Discrete Event

- Explicit notion of time (global order...)
- DE simulator maintains a global event queue (Verilog and VHDL)
- Drawbacks
 - Global event queue => tight coordination between parts
 - Simultaneous events => non-deterministic behavior
- Some simulators use delta delay to prevent non-determinacy

Simultaneous Events in DE

- Fire B or C?
- B has 0 delay
 - Fire C once? or twice?
 - Can be refined
 - E.g. introduce timing constraints
 - (minimum reaction time 0.1 s)
- B has delta delay
 - Fire C twice.
 - Still have problem with 0-delay (causality) loop
Outline

- Synchrony and asynchrony
- CFSM definitions
 - Signals & networks
 - Timing behavior
 - Functional behavior
- CFSM & process networks
- Example of CFSM behaviors
 - Equivalent classes

Codesign Finite State Machine

- Underlying MOC of Polis
- Combine aspects from several other MOCs
- Preserve formality and efficiency in implementation
- Mix
 - Synchronicity
 - Zero and infinite time
 - Asynchronicity
 - Non-zero, finite, and bounded time
- Embedded systems often contain both aspects
Synchrony: Basic Operation

- Synchrony is often implemented with clocks
- At clock ticks
 - Module reads inputs, computes, and produce output
 - All synchronous events happen simultaneously
 - Zero-delay computations
- Between clock ticks
 - Infinite amount of time passed

Synchrony: Basic Operation (2)

- Practical implementation of synchrony
 - Impossible to get zero or infinite delay
 - Require: computation time \llll clock period
 - Computation time $= 0$, w.r.t. reaction time of environment
- Feature of synchrony
 - Functional behavior independent of timing
 - Simplify verification
 - Cyclic dependencies may cause problem
 - Among (simultaneous) synchronous events
Synchrony: Triggering and Ordering

- All modules are triggered at each clock tick
- Simultaneous signals
 - No a priori ordering
 - Ordering may be imposed by dependencies
 - Implemented with delta steps

Synchrony: System Solution

- System solution
 - Output reaction to a set of inputs
- Well-designed system:
 - Is completely specified and functional
 - Has an unique solution at each clock tick
 - Is equivalent to a single FSM
 - Allows efficient analysis and verification
- Well-design-ness
 - May need to be checked for each design (Esterel)
 - Cyclic dependency among simultaneous events
Synchrony:

Implementation Cost

- Must verify synchronous assumption on final design
 - May be expensive

- Examples:
 - **Hardware**
 - Clock cycle > maximum computation time
 - Inefficient for average case
 - **Software**
 - Process must finish computation before
 - New input arrival
 - Another process needs to start computation

Asynchrony: Basic Operation

- Events are never simultaneous
 - No two events have the same tag
- Computation starts at a change of the input
- Delays are arbitrary, but bounded
Asynchrony: Triggering and Ordering

- Each module is triggered to run at a change of input
- No a priori ordering among triggered modules
 - May be imposed by scheduling at implementation

Asynchrony: System Solution

- Solution strongly dependent on input timing
- At implementation
 - Events may “appear” simultaneous
 - Difficult/expensive to maintain total ordering
 - Ordering at implementation decides behavior
 - Becomes DE, with the same pitfalls
Asynchrony: Implementation Cost

◆ Achieve low computation time (average)
 ▲ Different parts of the system compute at different rates

◆ Analysis is difficult
 ▲ Behavior depends on timing
 ▲ Maybe be easier for designs that are insensitive to
 ▼ Internal delay
 ▼ External timing

Asynchrony vs. Synchrony in System Design

◆ They are different at least at
 ▲ Event buffering
 ▲ Timing of event read/write

◆ Asynchrony
 ▲ Explicit buffering of events for each module
 ▼ Vary and unknown at start-time

◆ Synchrony
 ▲ One global copy of event
 ▼ Same start time for all modules
Combining Synchrony and Asynchrony

