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Abstract

We survey someof the methodsusedfor manipulating,
representing, and optimizing multi-valued logic with the
view of both building a better understandingof the more
specializedbinary-valuedlogic, as well as motivatingre-
search towardsa true multi-valuedmulti-leveloptimization
package.

1. Intr oduction

Logic designis normallythoughtof in termsof binarysig-
nals;howeverfor higherlevel designit is naturalto think of
variableswith symbolicvalues.For example,it is easierto
conceive of a traffic light processorwith a signall ight tak-
ing on threevaluesred� yellow� andgreenratherthandeal-
ing with l ight0 � 1 � l ight1 � 0 to standfor the light being
red.Theprocessof convertingthesemulti-valuedvariables
to binarysignalsis calledencoding.In many casestheen-
codingis doneinitially, mostlyarbitrarily, andthenbinary
valuedlogic synthesisis appliedto theresultingcircuit. An
alternative is to first manipulateandoptimizethe logic di-
rectly asmulti-valuedlogic. Thentheresultingform of the
network canbeused(possibly)intelligentlyto selectagood
encoding.Oncetheencodingis done,furtheroptimizations,
notpossiblein thepurelymulti-valuedform, canbeapplied
to the resultingbinary network. The intelligent encoding
shouldtake into accountthis additionaloptimizationwhich
will dependon thefinal binarycodesselected.

However, this alternative approachis not usedoftenbe-
cause:

� There is no good multi-valuedmulti-level logic op-
timization packagefor a multi-valuedlogic network
(suchasSISfor binarynetworks).

� Although many of the algorithmsin logic synthesis
have beengeneralizedto multi-valuedlogic, a com-
pletesuiteof algorithmshasnotbeendeveloped

� Theencodingproblemis hardfor largecircuitssinceit
is difficult to seehow anencodingdecisionultimately
affectsthe logic that resultsafter powerful logic opti-
mizationsareapplied.

Multi-valuedlogic is a generalization.Oneadvantagein
dealingwith generalizationsis that it canleadto increased
insightinto thespecializedproblem.A generalizationhelps
differentiatethe specialpropertiesfrom the generalones.
Often a propertythat is known for the specialcasecanbe
a generalpropertyin disguiseor a specializationof a more
generalproperty. Whenthis is understood,frequentlythere
is a senseof ”oh, is that what I was really doing”. Thus
theattemptto generalizehelpsunderstandthespecialcase
better.

In this paper, we survey several of the concepts,algo-
rithms,andoptimizationsthathave foundextensionsfrom
binary to multi-valuedlogic. We first dealwith two-level
logic wheremostof theconceptsdirectly generalize.Then
we look at several methodsfor representingmulti-valued
logic; sum-of products(SOPs),multi-valueddecisiondi-
agrams(MDDs), and multi-level multi-valued networks
(MV-networks). We look at algorithmsfor manipulating
Booleannetworks(decomposition,factorizationusingker-
nels,andextensionsof don’t cares(SPFDs))andseetheir
generalizationsto MV-networks. We discussextensionsto
apopularRTL language(Verilog) to MV-variables,anduse
this to build a front-endto VIS, an MV-logic optimization
andverificationpackage.Finally, thestateassignmentprob-
lemis revisitedandweconcludethepaperwith adiscussion
of someopenproblemsandwork for thefuture.

2. Notation

Definition 1 A multi-valued variable Xi can take on val-
uesfromPi ��� α0 � α1 ���	����� α 
Pi


 � 1 � .
Since eachsymbolic value αi can be associatedwith

a unique integer i, we henceforthonly considermulti-
valued variableswith integer values, for uniformity, and
Pi ��� 0 � 1 ���	���	�� Pi �� 1 � .
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Figure 1. A Multi-v alued Function of 2 vari-
ables

Definition 2 A vertex is a point in the spaceP1 � P2 ��	�	� � Pn

Definition 3 A multi-valued function � is a function
which mapsverticesin P1 � P2 � ���	� � Pn to P� , formally,
� : P1 � P2 � �	��� � Pn �� P� .

An exampleof a multi-valuedfunction is shown in Fig-
ure 1. Assumethat P1 = � 0 � 1 � 2 � , P2 ��� 0 � 1 � , andP� �
� 0 � 1 � 2 � .

If P� ��� 0 � 1 ��� � , � is a multi-valuedfunction with a
binary-valuedoutput.If avertex (minterm)is mappedto the
1 value,it is saidto be in theon-setof � , mappedto 0, in
theoff-set, andto � , in thedon’t-careset. Thebinary ideas
of implicants,prime implicants,covers, andprime covers
canbeextendedto multi-valuedfunctionsfor functions �
with binaryvaluedoutputs.

Definition 4 A multi-valued literal Xci
i is a logic function

of theform
Xci

i ��� Xi � γ1 ��� ���	� � � Xi � γk � , where γ j ! ci " Pi

Definition 5 A cube c � c1 � c2 � �	��� � cn can be written
asa productof MV-literals in theform:

Xc1
1 Xc2

2 ���	� Xcn
n

Notethatif ci � Pi, wecanomit XPi
i from theexpression

of the cube,sinceXPi
i � 1. If variableXi is binaryvalued,

the literal Xi can be written in the new notationas X # 1$i .

Similarly, theliteral Xi canbewrittenasX # 0 $i . If thevariable
Xi takes on both its values(also written as a “-”), this is
writtenasX # 0 % 1$i .

Thenext four definitionsapplyspecificallyto binaryval-
uedfunctionsof multi-valuedinputs.

