(x,b0,b1) where b0 and b1 are two 
binary outputs representing output values of the node. In 
this example, R(x,b0,b1)  is equal to (01,10) for any input x 
because when only one value is propagated along both 
fanins of the EXOR gate, the output value of the EXOR is 
1. If we allow a set of inputs {0,1} to propagate, with SS 
the output is {0,1}. This set is not contained in the spec, 
which is {1} for any input.  
This example illustrates the difference between a single-
output MV relation NS-CF and a multi-output relation 
with binary outputs SS-CF. We can symmetrize SS-CF by 
choosing only one pair of output values, for example, 
(10). In this case, the corresponding single-output relation 
is 0 for any input x. This example shows that, in general, 
we cannot make SS-CF a single-output MV relation 
without loss of flexibility. In this example, the output 
values 0 and 1 are mutually exclusive and one of them 
should be omitted during symmetrization.  

4.3 MVSOP Minimizing an ND Relation 
Given a flexibility at a node, the minimization problem is to 

construct a well-defined sub-relation which can be represented by 
an MVSOP with the minimum number of cubes. This is analogous 
to the classical SOP minimization problem for binary logic 
functions, except that the result may be non-deterministic. Of 
course, the minimum number of cubes is simply an approximate 
measure of the complexity of implementing the node. A factored 
form is a better measure, but this is obtained typically by first 
minimizing the SOP and then factoring the result. 

Definition: The i-set of an ND relation, ( , )R Y y , is the set of 
minterms that can produce the value i, i.e. { } ( , )iy

R Y y . The 

essential i-set is the set of minterms that can produce value i only, 
i.e. are not part of any other i-set. 

We discuss the solution of this problem for two cases: where the 
solution is required to be deterministic and where it is allowed to 
be non-deterministic. The deterministic requirement seems to 
make the solution process much more complicated, although the 
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complexity for this is not known. For the ND case, we shall see 
that it can be related to classical SOP minimization for which 
complexity issues are known. 

 Example. Consider the ternary MV relations, shown in 
Figure 3. Relation R1 is non-deterministic and has a non-
deterministic cover composed of four cubes. The second 
relation R2 is a determinised version of the first. It requires 
at least 5 cubes to cover all its i-sets.  
 

 R1     R2    
a\b 0 1 2  a\b 0 1 2  
0 0 0 2  0 0 0 2  
1 0 0,1 1  1 0 1 1  
2 2 1 1  2 2 1 1  

Figure 3. Relations used in the example. 

4.3.1 Deterministic MV-SOP Minimization 
We do not know how to solve this problem exactly (other than 

brute-force enumeration of possible solutions) and, as far as we 
know, it is an open problem. We discuss one heuristic approach. 

To find a well-defined small deterministic sub-relation, one 
heuristic computation is as follows. 
1. Order the i-sets (heuristically) 
2. In increasing order, delete the minterms of the i-set already 

covered by the i-set covers already computed.  
3. Minimize the remaining i-set minterms using the essential i-

set as the on-set, and uncovered non-essential minterms in 
the i-set as the don’t-care set.  

Since the i-set cover computed in each step does not overlap with 
the covers selected for the previous i-sets, the resulting MV-SOPs 
are disjoint and therefore the resulting cover is deterministic.  

We pose the following challenge for finding an exact solution 
for a slightly simplified but related problem.  

Problem: Let f and g be two functions where f g∩ ≠ ∅ . Find 
SOP covers F and G such that F G∩ =∅ , F G f g∪ = ∪  and 
| | | |F G+  is minimum. 

4.3.2 Non-Deterministic MVSOP Minimization 
We discuss both heuristic and exact minimization for this case. 

As with the binary case, a heuristic method can be more efficient 
and may give acceptable results.  
Heuristic Minimization: 

To find a small non-deterministic well-defined sub-relation, one 
computation proceeds as follows.  

1. Minimize the essential part of each i-set as the onset using 
the rest of that i-set as don’t-care. Computed this way, the i-
sets are allowed to overlap resulting possibly in an ND cover.  

2. If all minterms are covered at this point, the algorithm has 
computed the exact minimum cover.17  

                                                                 
17 Provided that the MV-input binary-output cover for each i-set has 

been minimized exactly, which can be done using ESPRESSO-Exact. 
Surprisingly, in our experience, this is the case for about 90% of MV-SOP 
minimization problems that we have experienced in the simplification of 
ND networks. 

3. If there are remaining uncovered minterms, and there is at 
least one output value common to all remaining minterms, 
then include all these in that value; thus only one i-set is 
increased, the others remain the same and are minimum.18 
We have experienced this situation in about 9% of the cases, 
leaving only about 1% to be processed further.  

4. If further processing is required, a simple greedy approach is 
taken; consider values one by one in some heuristic order, 
and add as many minterms as possible to each of the 
successive i-sets. 

 
Exact ND MV-SOP Minimization: 

Surprisingly, unlike the deterministic case, the problem of 
finding a minimum ND cover can be solved exactly, using a 
modified Quine-McCluskey procedure. 

 
Procedure 1:  

1. For each i-set, generate its set of all primes.  
2. Form a combined covering table where the set of 

minterms to be covered (the rows) is the entire input space 
and the union of primes of all i-sets is the set of covering 
cubes (the columns).  

3. Solve the unate covering problem (UCP) for this table to 
obtain a minimum cover. Each prime chosen in the 
minimum cover is put into its appropriate i-set MVSOP to 
form the minimum i-set covers. 

 
Theorem 4.9: The above procedure gives a set of i-set covers 
which has the minimum number of cubes. Each i-set cover is 
prime and irredundant. 

Proof. Suppose it is not minimum. Then there is another set of 
i-set covers with a smaller total number of cubes. We can assume 
that each such cube in the cover is prime. So each cube is one of 
the primes generated. However this cover is smaller than the 
minimum cover of the UCP solution obtained by our procedure, 
leading to a contradiction.  

