Discrete Event

- Explicit notion of time (global order...)
- DE simulator maintains a global event queue (Verilog and VHDL)

Drawbacks
- Global event queue => tight coordination between parts
- Simultaneous events => non-deterministic behavior

Some simulators use delta delay to prevent non-determinacy

Simultaneous Events in DE

Fire B or C?

B has 0 delay

B has delta delay

Fire C once? or twice?

Can be refined
E.g. introduce timing constraints
(minimum reaction time 0.1 s)

Fire C twice.

Still have problem with 0-delay (causality) loop
Outline

◆ Synchrony and asynchrony

◆ CFSM definitions
 • Signals & networks
 • Timing behavior
 • Functional behavior

◆ CFSM & process networks

◆ Example of CFSM behaviors
 • Equivalent classes

Codesign Finite State Machine

◆ Underlying MOC of Polis

◆ Combine aspects from several other MOCs

◆ Preserve formality and efficiency in implementation

◆ Mix
 • synchronicity
 ♦ zero and infinite time
 • asynchronicity
 ♦ non-zero, finite, and bounded time

◆ Embedded systems often contain both aspects
Synchrony: Basic Operation

- Synchrony is often implemented with clocks

- At clock ticks
 - Module reads inputs, computes, and produce output
 - All synchronous events happen simultaneously
 - Zero-delay computations

- Between clock ticks
 - Infinite amount of time passed

Synchrony: Basic Operation (2)

- Practical implementation of synchrony
 - Impossible to get zero or infinite delay
 - Require: computation time <<< clock period
 - Computation time = 0, w.r.t. reaction time of environment

- Feature of synchrony
 - Functional behavior independent of timing
 - Simplify verification
 - Cyclic dependencies may cause problem
 - Among (simultaneous) synchronous events
Synchrony: Triggering and Ordering

- All modules are triggered at each clock tick
- Simultaneous signals
 - No a priori ordering
 - Ordering may be imposed by dependencies
 - Implemented with delta steps

![Diagram showing ticks and delta steps](image)

Synchrony: System Solution

- System solution
 - Output reaction to a set of inputs
- Well-designed system:
 - Is completely specified and functional
 - Has an unique solution at each clock tick
 - Is equivalent to a single FSM
 - Allows efficient analysis and verification
- Well-design-ness
 - May need to be checked for each design (Esterel)
 - Cyclic dependency among simultaneous events
Synchrony: Implementation Cost

- Must verify synchronous assumption on final design
 - May be expensive

- Examples:
 - Hardware
 - Clock cycle > maximum computation time
 - Inefficient for average case
 - Software
 - Process must finish computation before
 - New input arrival
 - Another process needs to start computation

Asynchrony: Basic Operation

- Events are never simultaneous
 - No two events have the same tag

- Computation starts at a change of the input

- Delays are arbitrary, but bounded
Asynchrony: Triggering and Ordering

- Each module is triggered to run at a change of input
- No a priori ordering among triggered modules
 - May be imposed by scheduling at implementation

Asynchrony: System Solution

- Solution strongly dependent on input timing
- At implementation
 - Events may “appear” simultaneous
 - Difficult/expensive to maintain total ordering
 - Ordering at implementation decides behavior
 - Becomes DE, with the same pitfalls
Asynchrony: Implementation Cost

◆ Achieve low computation time (average)
 • Different parts of the system compute at different rates

◆ Analysis is difficult
 • Behavior depends on timing
 • Maybe be easier for designs that are insensitive to
 ✦ Internal delay
 ✦ External timing

Asynchrony vs. Synchrony in System Design

◆ They are different at least at
 • Event buffering
 • Timing of event read/write

◆ Asynchrony
 • Explicit buffering of events for each module
 ✦ Vary and unknown at start-time

◆ Synchrony
 • One global copy of event
 ✦ Same start time for all modules
Combining Synchrony and Asynchrony

