Homework 4

Due 11/07/00

• Exercise 1
Let X be a non-empty set and d a function $d : X \times X \rightarrow \mathbb{R}$ (\mathbb{R} is the set of real numbers), such that $\forall x, y, z \in X$:

1. $d(x, y) = d(y, x)$
2. $d(x, y) = 0$ if and only if $x = y$
3. $d(x, y) \geq 0$
4. $d(x, y) + d(y, z) \geq d(x, z)$

Then, d is called a metric on X and (X, d) is a metric space.

a) Define a metric d on $X = \mathbb{R}$.

b) Prove that the Cantor metric defined on the set S^n of n-tuples of signals (signals and tags are defined in the paper A Denotational Framework for Comparing Models of Computation by Lee and Sangiovanni-Vincenelli) as

$$d(s, s') = \sup \left\{ \frac{1}{2^t} : s(t) \neq s'(t), t \in [0, \infty) \right\}$$

is an ultrametric (d is an ultrametric, if satisfies also $\max(d(s, s'), d(s', s'')) \geq d(s, s'')$ in addition to (1)(2)(3)(4)).

• Exercise 2
Let P and Q be ordered sets. A map $\varphi : P \rightarrow Q$ is said to be:

- order-preserving (or monotonic) if $x \leq y$ in P implies $\varphi(x) \leq \varphi(y)$ in Q
- order-embedding if $x \leq y$ in P if and only if $\varphi(x) \leq \varphi(y)$ in Q
- order-isomorphism if it is an order-embedding mapping P onto Q (A map $f : P \rightarrow Q$ is onto (or surjective) if for every $y \in Q$, there exists an element $x \in P$, such that $f(x) = y$).

a) Let \mathbb{N} be the set of natural numbers and $N_0 = \mathbb{N} \cup \{0\}$. The partial order \preceq on N_0 is defined as follows: $\forall m, n \in N_0, m \preceq n$ if and only if $\exists k \in N_0$ such that $km = n$ (e.g. $3 \preceq 6, 4 \preceq 12$).
Consider the ordered sets \(P \) and \(Q \) s.t. \(P = Q = (N_0, \leq) \), is the map \(\varphi : P \rightarrow Q \) defined as \(\varphi(x) = 2x \) monotonic? Is \(\varphi(x) = x + 3 \) monotonic?

b) Let \(\varphi(N) \) be the powerset of \(N \), consisting of all subsets of \(N \) and \(\leq \) the partial order on \(\varphi(N) \) defined as: \(\forall A, B \in \varphi(N), A \leq B \) if and only if \(A \subseteq B \).

Consider the ordered sets \(P \) and \(Q \) s.t. \(P = Q = (\varphi(N), \leq) \), is the map \(\varphi \) defined as:

\[
\varphi(U) = \begin{cases}
1 & \text{if } 1 \in U, \\
2 & \text{if } 2 \in U \text{ and } 1 \notin U, \\
0 & \text{otherwise}.
\end{cases}
\]

monotonic?

c) Let \(X = \{1, 2, \ldots, n\} \). Consider two ordered sets \((\varphi(X), \subseteq)\) and \((P^n, \leq)\), where \(P = \{0, 1\} \) and \(\leq \) is defined as \((x_1, x_2, \ldots, x_n) \leq (y_1, y_2, \ldots, y_n) \) if and only if \(\forall i \: x_i \leq y_i \) in \(P \).

Consider the map \(\varphi : \varphi(X) \rightarrow 2^n \) defined as \(\varphi(A) = (e_1, e_2, \ldots, e_n) \) where

\[
e_i = \begin{cases}
1 & \text{if } i \in A, \\
0 & \text{if } i \notin A.
\end{cases}
\]

Show that \(\varphi \) is an order-isomorphism.

- **Exercise 3** Let \(P \) be a set. A partial order on \(P \) is a binary relation \(\leq \) on \(P \) such that for all \(x, y, z \in P \):

 - \(x \leq x \)
 - if \(x \leq y \) and \(y \leq x \), then \(x = y \)
 - if \(x \leq y \) and \(y \leq z \), then \(x \leq z \)

An ordered set \(P \) is a **chain** if for all \(x, y \in P \), either \(x \leq y \) or \(y \leq x \).

a) Define \(\leq \) on \(N \) such that \((N, \leq)\) is a chain.

b) Define \(\leq \) on \(N \) such that \((N, \leq)\) is not a chain.

c) Let \(P \) and \(Q \) be ordered sets and \(P \times Q \) their cartesian product. Is the binary relation \(\leq \) defined as

\[
(x_1, x_2) \leq (y_1, y_2) \text{ if } x_1 < y_1 \text{ or } (x_1 = y_1 \text{ and } x_2 \leq y_2)
\]

a partial order on \(P \times Q \)?
Exercise 4

Using the Tagged Signal Model (defined in the paper *A Denotational Framework for Comparing Models of Computation* by Lee and Sangiovanni-Vincentelli), model the filter

\[o(n) = k_1 \ i(n) + k_2 \ o(n - 1) \]

where \(n \) is the index of the samples, \(k_1 \) and \(k_2 \) are given coefficients. Assume that an initial token (event) \(o(0) \) is present and is used by the \(k_2 \) multiplier in the first iteration.

Define all the processes in Figure 1 and the composite process of all the processes and connections.

![Figure 1: Filter \(o(n) = k_1 \ i(n) + k_2 \ o(n - 1) \)](image)