- Wants to combine
 - Flexibility of asynchrony
 - Verifiability of synchrony

- Asynchrony
 - Globally, a timing independent style of thinking

- Synchrony
 - Local portion of design are often tightly synchronized

- Globally asynchronous, locally synchronous
 - CFSM networks

CFSM Overview

- CFSM is FSM extended with
 - Support for data handling
 - Asynchronous communication

- CFSM has
 - FSM part
 - Inputs, outputs, states, transition and output relation
 - Data computation part
 - External, instantaneous functions
CFSM Overview (2)

- CFSM has:
 - **Locally synchronous behavior**
 - CFSM executes based on snap-shot input assignment
 - Synchronous from its own perspective
 - **Globally asynchronous behavior**
 - CFSM executes in non-zero, finite amount of time
 - Asynchronous from system perspective

- **GALS model**
 - **Globally**: Scheduling mechanism
 - **Locally**: CFSMs

Network of CFSMs: Depth-1 Buffers

- **Globally Asynchronous, Locally Synchronous (GALS) model**
Introducing a CFSM

- A Finite State Machine
- Input events, output events and state events
- Initial values (for state events)
- A transition function
 - Transitions may involve complex, memory-less, instantaneous arithmetic and/or Boolean functions
 - All the state of the system is under form of events
- Need rules that define the CFSM behavior

CFSM Rules: phases

- Four-phase cycle:
 1. Idle
 2. Detect input events
 3. Execute one transition
 4. Emit output events

- Discrete time
 - Sufficiently accurate for synchronous systems
 - Feasible formal verification

- Model semantics: *Timed Traces* i.e. sequences of events labeled by time of occurrence
CFSM Rules: phases

- Implicit *unbounded delay* between phases
- *Non-zero* reaction time

 (avoid *inconsistencies* when interconnected)
- *Causal* model based on *partial order*

 (*global asynchronicity*)

 ▲ potential verification speed-up
- *Phases may not overlap*
- *Transitions always clear input buffers*

 (*local synchronicity*)

Communication Primitives

- **Signals**

 ▲ Carry information in the form of events and/or values

 ▼ Event signals: present/absence

 ▼ Data signals: arbitrary values

 ▪ Event, data may be paired

 ▲ Communicate between two CFSMs

 ▼ 1 input buffer / signal / receiver

 ▲ Emitted by a sender CFSM

 ▲ Consumed by a receiver CFSM by setting buffer to 0

 ▲ “Present” if emitted but not consumed
Communication Primitives (2)

- **Input assignment**
 - A set of values for the input signals of a CFSM

- **Captured input assignment**
 - A set of input values read by a CFSM at a particular time

- **Input stimulus**
 - Input assignment with at least one event present

Signals and CFSM

- **CFSM**
 - Initiates communication through events
 - Reacts only to input stimulus
 - except initial reaction
 - Writes data first, then emits associated event
 - Reads event first, then reads associated data
CFSM networks

- **Net**
 - A set of connections on the same signal
 - Associated with single sender and multiple receivers
 - An input buffer for each receiver on a net
 - Multi-cast communication

- **Network of CFSMs**
 - A set of CFSMs, nets, and a scheduling mechanism
 - Can be implemented as
 - A set of CFSMs in SW (program/compiler/OS/uC)
 - A set of CFSMs in HW (HDL/gate/clocking)
 - Interface (polling/interrupt/memory-mapped)

Scheduling Mechanism

- **At the specification level**
 - Should be as abstract as possible to allow optimization
 - Not fixed in any way by CFSM MOC

- **May be implemented as**
 - RTOS for single processor
 - Concurrent execution for HW
 - Set of RTOSs for multi-processor
 - Set of scheduling FSMs for HW
Timing Behavior

◆ Scheduling Mechanism
 ▲ Globally controls the interaction of CFSMs
 ▲ Continually deciding which CFSMs can be executed

◆ CFSM can be
 ▲ Idle
 ▼ Waiting for input events
 ▼ Waiting to be executed by scheduler
 ▲ Executing
 ▼ Generate a single reaction
 ▼ Reads its inputs, computes, writes outputs