◆ Wants to combine
 ◦ Flexibility of asynchrony
 ◦ Verifiability of synchrony

◆ Asynchrony
 ◦ Globally, a timing independent style of thinking

◆ Synchrony
 ◦ Local portion of design are often tightly synchronized

◆ Globally asynchronous, locally synchronous
 ◦ CFSM networks

CFSM Overview

◆ CFSM is FSM extended with
 ◦ Support for data handling
 ◦ Asynchronous communication

◆ CFSM has
 ◦ FSM part
 ◦ Inputs, outputs, states, transition and output relation
 ◦ Data computation part
 ◦ External, instantaneous functions
CFSM Overview (2)

◆ CFSM has:
 ♦ Locally synchronous behavior
 ♦ CFSM executes based on snap-shot input assignment
 ♦ Synchronous from its own perspective
 ♦ Globally asynchronous behavior
 ♦ CFSM executes in non-zero, finite amount of time
 ♦ Asynchronous from system perspective

◆ GALS model
 ♦ Globally: Scheduling mechanism
 ♦ Locally: CFSMs

Network of CFSMs: Depth-1 Buffers

◆ Globally Asynchronous, Locally Synchronous (GALS) model
Introducing a CFSM

◆ A Finite State Machine
◆ Input events, output events and state events
◆ Initial values (for state events)
◆ A transition function
 ➔ Transitions may involve complex, memory-less, instantaneous arithmetic and/or Boolean functions
 ➔ All the state of the system is under form of events
◆ Need rules that define the CFSM behavior

CFSM Rules: phases

◆ Four-phase cycle:
 ★ Idle
 ☰ Detect input events
 ☰ Execute one transition
 ☰ Emit output events
◆ Discrete time
 ▪ Sufficiently accurate for synchronous systems
 ▪ Feasible formal verification
◆ Model semantics: Timed Traces, i.e. sequences of events labeled by time of occurrence
CFSM Rules: phases

- Implicit *unbounded delay* between phases
- *Non-zero* reaction time
 (avoid *inconsistencies* when interconnected)
- *Causal* model based on *partial order*
 (global asynchronicity)
 - potential verification speed-up
- *Phases may not overlap*
- *Transitions always clear input buffers*
 (local synchronicity)

Communication Primitives

- **Signals**
 - Carry information in the form of events and/or values
 - Event signals: present/absence
 - Data signals: arbitrary values
 - Event, data may be paired
 - Communicate between two CFSMs
 - 1 input buffer / signal / receiver
 - Emitted by a sender CFSM
 - Consumed by a receiver CFSM by setting buffer to 0
 - “Present” if emitted but not consumed
Communication Primitives (2)

- **Input assignment**
 - A set of values for the input signals of a CFSM
- **Captured input assignment**
 - A set of input values read by a CFSM at a particular time
- **Input stimulus**
 - Input assignment with at least one event present

Signals and CFSM

- **CFSM**
 - Initiates communication through events
 - Reacts only to input stimulus
 - except initial reaction
 - Writes data first, then emits associated event
 - Reads event first, then reads associated data
CFSM networks

- **Net**
 - A set of connections on the same signal
 - Associated with single sender and multiple receivers
 - An input buffer for each receiver on a net
 - Multi-cast communication

- **Network of CFSMs**
 - A set of CFSMs, nets, and a scheduling mechanism
 - Can be implemented as
 - A set of CFSMs in SW (program/compiler/OS/uC)
 - A set of CFSMs in HW (HDL/gate/clocking)
 - Interface (polling/interrupt/memory-mapped)

Scheduling Mechanism

- **At the specification level**
 - Should be as abstract as possible to allow optimization
 - Not fixed in any way by CFSM MOC

- **May be implemented as**
 - RTOS for single processor
 - Concurrent execution for HW
 - Set of RTOSs for multi-processor
 - Set of scheduling FSMs for HW
Timing Behavior

◆ **Scheduling Mechanism**
 - Globally controls the interaction of CFSMs
 - Continually deciding which CFSMs can be executed

◆ **CFSM can be**
 - Idle
 - Waiting for input events
 - Waiting to be executed by scheduler
 - Executing
 - Generate a single reaction
 - Reads its inputs, computes, writes outputs