Definition 6 An implicant is a cubec such that for all ver-
ticesv ! c, � � v�'&� 0.

Definition 7 A prime implicant is an implicantc such that
there is no implicantd such thatd ( c.

Definition 8 A cover of � is a set of implicants whose
unioncontainseverypoint in theonsetof � andno points
in theoffset.

Definition 9 A prime cover of � is a cover, each of whose
elementsis prime.

The multi-valuedfunction in Figure1 canbe written in
theform of a sumof cubesfor eachof its values.Onesuch
cover for � is,

F # 0 $ � X # 2$1 X # 0$2

F # 1 $ � X # 0 % 1 $1 X # 0 $2 � X # 1$1 X # 0 % 1 $2

F # 2 $ � X # 0 % 2 $1 X # 1 $2
A convenientrepresentationof literalsandcubesutilizes

positionalnotation:

Definition 10 Positional Notation: A literal Xci
i is as-

signedpositions(or columns)v0 � v1 �	���	� v 
Pi

 � 1, such that

v j �
)

1 if j ! ci " Pi

0 otherwise

For example,the multi-valuedfunction in Figure1 can
bewritten in positionalnotationas:

X1 X2 �
001 10 0

110 10 1

010 11 1

101 01 2

3. Generalizations

3.1. BooleanAlgebra

A Booleanalgebrais a set of objectson which thereare
two operationsdefined. The operationsobey a certainset
of rules.A Booleanalgebrais oftenassociatedwith binary
functionsof binary variables.The Booleanalgebrain this
caseis thealgebraof themanipulationof binarylogic func-
tions. Eachsuchfunctioncanbethoughtasa setof points,
its onset.It is just thecharacteristicfunctionof its onset,i.e.
it is 1 whenappliedto a point in its onsetand0 otherwise.
Two functionsANDedtogetheris thesameastakingthein-
tersectionof their onsets.Similarly ORing correspondsto
taking the union. It is known that any Booleanalgebrais
isomorphicto theBooleanalgebraof setswhereunionand
intersectionarethe two operations.Note that nothinghas
beensaidaboutthe sizeof the domainspace.In fact one
canusemulti-valuedvariablesto describea point in some
space.For example,supposeweusetwo variables,x with 5
values,andy with 3 values.Thenthereare15 pointsin the



domainspace.A point (or minterm)in the spaceis given
by assigningeachof the variablesa value from their do-
mains,e.g. (x � 3, y � 1). A function is just an arbitrary
subsetof suchminterms.Thusthemathematicsof Boolean
algebrasdirectlyappliesto binaryfunctionsof multi-valued
variables.Consideringeachoutputvalueasaseparatefunc-
tion, onecantreatthecasewheretherangeof thefunction
is also multi-valued. Thus for example,the set of points
wherethesignallight is red is theonsetof onefunction,the
pointswherelight is yellowanotherfunction,etc.

3.2. One-Hot Encoding and Multi-v alued Sig-
nals.

Oneof thefirst methodsusedto treatmulti-valuedvariables
in logic wasthe useof a one-hotencodingfor the signals,
with anassociatedsetof don’t cares.For example,consider
the traffic light processorandsignal l ight. A one-hoten-
codingwould createthreethreesignalsl ightr , l ighty, l ightg
with thesetof don’t caresgivenby thelogic expression,

l ightr � l ighty � l ightr � l ightg � l ighty � l ightg

which saysthatwe don’t carefor examplethatboth l ightr
and l ighty are 1, sinceit will never occur. This formula-
tion is fully equivalentto manipulatingmulti-valuedsignals
andits advantageis thatit mapstheproblembackto thebi-
narycaseandhencethe fully developedbinaryalgorithms
applydirectly. Further, futuredevelopmentsin binarymeth-
odscanbeusedwhenthey develop. Thedisadvantagesare
that many moresignalsare introducedand the associated
don’t carescanbecomevery large. In theareaof two-level
logic optimization,theselatterreasonswereenoughto spur
thedevelopmentof ESPRESSO-II,a packagefor two-level
multi-valuedlogic optimization. (However, in the multi-
levelcase,thismotivationhasnotbeensufficientsofar). An
interestingfootnoteis that whenESPRESSO-IIwascom-
pletedandcomparedto theoriginalESPRESSOwhereboth
wereappliedto purelybinaryfunctions,ESPRESSO-IIwas
faster. Theexplanationwasthatthegeneralizationto multi-
valuedlogic led to a superiormethodof representationof
thefunctionsfor computermanipulations.

3.3. Multi-v alued Logic Minimization in
ESPRESSO-II

For a multi-valuedfunction with a binary-valuedoutput,
mostof the binary logic minimization theorycanbe gen-
eralized.As alreadydiscussed,theconceptsof implicants,
prime implicants,covers and prime covers are easily ex-
tendedto suchfunctions.As in thebinarycase,theprocess
of logic minimizationinvolvesgeneratingprimes,generat-
ing a covering table,andsolving this covering table. The

notionsof cofactorsand the Shannonexpansiontheorem
havealsobeengeneralizedto themulti-valuedcase.

Definition 11 Thecofactor of a function f with respectto
a MV literal Xs, denotedfXs, is obtainedby eliminatingall
cubesof f thatare disjoint to s,andexpandingtheremain-
ing cubesby unioninginto theX positionall valuesnot in
s.

The cofactorwith respectto a MV-cubeis obtainedby
taking the sucessive cofactorswith respectto eachMV-
literal in thecube.