Timing Behavior: Mathematical Model

◆ Transition Point
 ▲ Point in time a CFSM starts executing

◆ For each execution
 ▲ Input signals are read and cleared
 ▲ Partial order between input and output
 ▲ Event is read before data
 ▲ Data is written before event emission
Timing Behavior: Transition Point

- A transition point t_i
 - Input may be read between t_i and t_{i+1}
 - Event that is read may have occurred between t_{i-1} and t_{i+1}
 - Data that is read may have occurred between t_0 and t_{i+1}
 - Outputs are written between t_i and t_{i+1}

- CFSM allow loose synchronization of event & data
 - Less restrictive implementation
 - May lead to non intuitive behavior

Event/Data Separation

- Value v_1 is lost even though
 - It is sent with an event
 - Event may not be lost
- Need atomicity
Atomicity

- Group of actions considered as a single entity
- May be costly to implement
- Only atomicity requirement of CFSM
 - Input events are read atomically
 ▼ Can be enforced in SW (bit vector) HW (buffer)
 ▼ CFSM is guaranteed to see a snapshot of input events
- Non-atomicity of event and data
 - May lead to undesirable behavior
 - Atomicized as an implementation trade-off decision

Non Atomic Data Value Reading

- Receiver R1 gets (X=4, Y=5), R2 gets (X=5 Y=4)
- X=4 Y=5 never occurs
- Can be remedied if values are sent with events
 ▼ still suffers from separation of data and event
Atomicity of Event Reading

- R1 sees no events, R2 sees X, R3 sees X, Y
- Each sees a snapshot of events in time
- Different captured input assignment
 - Because of scheduling and delay

Functional Behavior

- Transition and output relations
 - input, present_state, next_state, output

- At each execution, a CFSM
 - Reads a captured input assignment
 - If there is a match in transition relation
 - consume inputs, transition to next_state, write outputs
 - Otherwise
 - consume no inputs, no transition, no outputs
Functional Behavior (2)

- **Empty Transition**
 - No matching transition is found

- **Trivial Transition**
 - A transition that has no output and no state changes
 - Effectively throw away inputs

- **Initial transition**
 - Transition to the init (reset) state
 - No input event needed for this transition

CFSM and Process Networks

- **CFSM**
 - An asynchronous extended FSM model
 - Communication via bounded non-blocking buffers
 - Versus CSP and CCS (rendezvous)
 - Versus SDL (unbounded queue & variable topology)
 - Not continuous in Kahn’s sense
 - Different event ordering may change behavior
 - Versus dataflow (ordering insensitive)
CFSM Networks

- Defined based on a global notion of time
 - Total order of events
 - Synchronous with relaxed timing
 - Global consistent state of signals is required
 - Input and output are in partial order

Buffer Overwrite

- CFSM Network has
 - Finite Buffering
 - Non-blocking write
 - Events can be overwritten
 - if the sender is “faster” than receiver

- To ensure no overwrite
 - Explicit handshaking mechanism
 - Scheduling
Example of CFSM Behaviors

- A and B produce i1 and i2 at every i
- C produce err or o at every i1,i2
- Delay (i to o) for normal operation is nr, err operation 2nr
- Minimum input interval is ni
- Intuitive “correct” behavior
 - ▲ No events are lost

Equivalent Classes of CFSM Behavior

- Assume parallel execution (HW, 1 CFSM/processor)
- Equivalent classes of behaviors are:
 - ▲ Zero Delay
 - ▼ ni= 0
 - ▲ Input buffer overwrite
 - ▼ ni<nr
 - ▲ Time critical operation
 - ▼ ni/2<nr≤ni
 - ▲ Normal operation
 - ▼ n<ni/2
Equivalent Classes of CFM Behavior (2)

- **Zero delay: \(n_r = 0 \)**
 - ▲ If C emits an error on some input
 - ▼ A, B can react instantaneously & output differently
 - ▲ May be logically inconsistent