Timing Behavior: Mathematical Model

◆ **Transition Point**
 - Point in time a CFSM starts executing

◆ **For each execution**
 - Input signals are read and cleared
 - Partial order between input and output
 - Event is read before data
 - Data is written before event emission
Timing Behavior: Transition Point

◆ A transition point \(t_i \)
 - Input may be read between \(t_i \) and \(t_{i+1} \)
 - Event that is read may have occurred between \(t_{i-1} \) and \(t_{i+1} \)
 - Data that is read may have occurred between \(t_0 \) and \(t_{i+1} \)
 - Outputs are written between \(t_i \) and \(t_{i+1} \)

◆ CFSM allow loose synchronization of event & data
 - Less restrictive implementation
 - May lead to non intuitive behavior

Event/Data Separation

- Value \(v_1 \) is lost even though
 - It is sent with an event
 - Event may not be lost

◆ Need atomicity
Atomicity

◆ Group of actions considered as a single entity
◆ May be costly to implement
◆ Only atomicity requirement of CFSM
 ♦ Input events are read atomically
 ♦ Can be enforced in SW (bit vector) HW (buffer)
 ♦ CFSM is guaranteed to see a snapshot of input events
◆ Non-atomicity of event and data
 ♦ May lead to undesirable behavior
 ♦ Atomicized as an implementation trade-off decision

Non Atomic Data Value Reading

◆ Receiver R1 gets (X=4, Y=5), R2 gets (X=5 Y=4)
◆ X=4 Y=5 never occurs
◆ Can be remedied if values are sent with events
 ♦ still suffers from separation of data and event
Atomicity of Event Reading

Each sees a snapshot of events in time

Different captured input assignment
- Because of scheduling and delay

Functional Behavior

- Transition and output relations
 - input, present_state, next_state, output

- At each execution, a CFSM
 - Reads a captured input assignment
 - If there is a match in transition relation
 - consume inputs, transition to next_state, write outputs
 - Otherwise
 - consume no inputs, no transition, no outputs
Functional Behavior (2)

◆ Empty Transition
 - No matching transition is found

◆ Trivial Transition
 - A transition that has no output and no state changes
 - Effectively throw away inputs

◆ Initial transition
 - Transition to the init (reset) state
 - No input event needed for this transition

CFSM and Process Networks

◆ CFSM
 - An asynchronous extended FSM model
 - Communication via bounded non-blocking buffers
 ◆ Versus CSP and CCS (rendezvous)
 ◆ Versus SDL (unbounded queue & variable topology)
 - Not continuous in Kahn’s sense
 ◆ Different event ordering may change behavior
 ◆ Versus dataflow (ordering insensitive)
CFSM Networks

- Defined based on a global notion of time
 - Total order of events
 - Synchronous with relaxed timing
 - Global consistent state of signals is required
 - Input and output are in partial order

Buffer Overwrite

- CFSM Network has
 - Finite Buffering
 - Non-blocking write
 - Events can be overwritten
 - if the sender is “faster” than receiver

- To ensure no overwrite
 - Explicit handshaking mechanism
 - Scheduling
Example of CFSM Behaviors

- A and B produce i1 and i2 at every i
- C produce err or o at every i1,i2
- Delay (i to o) for normal operation is nr, err operation 2nr
- Minimum input interval is ni
- Intuitive “correct” behavior
 - No events are lost

Equivalent Classes of CFSM Behavior

- Assume parallel execution (HW, 1 CFSM/processor)
- Equivalent classes of behaviors are:
 - Zero Delay
 - nr= 0
 - Input buffer overwrite
 - ni<nr
 - Time critical operation
 - ni/2<nr≤ni
 - Normal operation
 - nr<ni/2
Equivalent Classes of CFSM Behavior (2)

◆ Zero delay: \(n_r = 0 \)
 - If C emits an error on some input
 - A, B can react instantaneously & output differently
 - May be logically inconsistent