Theorem3.1 Multi-valued Shannon Expansion Theo-
rem: Let f be any functionand � c1 � c2 ���	����� ct � any setof
MV-cubessuch that

t

∑
i * 1

ci � 1

Then,

f �
t

∑
i * 1

ci fci

It follows from theabovethat

f + 1 i ff fci � 1 for each i ,
An algorithmfor multi-valuedtautologycanbedevised

basedon this,muchlike in thebinarycase,wheretypically
thecubesx, x areused.

Definition 12 A function f is said to be weakly unate in
Xi if thereexistssomevalue � j such that changingXi from
value � j to anyothervaluedoesnot causef to decrease,
i.e. f is not changedfrom1 to 0.

Weakunatenessis onemulti-valuedanalogof unateness.
(Thereis anotheranlog,strongunateness,which for binary
valuedfunctionsis thesameasweakunateness.)Theunate
reductiontheoremfor tautologyappliesin themulti-valued
caseaswell. Generationof primesandthebinaryroutines
of essentialprime generation, reduceand irredundantre-
mainessentiallyunchanged.

Basedon the above, ESPRESSO-IIhandlesbinary val-
uedfunctionsof multi-valuedfunctions.Positionalnotation
is usedto specifythemulti-valuedportionof the function.
Symbolicvariablesaresupportedaswell. MV-applications
of ESPRESSO-IIinclude stateassignment[1] and PLAs
whereinputsarepairedanddecodedto form MV-inputs.

3.4. Funtional Representation

Wewill review severalmethodsfor representinglogic func-
tionsin theMV domain.



3.4.1 Sum-of-products

Oneof the earliestmethodsusedfor binary functionswas
a two-level sum-of-productrepresentation.Early logic syn-
thesiswork was doneon this type of representation.Al-
thoughit is inherentlysimple, thereare certainfunctions
(like theoddor evenparity function)which have exponen-
tial sizedrepresentations.As we have alreadyseen,multi-
valued functions can be representedin a two-level sum-
of-productscheme.Logic minimizationon suchfunctions
canbe performedin ESPRESSO-II.For certainfunctions,
this schemehasthedrawbackof giving riseto exponential-
sizedSOPs.

3.4.2 MV-networks

Another powerful representationtechniqueis the multi-
level booleannetwork, eachof whosenodesaretwo-level
sum-of-products.This schemehasthe ability to represent
implementablebooleanfunctionsvery compactly. A good
dealof researchon this typeof representationhasbeenper-
formed,fuelledby theintroductionof SIS,a sequentialop-
timization andsynthesistool. The multi-level network of
multi-valuednodes(calledanMV-network) is a directgen-
eralizationof this. It is similar to a multi-level booleannet-
work except that eachnodeis, in general,a multi-valued
function. VIS (VerificationInteractingwith Synthesis)is a
researchtool whoseinput is sucha network. Theinput for-
mat format of VIS is calledblif-mv. (VIS is discussedin
moredetailin Section4). It is hopedthattoolslikeVIS will
result in increasedresearchin synthesisfor multi-valued
networks. The drawbackof thesenetwork representations
(aswell assum-of-products)is thattherearemultiple ways
to representa givenfunctionundertheseschemes.

3.4.3 MDDs

This drawback is eliminatedin a booleanfunction repre-
sentationschemecalledReducedOrderedBinary Decision
Diagrams(henceforthabbreviated as BDD). BDDs have
the appealingpropertythat they arecanonical,andhence
theproblemof checkingfor functionalequivalenceis triv-
ial. Yet, they alsohave the drawbackthat for someimple-
mentablecircuits,theBDD is exponentialin thenumberof
inputvariables.

BDDs have beengeneralizedto the multi-valuedcase,
resulting in a Multi-valued Decision Diagram (MDDs).
MDDs apply to multi-valuedfunctionswith binary-valued
outputs. However, if a multi-valued function has an n-
valuedoutput,wheren - 2, multi-valuedfunctions(MVFs)
arecreatedfirst. Essentially, we constructMDDs for each
value of the multi-valuedoutput variable. So, for exam-
ple, if the multi-valuedfunction f has3 values,then the
MVF � f � has3 MDDs, fa, fb and fc.

Figure 2. An MDD Node and its Correspond-
ing BDD Nodes.

MDDs area simpleextensionof BDDs. Eachnodein
an MDD hask childreninsteadof just two, wherek is the
numberof valuesthevariableassociatedwith thenodecan
take. The result is a DAG with the root noderepresenting
the function, and the leaf nodesrepresenting0 and1. A
pureMDD packagewasbuilt andexperimentedwith several
yearsagoin Berkeley [2].

Anotheroptionis to encodeeachmulti-valuednodewith
k childrenusinglog2 � k� binaryvariables.Thusfor example
anMDD nodewith 6 childrenwould besplit into 3 binary
variables.In Figure2, the MDD nodeon the left is trans-
formedto thegroupof nodeson theright. Notethatin both
cases,thenumberof childrenis 6. Althoughwith 3 binary
variables,it is possibleto represent8 children,theextratwo
leavesareusedasdon’t caresin theprocessin a somewhat
arbitrarybut specificway.

An MDD packagewasalsodevelopedatBerkeley based
on this conversionto binary variables.The MDD package
wasconstructedasahighlevel interfaceto aBDD package.
In factany BDD packagecaneasilybeused.For theuser,
only multi-valuedvariablesareobservable; the conversion
to binary variablesis internalandtransparent.The advan-
tagesof this approachare:

� Thecontinuingdevelopmentof BDD packagescanbe
leveragedin theMDD package.