- **Input buffers overwrite: \(n_i < n_r \)**
 - ▲ Execution delay of A, B is larger than arrival interval
 - ▼ always loss of event
 - ▼ requirements not satisfied

Equivalent Classes of CFM Behavior (3)

- **Time critical operation: \(n_i/2 < n_r \leq n_i \)**
 - ▲ Normal operation results in no loss of event
 - ▲ Error operation may cause lost input

- **Normal operation: \(n_r < n_i/2 \)**
 - ▲ No events are lost
 - ▲ May be expensive to implement

- **If error is infrequent**
 - ▲ Designer may accept also time critical operation
 - ▼ Can result in lower-cost implementation
Equivalent Classes of CFSM Behavior (4)

- Implementation on a single processor
 - Loss of Event may be caused by
 - Timing constraints
 - $n < 3n_r$
 - Incorrect scheduling
 - If empty transition also takes n_r
 - ACBC round robin will miss event
 - ABC round robin will not

Some Possibility of Equivalent Classes

- Given 2 arbitrary implementations, 1 input stream:
 - Dataflow equivalence
 - Output streams are the same ordering
 - Petri net equivalence
 - Output streams satisfied some partial order
 - Golden model equivalence
 - Output streams are the same ordering
 - Except reordering of concurrent events
 - One of the implementations is a reference specification
 - Filtered equivalence
 - Output streams are the same after filtered by observer
Conclusion

- CFSM
 - Initially unbounded FIFO buffers
 - Bounds on buffers are imposed by refinement
 - Delay is also refined by implementation
 - Local synchrony
 - Relatively large atomic synchronous entities
 - Global asynchrony
 - Break synchrony, no compositional problem
 - Allow efficient mapping to heterogeneous architectures

Data Flow networks

- Powerful formalism for data-dominated system specification
- Partially-ordered model (no over-specification)
- Deterministic execution independent of scheduling
- Used for
 - simulation
 - scheduling
 - memory allocation
 - code generation

 for Digital Signal Processors (HW and SW)
A bit of history

◆ Karp computation graphs ('66): seminal work
◆ Kahn process networks ('58): formal model
◆ Dennis Data Flow networks ('75): programming language for MIT DF machine
◆ Several recent implementations
 ▲ graphical:
 ▼ Ptolemy (UCB), Khoros (U. New Mexico), Grape (U. Leuven)
 ▼ SPW (Cadence), COSSAP (Synopsys)
 ▲ textual:
 ▼ Silage (UCB, Mentor)
 ▼ Lucid, Haskell

Intuitive semantics

◆ (Often stateless) actors perform computation
◆ Unbounded FIFOs perform communication via sequences of tokens carrying values
 ▲ integer, float, fixed point
 ▲ matrix of integer, float, fixed point
 ▲ image of pixels
◆ State implemented as self-loop
◆ Determinacy:
 ▲ unique output sequences given unique input sequences
 ▲ Sufficient condition: blocking read
 (process cannot test input queues for emptiness)
Intuitive semantics

- **Example: FIR filter**
 - Single input sequence $i(n)$
 - Single output sequence $o(n)$
 - $o(n) = c_1 i(n) + c_2 i(n-1)$

Formal semantics

- Totally ordered sequences of tokens

 \[X = [x_1, x_2, x_3, \ldots] \]

- Partial order (prefix order) between sequences

 \[[x_1, x_2] < [x_1, x_2, x_3] \]

- Chain: increasing sequence of sequences

- LUB of chain: shortest sequence greater than any element

- Set S of finite and infinite sequences is Complete Partial Order

 (every chain has a LUB)
Formal semantics

- Kahn process: function from sequences to sequences
 \[F : S^p \rightarrow S^q \]
- Continuity: given chain \(C \)
 \[F(\text{LUB}(C)) = \text{LUB}(F(C)) \]
- Implies monotonicity:
 \[x < x' \Rightarrow F(x) < F(x') \]
 - Intuitively, outputs cannot be “withdrawn” once they have been produced
 - Timeless causality...