◆ Input buffers overwrite: \(n_i < n_r \)
 - Execution delay of A, B is larger than arrival interval
 - always loss of event
 - requirements not satisfied

Equivalent Classes of CFSM Behavior (3)

◆ Time critical operation: \(n_i/2 < n_r \leq n_i \)
 - Normal operation results in no loss of event
 - Error operation may cause lost input

◆ Normal operation: \(n_r < n_i/2 \)
 - No events are lost
 - May be expensive to implement

◆ If error is infrequent
 - Designer may accept also time critical operation
 - Can result in lower-cost implementation
Equivalent Classes of CFSM Behavior (4)

◆ Implementation on a single processor
 • Loss of Event may be caused by
 ◆ Timing constraints
 • \(n < 3n_r \)
 ◆ Incorrect scheduling
 • If empty transition also takes \(n_r \)
 • ACBC round robin will miss event
 • ABC round robin will not

Some Possibility of Equivalent Classes

◆ Given 2 arbitrary implementations, 1 input stream:
 • Dataflow equivalence
 ◆ Output streams are the same ordering
 • Petri net equivalence
 ◆ Output streams satisfied some partial order
 • Golden model equivalence
 ◆ Output streams are the same ordering
 ◆ Except reordering of concurrent events
 ◆ One of the implementations is a reference specification
 • Filtered equivalence
 ◆ Output streams are the same after filtered by observer
Conclusion

◆ CFMS
 • Extension: ACFSM: Initially unbounded FIFO buffers
 ◆ Bounds on buffers are imposed by refinement to yield ECFSM
 • Delay is also refined by implementation
 • Local synchrony
 ◆ Relatively large atomic synchronous entities
 • Global asynchrony
 ◆ Break synchrony, no compositional problem
 ◆ Allow efficient mapping to heterogeneous architectures

Data-flow networks

◆ A bit of history
◆ Syntax and semantics
 • actors, tokens and firings
◆ Scheduling of Static Data-flow
 • static scheduling
 • code generation
 • buffer sizing
◆ Other Data-flow models
 • Boolean Data-flow
 • Dynamic Data-flow
Data-flow networks

- Powerful formalism for data-dominated system specification
- Partially-ordered model (no over-specification)
- Deterministic execution independent of scheduling
- Used for
 - simulation
 - scheduling
 - memory allocation
 - code generation
 for Digital Signal Processors (HW and SW)

A bit of history

- Karp computation graphs (‘66): seminal work
- Kahn process networks (‘58): formal model
- Dennis Data-flow networks (‘75): programming language for MIT DF machine
- Several recent implementations
 - graphical:
 - Ptolemy (UCB), Khoros (U. New Mexico), Grape (U. Leuven)
 - SPW (Cadence), COSSAP (Synopsys)
 - textual:
 - Silage (UCB, Mentor)
 - Lucid, Haskell
Data-flow network

- A Data-flow network is a collection of **functional nodes** which are connected and communicate over **unbounded FIFO queues**
- Nodes are commonly called **actors**
- The bits of information that are communicated over the queues are commonly called **tokens**

Intuitive semantics

- (Often stateless) actors perform computation
- Unbounded FIFOs perform communication via **sequences of tokens** carrying values
 - integer, float, fixed point
 - matrix of integer, float, fixed point
 - image of pixels
- State implemented as self-loop
- **Determinacy:**
 - unique output sequences given unique input sequences
 - Sufficient condition: **blocking read**
 (process cannot test input queues for emptiness)
Intuitive semantics

- At each time, one actor is **fired**
- When firing, actors **consume** input tokens and **produce** output tokens
- Actors can be fired only if there are enough tokens in the input queues

Example: FIR filter
- single input sequence $i(n)$
- single output sequence $o(n)$
- $o(n) = c_1 i(n) + c_2 i(n-1)$
Intuitive semantics

Example: FIR filter
- single input sequence $i(n)$
- single output sequence $o(n)$
- $o(n) = c_1 i(n) + c_2 i(n-1)$

\[o(n) = c_1 i(n) + c_2 i(n-1) \]