Q.E.D. 
A common situation is that a default i-set is used since its output 

can be implemented easily using a NOR gate.19 Then a slightly 
modified problem is to find a minimum i-set cover of a well-
defined ND sub-relation when one of the i-sets is not counted. 
Thus, the problem is to select the default i-set in such a way that 
the remaining i-sets can be covered with the minimum number of 
cubes. This can be solved as follows.  

 
Procedure 2:  

1. For each j, form the covering table as in Theorem 4.9, 
with the following modifications:  

a. do not use the primes of the jth  i-set and  
b. do not include in the covering table the minterms in 

this i-set. The measure of the solution obtained is 

                                                                 
18 We have experienced this situation in about 9% of the cases, leaving 

only about 1% to be processed further. 
19 In binary logic synthesis, we usually only implement the onset of a 

node; if the offset is required, it is produced by an invertor. 
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the number of cubes in the resulting cover, not 
counting those in the jth ith set.  

2. Do this for each j and choose the one, k, that leads to the 
smallest measure.  

3. This k is chosen as the default i-set while the cubes in the 
minimum solution of the kth covering problem, constitute 
the final cover. 

 
Theorem 4.10:  The above procedure determines a default value 
and leads to the minimum set of i-set covers when the default 
cover is not counted. 

Proof. We only have to cover the minterms not in the default i-
set. Suppose there is a solution with a smaller number of cubes. 
Then it must be a solution for some other value designated as the 
default. The fact that we have obtained the minimum solutions of 
these problems for all j (Theorem 4.9), and taken the best, 
contradicts that a smaller solution exists.  

Q.E.D. 
In some cases, it is desirable that the number of values produced 

by the cover is minimum (value-reducing minimization). This can 
be done by solving the following covering problem.  

 
Procedure 3:  

1. For each i-set, create one column in the covering table, 
which has a 1 in it if the minterm is in the i-set.  

2. A minimum cover of this table gives a minimum set of 
values.  

3. Now restrict to the i-sets in this minimum cover, and find 
a minimum set of i-set covers for these using either 
Theorem 4.9 or Theorem 4.10.  

4. If there are several sets of minimum values, choose the 
set that leads to the minimum i-set covers.  

 
When the minimum value subsets are found, the MVSOP 

minimization problem is solved for each of them. This is done by 
simply deleting the primes that are not in the value sets selected 
and using the procedure of either Theorem 4.9 or Theorem 4.10. 
The set of all minimum value sets can be obtained by finding the 
complement of the unate function associated with the covering 
table and choosing the primes with the least number of literals.  

4.3.3 Final Determinization 
In some applications, the final implementation must have every 

node deterministic and well-defined. One way to achieve this is to 
re-derive the CF for each node and use the procedure of Section 
4.3.1 

Another method is to use binary encoding to convert the 
network into a binary one [11]. Then the network consists of only 
binary nodes, and each node can be minimized using its CF. The 
default for each binary node is chosen as the one with the largest 
i-set cover (the 0-set or the 1-set). The other i-set is implemented, 
and since the default i-set is defined as the complement of the 
other, the node is deterministic. The encoding problem for ND 
relations is discussed in [21], but there is no really good method 
for finding the best encoding. 

4.4 Lower Bounds 
So far, we have considered two simulation methods, NSC and 

SS, which provide upper bounds for the NS-behavior. There are 
cases when a lower bound of the NS-behavior or a Boolean 
relation is required. Examples occur when  

1. a given ND circuit is to serve as the specification, 
2. an RTL specification is incomplete, or  
3. a sub-component in a hierarchy is to be synthesized.  

As we have seen, one use of the external specification is to 
extract the CF for a node. In the CF computation, the specification 
serves as the upper bound for the behavior. Therefore, 
approximating a circuit’s behavior with an upper bound and then 
using it as the specification in the CF computation would lead to 
an error; on the other hand, approximating the specification with a 
lower bound lead to  correct but conservative results. 

If an internal node has don’t cares associated with it in the RTL 
specification, they can be used in two contexts. They can be given 
implicitly as constraints on local variables, e.g. 1xy xy+ = , 
which is a one-hot specification for x and y. If a CF computation 
is restricted to a local window around the node to be minimized 
[23] and the window includes the nodes producing x and y, then it 
is easy to include the constraints directly in a SAT based NS-CF 
computation. In a larger context, an NS computation becomes 
infeasible and approximations must be used. In this case, a lower 
bound of the specification is required since the RTL will be used 
as the specification. Since the NSC and SS behaviors are 
computationally tractable, output-symmetric lower bound of the 
NS behavior is required. 

We give here one method, based on CODC computations, for 
computing an output-symmetric lower bound of the NS-behavior 
of a network.  

1. Apply input determinization to the ND network, using 
pseudo-inputs P along with primary inputs X as in 
Section 3.1.1, and collapse the circuit, i.e. compute the 
global function ( , )kf X P  of each PO.  

2. Compute the NS-behavior of the network, 
( , ) [ ( , )]NS

P k kk PO
R X Z z f X P

∈
= ∃ Π = .  

3. Imagine a binary-output sink node, η , with X and { }kz  

as inputs and with 1( , , )NS
mR X z z…  as its node function.  

4. Order the POs in some order (for illustration use the 
natural order) and compute recursively, for each fanin 
edge kz , a compatible ODC (see e.g. [5] and [12].  

The computation gives a set { }
kzCODC η→  for each PO. These 

form an output-symmetric specification, which is a lower bound 
for the NS-behavior of the network. It is output-symmetric since it 
is compatible.  