Formal semantics

- “Behavior” of process network defined as *fix point*
 \[\text{continuity (monotonicity) implies determinacy} \]
- “Canonical” non-monotonic process: *fair merge*

\[[x_1, x_2, x_3, \ldots] \quad \overset{FM}{\rightarrow} \quad [x_1, y_1, x_2, y_2, x_3, y_3, \ldots] \]
\[[y_1, y_2, y_3, \ldots] \quad \overset{FM}{\rightarrow} \quad [x_1, y_1, x_2, y_2, y_3, \ldots] \]
\[[x_1, x_2] \quad \overset{FM}{\rightarrow} \quad [x_1, y_1, x_2, y_2, x_3, y_3, \ldots] \]
\[[y_1, y_2] \quad \overset{FM}{\rightarrow} \quad [x_1, y_1, x_2, y_2, x_3, y_3, \ldots] \]
From Kahn networks to Data Flow networks

- Each process becomes an actor: set of pairs of
 - firing rule
 (number of required tokens on inputs)
 - function
 (including number of consumed and produced tokens)

- Formally shown to be equivalent, but actors with firing are more intuitive

- *Mutually exclusive* firing rules imply monotonicity

- Generally simplified to *blocking read*

Examples of Data Flow actors

- **SDF: Synchronous (or, better, Static) Data Flow**
 - fixed input and output tokens

```
+ 1
1 1
```

- **BDF: Boolean Data Flow**
 - control token determines consumed and produced tokens

```
merge

select
```
Static scheduling of DF

- Key property of DF networks: output sequences do not depend on time of firing of actors
- SDF networks can be statically scheduled at compile-time
 ▲ execute an actor when it is known to be fireable
 ▲ no overhead due to sequencing of concurrency
 ▲ static buffer sizing
- Different schedules yield different
 ▲ code size
 ▲ buffer size
 ▲ pipeline utilization

Static scheduling of SDF

- Based only on process graph (ignores functionality)
- Network state: number of tokens in FIFOs
- Objective: find schedule that is valid, i.e.:
 ▲ admissible
 (only fires actors when fireable)
 ▲ periodic
 (brings network back to initial state firing each actor at least once)
- Optimize cost function over admissible schedules
Balance equations

- Number of produced tokens must equal number of consumed tokens on every edge

![Diagram showing an edge from A to B with tokens n_p and n_c]

- Repetitions (or firing) vector v_S of schedule S: number of firings of each actor in S
- $v_S(A) \cdot n_p = v_S(B) \cdot n_c$
 - must be satisfied for each edge

Balance equations

- Balance for each edge:
 - $3 v_S(A) - v_S(B) = 0$
 - $v_S(B) - v_S(C) = 0$
 - $2 v_S(A) - v_S(C) = 0$
 - $2 v_S(A) - v_S(C) = 0$
Balance equations

\[
M = \begin{bmatrix}
3 & -1 & 0 \\
0 & 1 & -1 \\
2 & 0 & -1 \\
2 & 0 & -1 \\
\end{bmatrix}
\]

- M v_S = 0
 - if S is periodic
- Full rank (as in this case)
 - no non-zero solution
 - no periodic schedule
 - (too many tokens accumulate on A->B or B->C)

Balance equations

\[
M = \begin{bmatrix}
2 & -1 & 0 \\
0 & 1 & -1 \\
2 & 0 & -1 \\
2 & 0 & -1 \\
\end{bmatrix}
\]

- Non-full rank
 - infinite solutions exist (linear space of dimension 1)
- Any multiple of \(q = \begin{bmatrix} 1 & 2 & 2 \end{bmatrix} \) satisfies the balance equations
- ABCBC and ABBCC are minimal valid schedules
- ABABBCBCCC is non-minimal valid schedule
Static SDF scheduling

- Main SDF scheduling theorem (Lee ‘86):
 - A connected SDF graph with n actors has a periodic schedule iff its topology matrix M has rank $n-1$.
 - If M has rank $n-1$ then there exists a unique smallest integer solution q to $Mq = 0$.
- Rank must be at least $n-1$ because we need at least $n-1$ edges (connected-ness), providing each a linearly independent row.
- Admissibility is not guaranteed, and depends on initial tokens on cycles.