Intuitive semantics

Example: FIR filter
- single input sequence $i(n)$
- single output sequence $o(n)$
- $o(n) = c_1 i(n) + c_2 i(n-1)$

\[o(n) = c_1 i(n) + c_2 i(n-1) \]
Intuitive semantics

- Example: FIR filter
 - single input sequence $i(n)$
 - single output sequence $o(n)$
 - $o(n) = c_1 i(n) + c_2 i(n-1)$
Intuitive semantics

◆ Example: FIR filter
 • single input sequence \(i(n) \)
 • single output sequence \(o(n) \)
 • \(o(n) = c_1 i(n) + c_2 i(n-1) \)
Intuitive semantics

◆ Example: FIR filter
 - single input sequence i(n)
 - single output sequence o(n)
 - o(n) = c1 i(n) + c2 i(n-1)
Intuitive semantics

- Example: FIR filter
 - single input sequence $i(n)$
 - single output sequence $o(n)$
 - $o(n) = c_1 i(n) + c_2 i(n-1)$

Questions

- Does the order in which actors are fired affect the final result?
- Does it affect the “operation” of the network in any way?
- Go to Radio Shack and ask for an unbounded queue!!
Formal semantics: sequences

- Actors operate from a sequence of input tokens to a sequence of output tokens.
- Let tokens be noted by \(x_1, x_2, x_3, \) etc...
- A sequence of tokens is defined as
 \[
 X = [x_1, x_2, x_3, \ldots]
 \]
- Over the execution of the network, each queue will grow a particular sequence of tokens.
- In general, we consider the actors mathematically as functions from sequences to sequences (not from tokens to tokens).

Ordering of sequences

- Let \(X_1 \) and \(X_2 \) be two sequences of tokens.
- We say that \(X_1 \) is less than \(X_2 \) if and only if (by definition)
 \(X_1 \) is an initial segment of \(X_2 \)
- Homework: prove that the relation so defined is a partial order (reflexive, antisymmetric and transitive)
- This is also called the prefix order.
- Example: \([x_1, x_2] \leq [x_1, x_2, x_3]\)
- Example: \([x_1, x_2]\) and \([x_1, x_3, x_4]\) are incomparable.
Chains of sequences

◆ Consider the set S of all finite and infinite sequences of tokens
◆ This set is partially ordered by the prefix order
◆ A subset C of S is called a chain iff all pairs of elements of C are comparable
◆ If C is a chain, then it must be a linear order inside S (otherwise, why call it chain?)
◆ Example: $\{ [x_1], [x_1, x_2], [x_1, x_2, x_3], \ldots \}$ is a chain
◆ Example: $\{ [x_1], [x_1, x_2], [x_1, x_3], \ldots \}$ is not a chain

(Least) Upper Bound

◆ Given a subset Y of S, an upper bound of Y is an element z of S such that z is larger than all elements of Y
◆ Consider now the set Z (subset of S) of all the upper bounds of Y
◆ If Z has a least element u, then u is called the least upper bound (lub) of Y
◆ The least upper bound, if it exists, is unique
◆ Note: u might not be in Y (if it is, then it is the largest value of Y)
Complete Partial Order

- Every chain in S has a least upper bound
- Because of this property, S is called a **Complete Partial Order**
- Notation: if C is a chain, we indicate the least upper bound of C by \(\text{lub}(C) \)
- Note: the least upper bound may be thought of as the limit of the chain

Processes

- Process: function from a p-tuple of sequences to a q-tuple of sequences

 \[F : S^p \rightarrow S^q \]

- Tuples have the induced point-wise order:

 \[Y = (y_1, \ldots, y_p), \ Y' = (y'_1, \ldots, y'_p) \text{ in } S^p : Y \leq Y' \text{ iff } y_i \leq y'_i \text{ for all } 1 \leq i \leq p \]

- Given a chain C in \(S^p \), \(F(C) \) may or may not be a chain in \(S^q \)
- We are interested in conditions that make that true
Continuity and Monotonicity