The above computations can be made more efficient by using 
early quantification techniques and taking advantage of the form 
of the dependency of ( , ) [ ( , )]NS

P k kk PO
R X Z z f X P

∈
= ∃ Π =  on kz . 
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5 Elimination 

Even though we have discussed elimination in previous sections, 
we define elimination here precisely. Then the effects that 
elimination may have on each of the behaviors is discussed. As 
will be seen, elimination is safe in that it cannot increase behavior 
for SS, but this is not the case for NS and NSC. The process of 
elimination is illustrated in Figure 4 where node A is eliminated 
into node D. We observe that the number of paths between any 
pair of nodes can never increase due to elimination. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Elimination of A into D. 
 
Definition: Let the relation at node i be ( , )i i iR Y y  and suppose k 
is a fanout of i with a relation Rk. Then, eliminating i into k yields 
the new relation at k, ( , ) ( , )∃

iy i i i k k kR Y y R Y y , which then replaces 

Rk. After Ri has been eliminated into all its fanouts, iy  can be 
removed from the network, since it is not used anywhere; Hence 
node i  is eliminated.  

We emphasize that this kind of elimination is different from first 
input-determinizing the node and then eliminating it. The latter 
would generate correlations between the fanout nodes because 
they would share a common pseudo-input. In contrast, elimination 
is done on each fanout independently and thus the fanout nodes 
are independent and uncorrelated. 

In the following sections, we state and prove results 
characterizing the effect of an elimination step on the various 
behaviors. 

5.1 NS Behavior 
Theorem 5.1: Eliminating a node i into a node j cannot decrease 
the NS or NSC behavior of a network. 

Proof: Let N and N"  be the networks before and after 
elimination respectively. Elimination is defined as  

 ( , ) ( , ) ( , ).
iy i i i j j j j j jR Y y R Y y R Y y∃ = " " "  

Let , , ,
i j j iY Y y ym m m m  be a set of minterms produced during an NS 

simulation of N using PI minterm Xm . Under the same PI 

minterm  Xm , N"  can produce the same , \
i jY Y im m y  since the 

two networks are the same between the PIs and the nodes i and j. 
Since ( , ) ( , ) 1,

i i j jY y Y yR m m R m m= = then ( , ) 1.
jj yYR m m ="

"  Thus, 

under the same simulation input, N"  can produce any value at j 
that N can produce. Therefore, the NS-behavior of N"  is not 
decreased. Since NSC is NS at each PO simulated separately, the 
NSC-behavior is not decreased. 

Q.E.D. 
Theorem 5.2: Eliminating a node can increase the NS-behavior 
of a network if and only if the node being eliminated is ND and 
has more than one fanout. 

Proof: (⇒ ) If the node i to be eliminated is deterministic, then 
by Theorem 3.2, elimination cannot change the NS-behavior of 
the network. If i has only one fanout, k, then the fanout node’s 
relation in the new network is the same as the two nodes in 
combination, since 

 ( , ) ( , ) ( , )
ik k k y i i i k k kR Y y R Y y R Y y= ∃" " . 

Suppose in the original network i iy d= , i iY D=  and k kY D=  

during an NS-simulation. Then kY"  has values ( , )i
k k iD D D=" 20. 

Since ( , ) 1i i iR D d = , then ( , ) ( , )k k k k k kR D y R D y=" " . Hence any 
value of ky  produced in the original network can be produced in 
the eliminated network. Since this is the only place where the 
networks differ, the two networks have the same NS-behavior. 

(⇐ ) Assume node i is ND. Eliminating i has the effect of 
producing multiple copies of the node i. Thus the behavior could 
increase.  

Q.E.D. 
As already discussed, we can manipulate NS-behavior by input-

determinizing the network first. Suppose a fanout j is given by the 
function ( , , )j j j jR Y p y  and similarly for node i. Then the new 
function at j, after node i is eliminated into it, is 

 ( , , , ) ( , , ) ( , , )
ij j i j j y i i i i j j j jR Y p p y R Y p y R Y p y= ∃" "  

and thus j now has two pseudo-inputs. Existentially quantifying 
out pi and pj leads to the same result as elimination without input-
determinization. Note that pi and pj cannot be replaced with a 
single pseudo-input at node j because this would cause the loss of 
any correlation with a different fanout of node i (through the 
parameter ip ). Thus, in general, as the network is manipulated, 
the nodes in the network will depend on an increasing number of 
pseudo-inputs. Although the determinized elimination process 
done this way will not increase the NS-behavior of the network, it 
is more expensive computationally. 

                                                                 
20 The fanins of k in the new network is the union of the fanins of k and i 

in the old network, less iy , so i
kD  represents the fanin values of node k , 

kD  less the value of node i. 

AA B 

C D 

AA B 

C D 
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5.2 NSC Behavior 
Theorem 5.3: Eliminating a node can increase a network’s NSC 
behavior if and only if the node is ND and has reconvergent 
fanout. 

Proof: Since NSC is NS for each PO done separately and with 
only one PO, multiple fanout is the same as reconvergent fanout, 
the result follows from Theorem 5.2.  

Q.E.D. 
Since elimination can cause NSC-behavior (NS-behavior) to 

increase, the new network could become non-compliant. 
However, this could be controlled by making an ND node with 
reconvergent (multiple) fanout deterministic before it is 
eliminated (see Section 4.3.3) or by introducing pseudo-input 
synchronizing variables (see the end of Section 4.2.2). 

5.3 SS Behavior 
SS-behavior was motivated initially by the fact that it is safe under 
elimination.  
Theorem 5.4: Eliminating a node cannot increase the SS-
behavior of the network. 

Proof. Elimination of a node has the same effect on a network 
as making an independent copy for each fanout of the node being 
eliminated. Since the inputs to all these copies are the same, the 
copies will produce the same set of values at their outputs. 
Therefore, at the fanout outputs, the sets in the new network 
cannot be greater than that for the old network. Thus, since 
internal sets cannot be increased, the sets at the POs cannot be 
increased.  