Admissibility of schedules

- No admissible schedule:
 - BACBA, then deadlock...
- Adding one token (delay) on A->C makes BACBACBA valid.
- Making a periodic schedule admissible is always possible, but changes specification...
Admissibility of schedules

- Adding initial token changes FIR order

![Diagram](image)

From repetition vector to schedule

- Repeatedly schedule fireable actors up to number of times in repetition vector
 \[q = [1 \ 2 \ 2]^T \]

![Diagram](image)

- Can find either ABCBC or ABBCC
- If deadlock before original state, no valid schedule exists (Lee '86)
From schedule to implementation

- Static scheduling used for:
 - Behavioral simulation of DF (extremely efficient)
 - Code generation for DSP
 - HW synthesis (Cathedral by IMEC, Lager by UCB, ...)

- Issues in code generation
 - Execution speed (pipelining, vectorization)
 - Code size minimization
 - Data memory size minimization (allocation to FIFOs)
 - Processor or functional unit allocation

Compilation optimization

- Assumption: code stitching
 (chaining custom code for each actor)

- More efficient than C compiler for DSP

- Comparable to hand-coding in some cases

- Explicit parallelism, no artificial control dependencies

- Main problem: memory and processor/FU allocation depends on scheduling, and vice-versa
Code size minimization

- Assumptions (based on DSP architecture):
 - subroutine calls expensive
 - fixed iteration loops are cheap
 ("zero-overhead loops")

- Absolute optimum: single appearance schedule
 e.g. ABCBC -> A (2BC), ABBCC -> A (2B) (2C)
 ▼ may or may not exist for an SDF graph...
 ▼ buffer minimization relative to single appearance schedules
 (Bhattacharyya '94, Lauwereins '96, Murthy '97)

Buffer size minimization

- Assumption: no buffer sharing

- Example:

\[
\begin{array}{cccc}
A & B & C & D \\
1 & 1 & 10 & 10 \\
10 & 10 & 1 & 1 \\
\end{array}
\]

\[q = \begin{bmatrix} 100 & 100 & 10 & 1 \end{bmatrix}^T \]

- Valid SAS: (100 A) (100 B) (10 C) D
 ▼ requires 210 units of buffer area

- Better (factored) SAS: (10 (10 A) (10 B) C) D
 ▼ requires 30 units of buffer areas, but...
 ▼ requires 21 loop initiations per period (instead of 3)
Dynamic scheduling of DF

- SDF is limited in modeling power
 - no run-time choice
 - cannot implement Gaussian elimination
- More general DF is too powerful
 - non-Static DF is Turing-complete (Buck '93)
 - bounded-memory scheduling is not always possible
- BDF: semi-static scheduling of special “patterns”
 - if-then-else
 - repeat-until, do-while
- General case: thread-based dynamic scheduling
 (Parks ‘96: may not terminate, but never fails if feasible)

Example of Boolean DF

- Compute absolute value of average of n samples
Example of general DF

- Merge streams of multiples of 2 and 3 in order (removing duplicates)

```
A * 2 dup B * 3 dup
```

- Deterministic merge
 (no “peeking”)

```
a = get(A)
b = get(B)
forever {
  if (a > b) {
    put(O, a)
a = get(A)
  } else if (a < b) {
    put(O, b)
b = get(B)
  } else {
    put(O, a)
a = get(A)
b = get(B)
  }
}
```

Summary of DF networks

- **Advantages:**
 - Easy to use (graphical languages)
 - Powerful algorithms for
 - verification (fast behavioral simulation)
 - synthesis (scheduling and allocation)
 - Explicit concurrency

- **Disadvantages:**
 - Efficient synthesis only for restricted models
 - (no input or output choice)
 - Cannot describe reactive control (blocking read)