� Any newly developedBDD packagethatprovesto be
superiorcanbeeasilyslippedunderthecovers.

� The binary variablesassociatedwith a multi-valued
variabledo not have to be keptadjacentin thebinary
variableordering,whereaswith a purelymulti-valued
version,the effect is as if the associatedbinary vari-
ablesareconstrainedto betogetherin theordering.In
someexamples,this leadsto a significantincreasein
MDD size. Thus in this casethe initial andarbitrary
binaryencodinguseddoesnot seemto haveany nega-
tiveconsequence.



3.5. Multi-v aluedRedundancyRemoval

Recentmethods[3] [4] for binary redundancy removal
avoid theuseof statetraversal.Additionally, [4] findsmul-
tiple compatibleredundanciessimultaneously. Thesepow-
erful advancesin the field of binary redundancy removal
were extendedin [5] to perform redundancy removal for
multi-valuednetworks.Thismethodworksin thefollowing
manner.

Firstaone-hotencodingof all themulti-valuedvariables
of thedesignis performed.Multi-valuedvariablesarewrit-
tenoutasbinaryvariables,usingthisone-hotencoding.The
binary network is equivalent to the multi-valuednetwork
moduloencoding.

Next, binary redundancy removal is invoked on the re-
sultingnetwork. Weonly checkfor signalsstuck-at-0in the
binary network. In casea binary signalsi feedingbinary
gatet j is determinedto bestuck-at-0redundant, thismeans
that the multi-valuedsignals in its fanoutto multi-valued
signalt is a don’t carefor value j. Hencewe canchooseto
removetheith valueof variablesoccuringin any MV-cubes
of t with output j. Sinceeachtablehasa default value,this
hastheeffectof makingtheoutputof suchacuberestricted
to s � 1 equalto the default value. This simplifiesthe ta-
ble for t by reducingor removing cubes.We do not need
to worry aboutstuck-at-1 redundanciesin the binary net-
work, sincebecausethesignalsareone-hot,astuck-at-1on
avalueof s, hasto beassociatedwith stuck-at-0’sonall the
othervaluesof s.

All redundantbinary signalsarerecordedin a file dur-
ing the binary redundancy processingof the binary net-
work. Thenthe original multi-valuednetwork is modified
asabove,basedon thebinaryredundanciesthuscomputed.

Initial experimentsusingthis techniqueshow a 10-20%
reductionin thesizeof themulti-valueddescription.

3.6. Multi-V aluedFactorization

Oneof the moreeffective methodsfor treatingmulti-level
Booleannetworks hasbeenthe useof kernelsfor finding
commonfactorsamongseveralbinarylogic functions.The
commonfactorcanthenberemovedasa separatefunction
andusedto simplify someof thefunctions.To seehow this
conceptis extendedto multi-valuedfunctions,considerthe
following two functions

f1 � X # 0 % 1$ � a � k � X # 2 $ � b � k � c

f2 � X # 3 % 4$ � a � j � X # 5 $ � b � j � d

We will show thatthefunction

X # 0 % 1 % 3 % 4 $ � a � X # 2 % 5 $ � b

is a commonfactorof both f1 and f2, andthusthenetwork
canberewrittenas

f1 � X # 0 % 1 % 2 $ � k � y3 � c

f2 � X # 3 % 4 % 5 $ � j � y3 � d

y3 � X # 0 % 1 % 3 % 4 $ � a � X # 2 % 5 $ � b
The first step is to find all the kernelsand co-kernelsby
successive co-factoringby single binary literals. For this
example,we obtainthefollowing table

Exp co-kernel kernel
f1 1 a � k � X # 0 % 1$ � b � k � X # 2$ � c
f1 k a � X # 0 % 1 $ � b � X # 2 $
f2 1 a � j � X # 3 % 4 $ � b � j � X # 5$ � d
f2 j a � X # 3 % 4 $ � b � X # 5 $

We put this in a co-kernelcubematrixM asfollows

a b a � k b � k a � j b � j c d
1 0 0 X # 0 % 1 $ X # 2 $ 0 0 1 0
k X # 0 % 1 $ X # 2 $ 0 0 0 0 0 0
1 0 0 0 0 X # 3 % 4$ X # 5$ 0 1
j X # 3 % 4 $ X # 5 $ 0 0 0 0 0 0

Note that the binary partsof the cubesof the kernelsare
extractedoutat thetopof eachcolumn.A rectangleof such
a matrix is a setof rowsanda setof columns.For example
�.� 2 � 4� � � 1 � 2� � is a rectangle.Associatedwith a rectangleis
amatrix of MV entries,e.g.