Q.E.D. 
Some sets at the fanout outputs can be synchronized due to 

common inputs, as shown for node A in Figure 5. This is why the 
behavior might reduce.  
Theorem 5.5: Eliminating a node A can decrease the SS-behavior 
of a network if only if  

1. A has an ND node B in its TFI and  
2. in the TFO of B there is a fanin of A which reconverges 

at a fanout of A. (See Figure 5). 
Proof: (⇐ ) Figure 5 shows the topology of the case where 

behavior could decrease. Eliminating A will decrease the number 
of paths from B to a PO. Thus when collapsing the network in 
topological order (to obtain the SS-behavior), effectively fewer 
copies of B will be made than if A is not eliminated first. Thus 
eliminating A could lead to less SS-behavior.  

(⇒ ) Assume the negation of 1., that there are no ND nodes in 
the TFI of A. Eliminate all the nodes in TFI(A). Since all nodes in 
this sub-network are deterministic, its (unique) behavior is 
unchanged, and thus the resulting B-behaviors of the eliminated 
network are unchanged. Elimination of A at this point does not 
change the SS-behavior since A has only PI inputs and can be 
eliminated first in a topological order. Thus the SS-behavior does 
not change.  

Now assume the negation of 2., that there is no fanin of A which 
reconverges at a fanout of A. We will show that a fanout node of 
A following A in a topological order, say E, has the same global 
SS-relation (that obtained by collapsing its TFI in topological 
order) in both networks, the one N with A in it, and the one NA 

with A eliminated. We use the notation iG  to denote the global 
SS-relation at node i. Clearly nodes not in the TFO of A have the 
same global relations in both networks. In NA, node E has been 
changed; its local relation is given by (here illustrated with a 
specific number of inputs) 

1 2 3 4 5 6 1 2 3 4 5 6( , , , , , , ) ( , , , ) ( , , , , )A
aR y y y y y y e R y y y a R a y y y e= ∃ . 

Note that the inputs of A and E are disjoint by assumption. Then 
the global relation of EA in NA is 

1 2 3 4 5 6

1 2 3 4 5 6

4 5 6 1 2 3

4 5 6

1 2 3 4 5 6 1 2 3 4 5 6

1 2 3 4 5 6 1 2 3 4 5 6

, 4 5 6 1 2 3 1 2 3 4 5 6

, 4 5 6

( , , , , , , )

( ( , , , ) ( , , , , ))

{[ ( , , , )][ ( , , , , )]}

{[ ][ (

A

A
N A

y y y y y yE

y y y y y y a

a y y y y y y

a y y y A

G G G G G G G R y y y y y y a

G G G G G G R y y y a R a y y y e

G G G G G G R y y y a R a y y y e

G G G G R a

= ∃

= ∃ ∃

= ∃ ∃

= ∃ 4 5 6, , , , )]}

E

y y y e

G=
The legality of the interchanges of the product of global relations 
and the existential quantifications is based on some of the 
relations being independent of some of the variables. By induction 
on the topological order, we conclude that the global SS-relations 
at the outputs are the same in both networks. 

Q.E.D. 
 

 
 
 
 
 

Figure 5. Topology where the number of paths from B to an 
output can decrease if A is eliminated before B. 

 
Example: Consider the network in Figure 6. There is a 
reconvergent fanout from node 4. Suppose 2 and 3 are 
eliminated first and then node 4. After eliminating 2 and 
3, node 4 has only one fanout, so intuitively only one 
copy is made during collapsing. In contrast, if 4 is 
eliminated first, two copies of 4 are made.  

 

Figure 6. An ND network. 

Eliminating 2 and 3 first has the same effect as 
simulating the network with a single value on the fanouts 
of 4. This may lead to losing the part of the SS-behavior 
where the two fanouts of 4 have different values 
(assuming that 4 is ND). This can be seen by observing 
the relation at 1 resulting from different orders of 
elimination. The elimination using order 4-3-2 yields the 
relation 

2 3 4 4 3 1 4 4 2( ( ( ) )( ))∃ ∃ ∃ ∃y y y R R R y R R                          (5.1) 

4

2 

1 

A 3 

AA B

C 
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and for order 3-2-4 it becomes 

4 2 3 3 1 2 4( ( ( ) ) )∃ ∃ ∃y y y R R R R  

In the first expression, there are two uncorrelated 
existential quantifications on y4. Note that collapsing in 
topological order is not necessary to preserve behavior, 
since in the above example we could eliminate in the 
order of 3-4-2 because this would lead to 

2 4 3 3 1 4 4 4 2( ( ( ) )( ))∃ ∃ ∃ ∃y y y R R R y R R , which can be obtained 
from Equation 5.1. 

6 Division 

The classical operations of extraction, decomposition and 
division/substitution are similar operations used in logic synthesis; 
essentially they involve dividing one node into another. In this 
section, we define division precisely and analyze the effect a 
division step on the various behaviors.  
Definition: Division of relation ( , )j j jR Y y  by ( , )i i iR Y y  is any 
operation such that  

( , ) ( , ) ( , , )
ij j j y i i i j j i jR Y y R Y y R Y y y⊇ ∃ " "  

where ( , , )j j i jR Y y y" "  is well-defined. If the containment is 
equivalence, the division is said to be exact; otherwise inexact. 

Decomposition and extraction differ in that the first creates 
divisors for a single node at a time, while the second creates a 
divisor that fans out to a set of nodes. In either case, the new 
fanout node(s) are the result of dividing each fanout by the 
divisor. In what follows, we will use the generic term, “division”, 
to refer to any of the above operations.  

Note that inexact division can directly decrease any of the B-
behaviors of a network. Therefore in the discussion that follows, 
results about an operation causing a decrease in a behavior will be 
restricted to exact division. 
Definition: A division is called non-disjoint if it results in a 
network where a fanin of the divisor is also a fanin of the result. 
Otherwise, it is disjoint. 