- **Continuity**: F is continuous iff (by definition) for all chains C, $\text{lub}(F(C))$ exists and
 \[F(\text{lub}(C)) = \text{lub}(F(C)) \]
- **Similar to continuity in analysis using limits**
- **Monotonicity**: F is monotonic iff (by definition) for all pairs X, X'
 \[X \leq X' \Rightarrow F(X) \leq F(X') \]
- **Continuity implies monotonicity**
 - intuitively, outputs cannot be “withdrawn” once they have been produced
 - timeless causality. F transforms chains into chains

Least Fixed Point semantics

- **Let X be the set of all sequences**
- **A network is a mapping F from the sequences to the sequences**
 \[X = F(X, I) \]
- **The behavior of the network is defined as the unique least fixed point of the equation**
- **If F is continuous then the least fixed point exists**
 \[\text{LFP} = \text{LUB}(\{ F^n(\bot, I) : n \geq 0 \}) \]
From Kahn networks to Data Flow networks

- Each process becomes an actor: set of pairs of
 - firing rule
 (number of required tokens on inputs)
 - function
 (including number of consumed and produced tokens)

- Formally shown to be equivalent, but actors with firing are more intuitive
- Mutually exclusive firing rules imply monotonicity
- Generally simplified to blocking read

Examples of Data Flow actors

- SDF: Synchronous (or, better, Static) Data Flow
 - fixed input and output tokens

- BDF: Boolean Data Flow
 - control token determines consumed and produced tokens
Static scheduling of DF

- Key property of DF networks: output sequences do not depend on time of firing of actors
- SDF networks can be statically scheduled at compile-time
 - execute an actor when it is known to be fireable
 - no overhead due to sequencing of concurrency
 - static buffer sizing
- Different schedules yield different
 - code size
 - buffer size
 - pipeline utilization

Static scheduling of SDF

- Based only on process graph (ignores functionality)
- Network state: number of tokens in FIFOs
- Objective: find schedule that is valid, i.e.:
 - admissible
 - (only fires actors when fireable)
 - periodic
 - (brings network back to initial state firing each actor at least once)
- Optimize cost function over admissible schedules
Balance equations

- Number of produced tokens must equal number of consumed tokens on every edge

```
   A   n_p    n_c   B
```

- Repetitions (or firing) vector v_S of schedule S: number of firings of each actor in S

 - $v_S(A) \cdot n_p = v_S(B) \cdot n_c$
 - must be satisfied for each edge

Balance equations

- Balance for each edge:
 - $3 \cdot v_S(A) - v_S(B) = 0$
 - $v_S(B) - v_S(C) = 0$
 - $2 \cdot v_S(A) - v_S(C) = 0$
 - $2 \cdot v_S(A) - v_S(C) = 0$
Balance equations

\[
\begin{bmatrix}
3 & -1 & 0 \\
0 & 1 & -1 \\
2 & 0 & -1 \\
2 & 0 & -1
\end{bmatrix}
\]

\(M v_S = 0 \)

iff \(S \) is periodic

\(M \) is Full rank (as in this case)
- no non-zero solution
- no periodic schedule

(too many tokens accumulate on A->B or B->C)

\[M = \begin{bmatrix}
3 & -1 & 0 \\
0 & 1 & -1 \\
2 & 0 & -1 \\
2 & 0 & -1
\end{bmatrix}\]

Balance equations

\[
\begin{bmatrix}
2 & -1 & 0 \\
0 & 1 & -1 \\
2 & 0 & -1 \\
2 & 0 & -1
\end{bmatrix}
\]

\(M = \begin{bmatrix}
2 & -1 & 0 \\
0 & 1 & -1 \\
2 & 0 & -1 \\
2 & 0 & -1
\end{bmatrix}\)

- Non-full rank
 - infinite solutions exist (linear space of dimension 1)
- Any multiple of \(q = [1 \ 2 \ 2]^T \) satisfies the balance equations
- ABCBC and ABBCC are minimal valid schedules
- ABABBCBCCC is non-minimal valid schedule
Static SDF scheduling