X # 0 % 1 $ X # 2$
X # 3 % 4 $ X # 5$

Sucharectanglecangiveriseto a commonfactorprovided
that the matrix is satisfiable, which meansfor every vari-
able,e.g. X, if a valueoccurssomewherein row i andthe
samevalueoccurssomewherein column j, thenthatvalue
mustalsooccur in entry Mi j . The above matrix is satisfi-
able.For asatisfiablerectangle,wecanextractthecommon
factorasfollows. For eachrow of the rectangle,theunion
of row entriesis ANDedwith theco-kernelassociatedwith
that row. Similarly, for eachcolumnof the rectangle,the
unionof all columnentriesis ANDedwith thebinarycube
attachedto the column. The kernel is then the OR of the
resultsfor all the columnsof the rectangle. In the above
example,this yieldsfor column1, a � X # 0 % 1 % 3 % 4$ , andfor col-
umn2, b � X # 2 % 5 $ , andthekernela � X # 0 % 1 % 3 % 4$ � b � X # 2 % 5$ . For
row 2 we get,k � X # 0 % 1 % 2 $ andfor row 4, j � X # 3 % 4 % 5 $ , yielding
a factorization

f1 � k � X # 0 % 1 % 2 $ � a � X # 0 % 1 % 3 % 4 $ � b � X # 2 % 5$ ��� c

f2 � j � X # 3 % 4 % 5 $ � a � X # 0 % 1 % 3 % 4$ � b � X # 2 % 5$ ��� d



It hasbeenproved that if κ is a kernelfound by the usual
Booleankernelingprocessfor someencoding,thenit will
be found by the above MV factoringprocess.In addition,
theMV processcanfind some“Booleanfactors”for anen-
coding.

Matricesthatarenot satisfiablecanbe”reduced”to sat-
isfiablematricesby consideringfor eachMi j asubsetof val-
uesin orderto remove any offendingvaluein an entry. In
addition,don’t carescanbeexpressedasX # 0 % 1 % 2 $	/ 6 % 70 if the
valuesof X � 6 or 7 aredon’t carefor the function. Then
for a given entry Mi j one hasthe option of including the
values6,7 in orderthemake thematrix satisfiable.

See[6] for anextendeddiscussionof theseideas.

3.7. SPFDs

A new methodfor specifyingimplementationalflexibility
in booleannetworkswasintroducedin [7]. This work was
generalizedto MV-networks in [8]. SPFDsare like don’t
caresbut are more powerful. Unlike don’t cares,which
computetheflexibility of asinglenodein anetwork,SPFDs
expresstheflexibility of anodein anetwork alongwith the
nodesin its fanin.

In general,SPFDsareasetof inter-relatedIncompletely
SpecifiedFunctions(ISFs).An ISF canberepresentedasa
completebipartitegraphon themintermsin theoffsetsand
onsets.An edgebetweenmintermsindicatesthata function
thatdistinguishestheonsetandoffsetmintermsonthatedge
is required. This kind of graphhasexactly two minimum
coloringscorrespondingto implementingthe onsetor the
offset.

In theSPFDmethod,wefirst build thecompletebipartite
graphof an ISF F . This givespairsof mintermsthatneed
to be distinguished.Figure3(a) shows an examplebipar-
tite graphwith mintermsy1 � y2 �	���	� y5 in the input y space.
Assumethat the inputs to F are y �1� g1 � x� � g2 � x� � g3 � x��� ,
asshown in Figure 3(b). Then, if minterms � y1 � y2 � y3 �
are encodeddifferently from � y4 � y5 � by g � x� , we have
enoughinformationin y to build a valid implementationof
F. The task of distinguishingdifferentpairsof minterms
canbedistributedto differentinput wires,asshown in Fig-
ure 4. Note that even thoughF startedout as an ISF (a
completebipartitegraph),the graphsfor gi arenot bipar-
tite, hencenot ISFs. They areSPFDs.Any coloringof the
SPFDsof the3 wiresin Figure4 is a valid implementation
of thefunctionsg1 � x� � g2 � x� andg3 � x� . For example,input
1 has4 possibletwo-colorings,correspondingto 4 possible
implementationsof g1. In general,SPFDsprovide theflex-
ibility to changeboththefunctionsg which implementthe
SPFDsderivedfor theseinputs,andalsoto re-implementF
to reflectthenew encodingof theinputs.

The above discussionon binary valuedSPFDsis easily
generalized[8], asfollows.

F

g1 g2 g3

y2 y3y1

(b) Structureof F .(a)Bipartitegraphfor F .
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Figure 3. SPFDs - an example

Input 1 Input 2 Input 3

y4

y5

y4

y5

y4

y5

y3

y2

y1 y1

y2

y3

y1

y2

y3

Figure 4. An implementation of F .

Definition 13 A SPFD � (y) on domainY is an undirected
graph (V, E) where each v ! V is encodedas a minterm
v �2� y1 � y2 �	���	� yk �3! Y.

Definition 14 A functionf(y) implements an SPFD � (y)
= (V, E) if f(y), y ! V is a valid coloringof � , i.e.

f � y1 �'&� f � y2 � � � y1 � y2 �4! E.

Analogousto thebinarycase,eachvalid coloringof the
SPFDgivesan implementationof � . Thechromaticnum-
ber of thegraphis theminimumnumberof valuesthat the
resultingfunction is requiredto have in its range. Thusif
this is greaterthan2, multi-valuedfunctionsarerequired.
Eachvalidcoloringof thegraphgivesrisetoaMV-function.

3.8. Decompositionof Multi-v aluedFunctions

In [9], theauthorsextendtheextensivework on thedecom-
positionof binaryfunctionsto MV-functions.Considerset
functionsof theform f : En � Dm, with n inputsx1 � x2 ���	��� xn

and m outputsy1 � y2 �	���	� ym which are partially specified.
HereE is a finite, nonemptysetandD � 2E � � /0 � ; in gen-
eral, f assignsto any outputyi a nonemptysetof elements
of E. The problem of decompositionof f � x1 � x2 �	�	���	� xn �
in the form h � u1 � u2 �	���	��� ur � g � v1 � v2 �	���	��� vs �	� is addressed.
HereX ��� x1 � x2 ���	����� xn � is the setof input variables,and
U �5� u1 � u2 �	�	���	� ur � andV �6� v1 � � v2 �	���	��� vs � aretwo sub-
setsof X whoseunionis X. Figure6 shows sucha decom-
position.