6.1 NS and NSC Behavior 
Theorem 6.1: Division cannot increase the NS and NSC 
behaviors of an ND network. 

Proof. A division operation on a network N creates a new 
network N" where a set of nodes {j} has been changed and 
possibly a new node i has been created. Division has the property 
that  

%( , ) ( , ) ( , , ) ( , )
ij j j y i i i j j i j j j jR Y y R Y y R Y y y R Y y≡ ∃ ⊆" "  

where 1( , )i j iR Y y  is the relation of the new node. By Theorem 5.1, 

the NS and NSC-behaviors of the network N̂  can’t decrease from 
that of N" . Thus ˆ ( , ) ( , ), { , }.B BR X Z R X Z B NS NSC⊇ ∈"  

Q.E.D. 
Theorem 6.2: Exact division can decrease the NS (NSC) 
behaviors of an ND network if and only if the divisor is ND and 
after division has multiple (reconvergent) fanout. 

Proof. Exact division by a node i 21 into a node j is by definition 
the inverse of elimination:  

( , ) ( , ) ( , , )
ij j j y i i i j j i jR Y y R Y y R Y y y≡ ∃ " " , 

where ( , )i i iR Y y  is the relation of the divisor, ( , )j j jR Y y  the 

relation of the dividend, and ( , , )j j i jR Y y y" "  is the result of division. 
Thus, eliminating the divisor into the result yields the old relation. 
Therefore, exact division can increase or decrease behavior 
precisely when elimination can decrease of increase behavior. By 
Theorems  5.1 (5.2) the result follows.  

Q.E.D. 

6.2 SS Behavior 
Theorem 6.3: Exact division cannot decrease the SS-behavior of 
the network. 

Proof. The proof follows by Theorem 5.4 and the fact that exact 
division is the inverse of elimination.  

Q.E.D. 
Theorem 6.4: Division by a node A can increase the SS-behavior 
of a network if and only if A is ND or 

1. A has an ND node B in its TFI and  
2. B has in its TFO a node that is both a fanin of A and a fanin 

of a fanout of A. 
Proof: The SS-behavior of a network can increase if and only if 

the number of paths from an ND node to the POs increases. 
Clearly if A is ND, the division will result in an increase in the 
number of paths. The other case follows from Theorem 5.5 and 
the fact that division is the inverse of elimination. Another way of 
looking at it is to observe that the paths from B to a PO would 
increase under Condition 2.  

Q.E.D. 
Example: A non-disjoint division can increase the 
number of paths as shown in the network of Figure 7. 

 
Figure 7. Non-disjoint division of A into C. 

 
The division of A into C is non-disjoint because the inputs 
of the divisor A are not disjoint from the inputs of result 
C’. Thus, the number of paths from B to C has increased. 
If A is non-deterministic or there is an ND node in TFI(A), 
then the SS-behavior could increase. 

                                                                 
21 Typically, decomposition/extraction creates a new node for a divisor, 

but for the purposes of this discussion, we can assume that the divisor 
already exists in the network, perhaps with no fanouts. 

B

A

C B 

A 

C’
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6.3 Merging 
Merging is the process of combining two or more nodes (the 

merging set) into a single node with more values [25]. A 
constraint on the merging set is that after merging, the network 
should remain acyclic. The i-sets of the new node are composed 
of intersections of the i-sets of the set of nodes being merged.  

Example: Suppose two nodes are to be merged with 
ranges 3 and 5 respectively. Then the 0-set of the new 
node is the intersection of the 0-sets of the two relations, 
the 1-set is the intersection of the 0-set and the 1-set, the 
2-set the intersection of the 0-set and 2-set, etc, and the 
14-set is the intersection of the 2-set and the 4-set.  

The second step of merging involves dividing the new MV node 
into each node that is a fanout of the merging set. The overall 
effect of merging is like dividing each merged node of the merged 
set into the fanouts of the other nodes in the merged set. Hence 
any behavior changes due to merging will be the same as for 
division. 

7 Comparing Behaviors 

Comparison leads to the following statements. 
1. SS and NSC behaviors lead to output-symmetric relations at 

the POs. 
2. The computation of SS-behavior using multi-valued decision 

diagrams (MDDs) is the simplest computational method 
since collapsing in topological order allows for building 
global MDDs using only the PI variables. NSC is the next 
simplest since it can be done by collapsing in reverse 
topological order. NS is the most complex since pseudo-
inputs must be introduced. 

3. A SAT-based computation for both NSC and SS can be 
performed using the approach presented in [23]. This should 
yield a method that is competitive in efficiency with the 
MDD-based method.  

4. The SAT-based computation for NS is more complex 
because it involves the whole network rather than the 
iteration over the pairs of primary outputs in the TFO of the 
given node. The procedure is outlined in Section 4.2.1. 

5. All methods lead to network operations that are similar to 
those used for binary networks, allowing operations on single 
nodes at a time. 

6. Manipulations of the network possibly cause changes in any 
of the behaviors. These changes have been analyzed for the 
conditions under which a change can happen. 

7. In terms of behavior, NS NSC SS⊆ ⊆  

8. In terms of flexibility, - - -SS CF NSC CF NS CF⊆ ⊆  
9. Use of any of the methods may cause the network to become 

non-compliant in one or more of the behaviors. Each type of 
behavior has only one operation that can cause non-
compliance; elimination for NS and NSC, and 
division/merging for SS.  

The theory based on SS-behavior is the one currently 
implemented in MVSIS, because it is the most computationally 
efficient.  

Table 1 compares NSC-behavior with SS-behavior in terms of 
possible increases of the network behavior after the corresponding 
operation. An increase in behavior could cause non-compliance 
and hence any operation that can cause this is unsafe. 

 
Operation SS-behavior NSC-behavior NS-behavior 
Elimination can’t increase may increase  may increase  
Division may increase can’t increase can’t increase 
Merging may increase can’t increase can’t increase 
Minimization can’t increase can’t increase can’t increase 
B-CF smallest intermediate largest 

Table 1. Comparing possible increases in behaviors. 
 