- Main SDF scheduling theorem (Lee ’86):
 - A connected SDF graph with \(n \) actors has a periodic schedule iff its topology matrix \(M \) has rank \(n-1 \)
 - If \(M \) has rank \(n-1 \) then there exists a unique smallest integer solution \(q \) to \(Mq = 0 \)
 - Rank must be at least \(n-1 \) because we need at least \(n-1 \) edges (connected-ness), providing each a linearly independent row
 - Admissibility is not guaranteed, and depends on initial tokens on cycles

Admissibility of schedules

- No admissible schedule:
 BACBA, then deadlock...
- Adding one token (delay) on A->C makes BACBACBA valid
- Making a periodic schedule admissible is always possible, but changes specification...
Admissibility of schedules

- Adding initial token changes FIR order

From repetition vector to schedule

- Repeatedly schedule fireable actors up to number of times in repetition vector
 \[q = [1 \ 2 \ 2]^T \]

- Can find either ABCBC or ABBCC
- If deadlock before original state, no valid schedule exists (Lee ‘86)
From schedule to implementation

◆ Static scheduling used for:
 • behavioral simulation of DF (extremely efficient)
 • code generation for DSP
 • HW synthesis (Cathedral by IMEC, Lager by UCB, …)

◆ Issues in code generation
 • execution speed (pipelining, vectorization)
 • code size minimization
 • data memory size minimization (allocation to FIFOs)
 • processor or functional unit allocation

Compilation optimization

◆ Assumption: code stitching
 (chaining custom code for each actor)

◆ More efficient than C compiler for DSP

◆ Comparable to hand-coding in some cases

◆ Explicit parallelism, no artificial control dependencies

◆ Main problem: memory and processor/FU allocation depends on scheduling, and vice-versa
Code size minimization

- **Assumptions (based on DSP architecture):**
 - subroutine calls expensive
 - fixed iteration loops are cheap
 ("zero-overhead loops")
- **Absolute optimum: single appearance schedule**
 - e.g. ABCBC → A (2BC), ABBCC → A (2B) (2C)
 - may or may not exist for an SDF graph...
 - buffer minimization relative to single appearance schedules
 (Bhattacharyya '94, Lauwereins '96, Murthy '97)

Buffer size minimization

- **Assumption: no buffer sharing**
- **Example:**

 ![Graph diagram](image)

 - q = | 100 100 10 1 |^T
- **Valid SAS: (100 A) (100 B) (10 C) D**
 - requires 210 units of buffer area
- **Better (factored) SAS: (10 (10 A) (10 B) C) D**
 - requires 30 units of buffer areas, but...
 - requires 21 loop initiations per period (instead of 3)
Dynamic scheduling of DF

- SDF is limited in modeling power
 - no run-time choice
 - cannot implement Gaussian elimination with pivoting

- More general DF is too powerful
 - non-Static DF is Turing-complete (Buck ‘93)
 - bounded-memory scheduling is not always possible

- BDF: semi-static scheduling of special “patterns”
 - if-then-else
 - repeat-until, do-while

- General case: thread-based dynamic scheduling
 (Parks ‘96: may not terminate, but never fails if feasible)

Example of Boolean DF

- Compute absolute value of average of n samples

Example of general DF

- Merge streams of multiples of 2 and 3 in order (removing duplicates)

```
a = get (A)
b = get (B)
forever {
  if (a > b) {
    put (O, a)
a = get (A)
  } else if (a < b) {
    put (O, b)b = get (B)
  } else {
    put (O, a)
a = get (A)
b = get (B)
  }
}
```

- Deterministic merge
 (no “peeking”)

Summary of DF networks

Advantages:

- Easy to use (graphical languages)
- Powerful algorithms for
 - verification (fast behavioral simulation)
 - synthesis (scheduling and allocation)
- Explicit concurrency

Disadvantages:

- Efficient synthesis only for restricted models
 - (no input or output choice)
- Cannot describe reactive control (blocking read)