The function f is representedas a set matrix
M, where each row consists of a n � m-tuple t �
t1 �	���	��� tn � tn7 1 �	�	��� tn7 m. The input projection of t is tin �
t1 �	���	� tn, andtheoutputprojectionof t is tout � tn7 1 �	���	� tn7 m.
ThematrixM is requiredto beconsistent, whichmeansthat
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Figure 6. Multi-v alued decomposition

if the input projectionsof a setof rows cover an input ver-
tex, thenthecorrespondingoutputprojectionsshouldhave
acommonvalue.Thefunction f is evaluatedat vectoreby
taking the intersectionof the y valuesof all the rows that
covere. Thedecompositionproceedsby first findingsetsU
andV, thenfinding a blanket βg from M. Fromβg, g andh
canbeconstructed.

Definition 15 Givena setS, a blanket β 9�: B1 ; B2 ;	<	<�< Bk =
is a setof setsof nonempty, distinctbut not necessarilydis-
joint subsetsof Scalledblocks, whoseunionis S.

For example,if S 9>: 1 ; 2 ; 3 = , thena blanketof S is β1 9
:?: 1 ; 2 = ; : 2 ; 3 = ; : 1 =?=A@
Definition 16 Theblanket product of two blanketsβ and
β B is a blanketgivenby

β C β BD9 undup E ne: Bi F B j GBi H β ; 9 B j H β B =�I ,
where ne: Bi = 9J: Bi =LK : /0 = . undup E β I removesthedupli-
cateentriesin β.

Consider β2 9M:?: 1 = ; : 1 ; 3 = ; : 2 =?= . Then β1 C β2 9:?: 1 = ; : 2 = ; : 3 =?=.@
Definition 17 β N β O if for each Bi H β, there is a B j H β O
such thatBi P B j .

In theaboveexamples,β1 C β2 N β1.
In the remainderof this section,we refer to blanketsof

rowsof setmatrices.

1 : 1 = : 0 ; 1 ; 2 = : 0 =
2 : 1 = : 1 = : 0 ; 2 =
3 : 0 ; 1 ; 2 = : 0 ; 1 = : 0 =
4 : 1 = : 0 ; 1 = : 0 =
5 : 0 = : 0 ; 1 = : 1 ; 2 =

Table 1. Set matrix to illustrate row blanket

Definition 18 Therow blanket β f of a setmatrix M for f
havingh rowsandk columnsis givenby

β f 9 ne: TQ e = where
TQ e 9�: t H T G t R e=

whereT is thesetof rowsof M, ande H Ek.

Consider the set matrix M given in Table 1. Note
that TQ 000 9S: 3 = and TQ 100 9T: 1 ; 3 ; 4 = . Listing all
the unique blocks correspondingto the mintermsof the
table, we get the row blanket for this matrix β f 9:?: 3 = ; : 5 = ; : 1 ; 3 ; 4 = ; : 1 ; 2 ; 3 ; 4 = ; : 2 = ; : 1 =?= .

In the following, X 9 U U V andthe variablesV corre-
spondto thesupportof thefunctiong in thedecomposition.
sZ
in refersto theprojectionof tuplesin on theZ space.

Definition 19 For all tuplest and u, if there exist multi-
valuedmintermsd andesuch that tVin R d, anduV

in R e, then
t andu appearin thesameblock of β f . In this case, β f is
saidto correspond to g with respect to V.

Theorem3.2 Letsetfunctionf(X) bespecifiedbya consis-
tentsetmatrix T of tuples,andlet U, V of X besuch that U
U V = X. For everyblanketβg satisfying

βV
f N βg andβU

f C βg N β f (1)

there existsa decompositionE g ; hI of f such that βg corre-
spondsto g with respectto V.

Considerthesetmatrix in Table2. ThesetU 96: x1 = and
V 9>: x2 ; x3 = . Hence

βU
f 9>:A: 1 = ; : 2 ; 4 = ; : 3 ; 4 =A= ;

βV
f 9�:?: 1 ; 3 ; 4 = ; : 1 ; 4 = ; : 2 ; 3 = ; : 2 = ; : 2 ; 3 ; 4 = ; : 2 ; 4 =V= ;

β f 9>:A: 1 = ; : 2 ; 4 = ; : 4 = ; : 3 ; 4 = ; : 2 = ; : 3 =A=?@

Notethatβg 92:?: 1 ; 2 ; 4 = ; : 2 ; 3 ; 4 = ; : 1 ; 3 ; 4 =V= satisfiesequa-
tion 1. Now encodethesethreeblocksusingamulti-valued
variablewith values0, 1, 2 respectively.