In Section 8, we discuss methods for ensuring that a network 
does not become non-compliant due to an unsafe operation. It is 
also interesting that node minimization can be used to correct a 
non-compliant network. This leads to the possibility of a non-
traditional logic synthesis scenario, in which a network’s behavior 
is allowed to become temporarily out-of-spec in order to explore a 
larger optimization space. In Section 8, we discuss how this 
process can be controlled, while ultimately satisfying the original 
specifications. 

8 Managing Unsafe Operations 

We have seen that for any type of B-simulation behavior there is 
a classical operation that is not guaranteed to preserve the B-
compliance of the network. However, from the analysis of the 
previous sections, we know precisely the conditions when a 
network operation can change a type of network simulation 
behavior. Table 1 lists the various network operations that can 
cause an ND network to increase its B-behavior, possibly causing 
the network to become B-non-compliant. 

Typically, the goal in manipulating an ND network is to derive 
an efficient well-defined network representation contained in the 
original ND specification.22 Typically, this is done by modifying 
the current network (called the cover network) incrementally so 
that its B-behavior continues to be contained in the external 
specification.  

The following theorem shows that a well-defined B-CF and the 
network being B-compliant are related. 
Theorem 8.1: The B-CF for node j is well-defined if and only if 
there exists a relation for node j such that the resulting network B-
conforms for all the POs in TFO(j).23 

By B-conforms , ( )
iz iz TFO j∀ ∈  we mean that B-behavior is 

contained in the specification for the POs in the TFO(j). However, 
nothing is implied for other POs.  

Proof: We prove the theorem for { , }B NS NSC∈ . The case for 
B = SS is slightly more complicated, because of the introduction 
of the temporary variables, jb , but the argument is analogous.  

                                                                 
22 In some applications, we want finally a deterministic representation in 

order to implement each node as a digital circuit. However, intermediate 
steps can take advantage of the compactness and generality of ND 
representations. A final determinization can be done using the procedures 
of Section 4.3.3. 

23 We assume that the specification is output-symmetric. 
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(⇒ ) Consider the computation for the NS-CF and NSC-CF: 

( , ) ( ( , , ) ( , ))B B spec
j Z jR X y R X y Z R X Z≡ ∀ ⇒  

( , ) ( ( , ) ( , ))B B B
j j X j jR Y y M X Y R X y= ∀ ⇒ . 

Assume that ( , )B
j jR Y y  is well-defined. Put this relation at node j.  

Suppose that the resulting network N"  does not B-conform at 
some ( )iz TFO j∈ . Then for N" , there exists Xm , 

jYm , 
jym  and 

Zm  such that ( , ) 1
j

B
X YM m m = , ( , ) 1

j j

B
Y yR m m = , 

( , , ) 1
j

B
X y ZR m m m = ,  but  ( , ) 0spec

X ZR m m = . However, from the 

above equations, ( , ) 1
j

B
X yR m m = , and hence ( , ) 1spec

X ZR m m = , a 

contradiction. Hence the resulting network {NS, NSC}-conforms 
, ( )

iz iz TFO j∀ ∈ .  

(⇐ ) Assume that there exists a relation, say ( , )j j jR Y y , which 
can be put at node j so that the resulting network B-conforms 

, ( )
iz iz TFO j∀ ∈ . Suppose there exists 

jYm  such that 

( , ) 0
j j

B
Y yR m m =  for all values 

jym , i.e. ( , ) 0B
j jR Y y =  is not 

well-defined. Then there must exist Xm  such that 

( , ) 1
j

B
X YM m m =  and ( , ) 0

j

B
X yR m m =  for all values 

jym . Thus 

for all values of 
jym  there exists Zm  such that 

( , , ) 1
j

B
X y ZR m m m =  and ( , ) 0spec

X ZR m m = . However, for N"  

with ( , )j j jR Y y  at node j the assumption is that the network B-

conforms , ( )
iz iz TFO j∀ ∈ . This means that the B-simulation can 

never produce a discrepancy on these outputs. Hence 
( , ) 1

j

B
X YM m m = , ( , , ) 1

j

B
X y ZR m m m =" , ( , ) 1

j jj Y yR m m ="  for some 

jym"  and  ( , ) 1spec
X ZR m m = , , ( )

iz iz TFO j∀ ∈  a contradiction. 

Thus ( , )B
j jR Y y  is well-defined.  

Q.E.D.   
Theorem 8.1 leads to a method for partially repairing a network 

by changing one node. Consider a network that has become non-
compliant, i.e. there is a subset of POs that have values simulated 
that are not allowed by the external specification for a particular 
set of PI minterms. Apply node minimization to the network. 
During this, the B-CF is derived at each node. There are two 
cases. 

1. RB(Y,y) for the node is well-defined.  Then, by Theorem 
8.1, a sub-function can be chosen, which corrects part24 of 
the non-compliance problem. 

2. RB(Y,y) for the node is not well-defined (this is easy to 
detect). Then, by Theorem 8.1, not all non-conformance in 
the POs in the TFO of the present node can be corrected by 
changing only this node.25  

                                                                 
24 Only those POs that are in the TFO of the node being minimized can 

be corrected. 
25 However, it may be that non-compliance at some of the POs can be 

corrected, but we do not know exactly how this should be done. One 
possibility is to minimize the CF and then make it well-defined by using 

An experiment with the ability of node minimization to repair a 
circuit, was done using MVSIS [25] and B = SS. Non-compliance 
(due to the division operation) was allowed to occur during an 
extraction step. Then, node minimization was applied. If a node 
was encountered that did not have a well-defined SS-CF, the 
current node relation was left unchanged. We found that in many 
cases, the network became out-of-spec temporarily, but was 
always automatically corrected by the node minimization process.  

However, although this kind of single node at a time operation 
may be effective, it cannot guarantee to repair the network. In the 
following sections, we discuss some modifications of the 
operations so that non-compliance can’t happen. The 
modifications are based on the use of node minimization and the 
use of determinization, i.e. making nodes less non-deterministic.  

In addition for SS, we show that it is possible to use unmodified 
division operations followed by a new procedure of determinizing 
some nodes in the network, and that this always results in an SS-
compliant network.  

8.1 NS and NSC-Behavior 
The only network operation that can cause the NS/NSC behavior 

to increase is elimination, and then only if an ND node with 
reconvergent fanout is eliminated. Thus, a technique for ensuring 
continued NS/NSC-conformance is:  

 
During elimination,  
1. check the node to be eliminated for being both ND and 

having reconvergent fanout (for NS, multiple fanout);  
2. if both conditions hold, then  

a. determinize the node relation before elimination, or  
b. for NSC, if all nodes between the ND node and its 

reconvergence point are to be eliminated, collapse the 
node at the reconvergence point in reverse order down to 
the ND node. 

 
Since all other network operations cannot increase the NS/NSC-

behavior, the resulting ND network is NS/NSC-compliant. 

8.2 SS-Behavior 
Division is the only operation that can increase the SS-behavior. 

It is possible only if the network contains ND nodes. By Theorem 
6.3, division can increase SS-behavior only if the divisor node was 
ND or had an ND node in its TFI and the division was non-
disjoint. Thus, the following procedure, which would be a 
modification of the division operations, is suggested.  

 
At each division step, 

1. Check if the division is disjoint or if the divisor has no ND 
node in its TFI. If either of the conditions is true, accept the 
division, and continue to the next division. If both of the 
conditions are not true, continue to Point 2. 

2. Apply node minimization to the divisor node in the new 
network.  

                                                                                                           
the values of the old relation at the node  for the minterms that are not 
well-defined. 
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3. If the SS-CF is well-defined, accept the division but replace 
the divisor by a minimized well-defined sub-relation. 
Continue to the next division.  

4. If the SS-CF is not well-defined, reject the division and 
continue to the next division. 

 
An alternate method would be to complete a whole sequence of 

divisions in the normal way, and then apply a method that reduces 
the amount of non-determinism.  

The following theorem is important, since it says that after any 
series of classical division operations starting from a SS-
conforming network, the resulting network 2N  has the following 
property: any deterministic behavior in 2N  satisfies the 
specification. Thus, it is always possible to go through any 
sequence of determinizations in any order, and always be 
guaranteed to arrive at a conforming network.  
Theorem 8.2. Let 2N  be a network derived by applying a 
sequence of division operations to an SS-compliant network 1N . 
Then, 2N  can be made SS-compliant by an arbitrary sequence of 
determinizations. 

Proof: Let { }dN  be the set of all deterministic implementations 

of any ND network N, and { }d
NR  be the set of corresponding 

deterministic behaviors. This set of behaviors is contained in 
( , )NS

NR X Z , i.e. 

[ ( , ) ( , )]
X

d NS
d m N X Z N X ZR m m R m m∀ ∀ ⇒ . 

Since, by Theorem 6.4, divisions cannot increase the NS behavior 
of a network, 

2 1

NS NS
N NR R⊆  implying that 2 1{ } { }N N

d dR R⊆ . Since 

each deterministic behavior of 1N  conforms, the result follows.  

Q.E.D. 
 
This determinization can be applied as follows: 

Make a list of all ND nodes in the TFI of all new divisor 
nodes. In topological order, choose an ND node j in the list: 

1. If the SS-CF of j is well-defined, replace the current 
node relation at j with a small well-defined sub-
relation of the SS-CF. Remove all ND nodes on the list 
that are in TFO(j).  

2. If the SS-CF of j is not well-defined, replace the 
current node relation at j with a deterministic sub-
relation of the current relation (i.e. determinize the 
node). 

The resulting network is guaranteed to be SS-compliant, since all 
nodes in the TFO of a well-defined SS-CF are repaired, while the 
others use determinization to achieve complience. A modification 
of this method, which avoids full determinization, would be to 
systematically reduce the amount of non-determinism and 
continue to iterate over the remaining ND nodes until all of them 
have been repaired. This modified approach should result in 
retaining more of the non-determinism.   

9 Hierarchical Synthesis 

We have assumed that the external specification is given either 
by an initial ND network, N (which possibly includes external 
CODCs), or directly in some other format. Here we consider the 
following two hierarchical situations:  

1) N  is part of a larger network, N" , and N  is known and 
acts as its own specification (its behavior is to be 
preserved). This is illustrated in Figure 8. This can happen 
if N"  is so large that optimization algorithms cannot be 
applied to the entire network. Thus, a sub-network N  are 
cut out, and its inputs and outputs are treated as PIs and 
POs. No external don’t cares are given for N  because 
these would have to be derived from N" . The objective is 
to re-synthesize N to obtain a smaller sub-network whose 
behavior is well-defined and equal to N . This optimized 
sub-network is then stitched back into N" . It is important to 
guarantee that N"  containing the optimized sub-network 
automatically satisfies the specifications for N" , because it 
would be too time consuming to check this.  

 

Figure 8. Network N embedded in N" . 

2) A sub-network N  is part of a larger network N"  (as in 
Figure 8), but the contents of N are ignored. The 
specification for N  is derived from the surrounding 
environment N"  and its specification. This is similar to 
what has been done in computing the CFs, except that, in 
general, the cut-out sub-network may have several outputs. 

The second type of optimization in a hierarchy is problematic, 
since it would require derivation of a type of CF for multiple 
output nodes. A similar computation was proposed in [36] for 
binary networks, but it is very difficult if N"  is large. SAT-based 
computation [23] can mitigate this problem to some extent. This 
computation enumerates through the satisfying assignments of the 
SAT problem, which correspond to the input/output combinations 
allowed by the multi-output relation. However, after the relation is 
derived, it may be difficult to minimize it. Some promising results 
in this direction were published recently [1].  