Theconstructionof g from βg proceedsasfollows. For
eachmulti-valuedmintermin V, we enumeratetherowsof
T covering this minterm. Now all the blocksBi of βg are



Row x1 x2 x3 f1 f2
1 � 0 � � 0 � � 0 � 2 � � 0 � 1 � � 0 �
2 � 1 � � 1 � 2 � � 0 � 2 � � 0 � 2 � � 1 �
3 � 2 � � 0 � 1 � 2 � � 0 � � 1 � 2 � � 2 �
4 � 1 � 2 � � 0 � 2 � � 0 � 2 � � 0 � 1 � � 1 � 2 �

Table 2. Example set matrix to illustrate de-
composition

x2 x3 βV W βg codes g
0 0 � 1 � 3 � 4 � � 1 � 3 � 4 � 2 2
0 2 � 1 � 4 � � 1 � 2 � 4 � � � 1 � 3 � 4 � 0, 2 2
1 0 � 2 � 3 � � 2 � 3 � 4 � 1 1
1 2 � 2 � � 1 � 2 � 4 � � � 2 � 3 � 4 � 0, 1 1
2 0 � 2 � 3 � 4 � � 2 � 3 � 4 � 1 1
2 2 � 2 � 4 � � 1 � 2 � 4 � � � 2 � 3 � 4 � 0, 1 0

Table 3. Construction of g from βg

listed suchthat theseblockscontainthe rows of T cover-
ing theminterm.FromthefeasibleBi for this minterm,we
chooseone Bi as the implementationof g for that multi-
valuedminterm.Finally theseBi areencoded.

An exampleof the constructionof g given βg is shown
Table3.

Similarly, in theconstructionof h from βg, we first list,
for eachmulti-valuedmintermof U , rowsof T thatcover it
(seefirst two columnsbelow in Table4. For eachminterm
of U , welist thepossiblemulti-valuedmintermsof g, along
with their implementedcodefrom the stepabove. Inter-
sectingthetwo setsgivesusanelementBk. For eachsuch
element,we list all elementsB j ! β f suchthat Bk W B j .
Chooseoneelementastheimplementation.Theoutputsare
chosenby intersectingtheoutputsof the rows correspond-
ing to thechosenimplementationelement.

An exampleof theconstructionof h �J� h1 � h2 � givenβg

is shown in Table4. Notethath is keptasa setfunctionfor
maintainingflexibility for furtherdecompositions.

Findingβg is not simple,but analgorithmfor this starts

x1 βU g βg βU X βg Y β f h1 h2
0 Z 1[ 2 Z 1 \ 3 \ 4[ Z 1[ Z 1[ 0, 1 0
1 Z 2\ 4[ 2 Z 1 \ 3 \ 4[ Z 4[ Z 2 \ 4[�\]Z 4[^\]Z 3 \ 4[ 0, 1 1, 2
1 Z 2\ 4[ 0 Z 1 \ 2 \ 4[ Z 2 \ 4[ Z 2 \ 4[ 0 1
1 Z 2\ 4[ 1 Z 2 \ 3 \ 4[ Z 2 \ 4[ Z 2 \ 4[ 0 1
2 Z 3\ 4[ 2 Z 1 \ 3 \ 4[ Z 3 \ 4[ Z 3 \ 4[ 1 2
2 Z 3\ 4[ 0 Z 1 \ 2 \ 4[ Z 4[ Z 2 \ 4[�\]Z 4[^\]Z 3 \ 4[ 0, 1 1, 2
2 Z 3\ 4[ 1 Z 2 \ 3 \ 4[ Z 3 \ 4[ Z 3 \ 4[ 1 2

Table 4. Construction of h from βg

with βV , andmergesblocksto getβ _ suchthatβV W β _ . Now
checkif βU � β _ W β f .

4. The VIS System

VIS (VerificationInteractingwith Synthesis)is a software
tool distributedby the University of California, Berkeley,
andtheUniversityof Colorado,Boulder. VIS is a tool inte-
gratingverification,simulationandsynthesisof finite-state
hardwaresystems.It hasa Verilog front end,which gener-
atesa blif-mv descriptionof the network. blif-mv is a for-
mat for representingMV-networks. VIS supportsformal
verification(fair CTL modelchecking,languageemptiness
checkingandequivalencechecking),hierarchicalsynthesis
from a multi-valueddescription,and cycle basedsimula-
tion of the multi-valuedinput. In this way, VIS provides
a strongplatformfor researchin formal verificationandin
thefuture,hierarchicalmulti-valuedsynthesis.

4.1 Multi-v aluedextensionsto Verilog

Partof theVIS systemis aVerilog translator(vl2mv) which
whichsupportsamulti-valuedextensionto Verilog(aswell
asnondeterminism).Theusercandeclarethata variableis
of a particulartypewith its rangeof valuesgivenby refer-
ring to a typedefstatement.For example,

typedef color � red,yellow,green �
declarescolor asa type.Later,

signal light color
declaresthe variablelight to have type color. The Verilog
translator, translatesthe input into an MV-network repre-
sentedin a file usingblif-mv.

4.2 Blif-mv

blif-mv is an intermediateformat that is outputby theVer-
ilog translator. It representsan MV-network using tables
to representmulti-valuedfunctions. Eachtable is a cover
of MV-cubesof the correspondingmulti-valuedfunction.
Thesetablesare fully specified(all multi-valuedvertices
are assignedsomeoutput value) and deterministic(each
multi-valued vertex is assigneda unique output value).
blif-mv is asimpleextensionof blif, theintermediateformat
usedin SIS.blif-mv includesfor conveniencesomehigher
level constructsnot in blif. One suchthat is particularly
useful for multi-valuedvariablesis the ”equal” construct.
Consideramultiplexor with asinglebinarycontrolandtwo
multi-valuedinputsa andb. In the puretable format, we
wouldhave to say



x a b output
0 0 - 0
0 1 - 1
0 2 - 2
0 3 - 3
...

...
...

...
1 - 0 0
1 - 1 1
...

...
...

...