Situation 1 is easier, since it can be shown (Theorem 9.1) that 
for { , }B NS NSC∈ , if the B-behavior of N  is not increased, then 
the B-behavior N"  is not increased.  
Theorem 9.1: If the NS (NSC)-behavior of a sub-network, N, is 
not increased, then the NS (NSC)-behavior of the larger network, 
N" , is not increased. 

N 
N 
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Proof: Consider the NS (NSC) simulation of N" . Assume that 
this is done in a particular topological order where all nodes of 

\N N" in the TFI of N are evaluated before any node in N, and any 
node of  \N N"  in the TFO of N is evaluated after any node of N. 
When nodes in N are to be evaluated, the NS (NSC) presents a 
single vector to the PIs of N. After evaluation of N, a vector of 
outputs is presented at the POs of N. Since each of such PI/PO 
vector pairs is in the behavior of the sub-network and its NS 
(NSC)-behavior is not increased, then the set of possible PO 
vectors of the sub-network during its NS (NSC) simulation of N"  
is not increased when N is replaced by a modified network. 
Continuing the simulation, we conclude that the vector of possible 
outputs at the POs of the modified N"  is not increased and hence 
the modified N"  has a conforming NS (NSC)-behavior.   

Q.E.D. 
To use SS-behavior in hierarchical synthesis, we must allow for 

set inputs instead of scalar inputs at the PIs of the sub-network, 
similarly to how it was done in Section 4.1.2. Referring to Figure 
8, the inputs to N would appear as sets during a set simulation of 
N" . Recall that this requires introducing binary PIs to simulate 

arbitrary set inputs. To prevent misunderstanding, we refer to the 
resulting behavior as bSS simulation.  

Given this modification, we can also conclude that SS is also 
suitable for hierarchical synthesis methods. 
Theorem 9.2: If the bSS -behavior of a sub-network, N, is not 
increased, then SS-behavior of the larger network, N" , is not 
increased. 

Proof: The bSS -behavior of N serves as the specification for 
re-synthesizing N. This is conservative since the exact subsets that 
can be produced during SS-simulation of N"  are not known. 
Denote the re-synthesized N by N̂ . Hence, N̂  must produce at its 
POs, only subsets that can be produced by bSS -simulation of N. 
This simulates all possible subset inputs. For subset inputs that do 
occur, the output subsets produced by N̂ will be a subset of the 
correct ones, i.e. those produced by N. For other subset inputs, it 
is immaterial what is produced by N̂ . In particular, the subsets 
produced by N are valid. Since for subsets at the PIs of N that are 
produced by SS-simulating N"  modified with N̂  are the same as 
before modification and the corresponding subsets produced at the 
POs of N̂  are subsets produced of those produced by N, the SS-
behavior of the modified N"  is contained in the original. 

Q.E.D. 
Theorems 9.1 and 9.2 imply that all the B-behaviors are suitable 

for sub-network optimization in a hierarchical design.   

10 Conclusions 

In this paper, a theory of non-deterministic networks was 
developed and the effects of various classical network operations 
were analyzed under the following three definitions of behavior: 
normal simulation (NS), normal simulation made compatible 
(NSC), and set simulation (SS).  NS is similar to a random 
simulation of a network where there is some randomness of the 

node functionalities. The other two can be viewed as upper bound 
behaviors which are easier to compute. The theory generalizes the 
classical theory of binary deterministic logic networks and 
clarifies how the different types of behaviors are altered by the 
classical logic synthesis operations. The theory applies to binary 
designs that are specified with internal nodes represented with 
incompletely specified functions. Like all consistent theories, it 
works for a composition of ND networks in the hierarchical 
synthesis setting. 

The theory allows for leaving a ND relation temporarily at a 
node during logic synthesis, even though finally a deterministic 
network may be the objective. This approach can be used to 
reserve some local flexibility for later use, instead of forcing a 
choice early. In this way, flexibility can be “borrowed” from non-
critical regions and reserved for re-synthesizing a critical path.  

We discussed how to compute a smallest ND representation for 
a node’s functionality. Replacing a node with its smallest ND 
relation is a useful heuristic for guiding the synthesis to a smaller 
solution just as node minimization is also a heuristic. In general, 
postponing the choice of deterministic behavior can lead to better 
solutions because more freedom is given for optimization. In 
addition, although the theory applies to functional randomness, it 
might be useful for and give insight into timing randomness, 
which is one of the directions of future work. 

So far, experimentation has been done exclusively using SS-
behavior, since it seems to be the easiest to compute with in 
practice. In our implementation in the prototype system MVSIS 
[25], we observed the runtimes on binary MCNC benchmarks 
where merging of binary nodes was done to produce MV nodes. 
Other examples were taken from an MV benchmark suite [26]. 
Non-deterministic nodes were produced naturally during the 
normal node simplification process as discussed in Section 4. 
Using binary encoding, we were able to compare runtimes on 
binary example that were equivalent to the MV examples. Our 
observations were that the computations required for dealing with 
networks with multi-valued and non-deterministic nodes was only 
marginally slower, compared to the computation for binary 
deterministic networks. Generally the differences seemed to be 
within 10-20%. Thus, the impact of using ND networks is not a 
practical factor for efficiency.  

Future work on MVSIS is aimed at developing a number of 
semi-algebraic and Boolean operations in ND networks, taking 
advantage of new methods (e.g. SAT-based methods and use of 
AND-INV graphs [19]) for computing complete flexibilities as 
well as performing other logic operations. One goal is to enhance 
binary optimizations by allowing various optimization algorithms 
to work in a larger space. In a related work, [24], the ND network 
manipulations were used to operate on ND regular automata to 
derive sequential flexibility with the goal of improving sequential 
synthesis operations.  
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