With the equal construct,the table is compactedinto
two lines,no matterhow many valuesarein therangeof a
andb

x a b output
0 - - =a
1 - - =b

4.3 VIS internals

The MV-network in the blif-mv format is translatedinside
VIS into a setof MVFs beforeany formal verificationor
simulationis performed.A simplemulti-valuedsimulation
in provided in VIS. It is performedby usingthe MDDs of
the MVFs of the functionsto be simulated. Assumethat
a functionhasanMVF with n MDDs, eachcorresponding
to the n valuesof the function. For the ith MDD, simula-
tion proceedsby cofactoringthis with respectto thevector
correspondingto the systeminputs. If the result is a “1”,
then the simulationoutput is i, and the remainingMDDs
arenot evaluated,(sincethemulti-valuedfunctionsin VIS
aredeterministic).If theresultis a “0”, the i � 1th MDD is
checked. If n � 1 MDDs returna “0”, thenthe simulation
output is n. (This is becausethe multi-valuedfunction is
fully specified.)

Sincean MV-network is fully representedin VIS, and
theVIS systemallows theuseof a popularRTL to specify
suchnetworks,we have anexcellentopportunityin VIS to
createa multi-valuedoptimizationpackage.Further, VIS
allows andkeepshierarchy, sosynthesisusinghierarchyis
enabled.However, at this point,directsynthesisinsideVIS
hasnot beendevelopedsinceour first efforts wereto take
advantageof the SIS system.The ideais that by convert-
ing all signalsinto their one-hot(or even logarithmic en-
codedbinaryversions),wecanexperimentandmakeuseof
theextensivedevelopmentsin SISfor binaryoptimizations.
However, thishasprovedmoredifficult thatwehadfirst es-
timatedandperhapsit is time to bite the bullet anddo the
full developmentinsideVIS.

5. StateAssignment

As mentionedearlier, an alternative way of optimizing a
multi-valuedlogic function is to first do themanipulations
in the multi-valueddomain,independentof any encoding,
andthento usethe resultingstructureto intelligently find
a goodencoding.Perhapsthe mostsuccessfulexampleof
this is theKISSapproachfor stateassignmentof finite state
machines[1]. Herethestatevariableis multi-valued.

Considerall next state functions, one for each state
value,asmany separatebinaryvaluedfunctionsof oneMV-
variableandperhapsseveral binary valuedvariables. The
approachtakenin KISS is to minimizethis setof functions
with ESPRESSO-IIresultingin a minimizedcover of MV-
cubes.Consideronesuchcube.In its statevariableposition
is a MV-literal, which is a setof values.Eachsuchcubein
thecovergivessucha set.Themain ideain KISS is that if
it is possibleto encodethestatevariablein sucha way that
eachsetof valuesassociatedwith any cubein theresulting
minimizedSOPcovercanbealsodescribedasacubein the
spaceof binaryencodingvariables,theneachMV-cubecan
be replacedby the binary counterpart,and the sizeof the
cover is not increased.

This embeddingof sets into facesof the cube of the
encodingvariablesis called the face embeddingproblem;
given a setof setsof points, encodeeachsetwith binary
variablesso that eachis preciselycontainedin a cubein
thebinaryspace.This is alwayspossibleif enoughbinary
variablesareused,soa sideconstraintis to usea small or
minimum numberof binary variables. The above proce-
dureis known astheinputencodingproblem.Notethatwe
treatedthenext statefunctionasseparatebinary functions.
Thusthe fact that the next statevariableswill alsobe en-
codedwasignored.Oncethenext stateoutputfunctionsare
replacedby the derived codesusedfor the statevariables,
thenmoreoptimizationis possiblebecausemorecubescan
becombineddueto sharingof theoutputs.

This procedurehasbeenextendedin a programcalled
NOVA [10] to considerboththeinput andoutputencoding
of the statevariables.The procedureworks well for small
statemachines,saylessthan30 states,but is ineffective for
large machines,saymorethan50 states.Thereareexam-
pleswhereanencodinggivenby thedesigner, possiblyde-
rivedfrom someknowledgeaboutthestructureof theprob-
lem, leadsto a muchsmallerimplementationof the logic
thanan implementationderived usingNOVA. Onespecu-
lation is that a betterencodingcould be obtainedby de-
composingthemachineinto a productof smallermachines
andapplyingNOVA to the small machines.The encoding
obtainedby concatenatingthecodesof thesmallmachines
is an encodingof the large machine. Thus a first stepin
themulti-valueddomainwouldbethedecompositionof the
machine.Unfortunately, we do not know of any really ef-



fectivewayto dothisandthis is anareafor potentiallyfruit-
ful (but probablydifficult) research.

6. Conclusionsand OpenProblems

We have surveyed two-level and multi-level logic opti-
mizationsfor MV-variables. We discussedthreemethods
for representingMV-functions(SOPs,MV-networks, and
MDDs). One-hotencodingrepresentsa way to keepthe
multi-valuedstructure,but to usebinaryoperationsfor the
manipulations;however this is not alwayssuccessful.Con-
ceptually, thebestway to dealwith MV-logic is directma-
nipulationandoptimizationfollowedby intelligentencod-
ing, followedbybinaryoptimizations.An effectivepackage
for this remainsa challengefor thefuture.Although,aswe
haveseenin this paper, many of theconceptsnecessaryfor
suvcha packagehave beendeveloped,efficient algorithms
for their effective usein sucha packagearestill missing.
The VIS systemrepresentsa framework for future devel-
opmentsin this direction,but a significantamountof effort
andresearchremainsto bedone.
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