Overview

- History of SDL
- Benefits of a specification Language
- Characteristics
- SDL Theoretical Model
- Time
- SDL System Example
History

- Object oriented, formal language
 - Defined by International Telecommunications Union (ITU-T)
- Designed to specify complex, event-driven, real-time, and interactive applications
- Initial release in 1976, new ones every 4 years.
Benefits of a Specification Language

- Well defined set of concepts
- Unambiguous, clear, precise, and concise specification
- Basis for analyzing specifications for completeness and correctness
- Basis for determining conformance and consistency of specifications
- Computer support for generating applications
Characteristics

- Standard
- Formal
- Graphical and symbol-based
- Object-oriented
- Portable, scalable, and open
- Highly reusable and efficient
SDL Theoretical Model

- Extended Finite State machines
 - parallel execution
 - independent FSMs
- Structure - 4 hierarchical levels
 - system
 - blocks
 - processes
 - procedures
- Communication
Partitioning

- Hide information
- Follow natural functional subdivisions
- Create modules of intellectually manageable sizes
- Create a correspondence with actual hardware or software
- Reuse already existing specifications.
Structural View
System

- System name
- Channel descriptions
- Signal descriptions
- Data type descriptions

Diagram:

System DemonGame

SIGNAL
Newgame, Probe, Result, Endgame,
Win, Lose, Score(integer), Bump;

GameBlock

DemonBlock
Block

- Nesting
 - recursively break down a system
 - important for large team development efforts
- Blocks and channels define the static structure of a system
 - perceived as a black box at its level
- Set of processes can be logically grouped
Process

- Nested hierarchical state machine
- Separate memory space (data is local)
- Processes and signal routes define the dynamic structure
 - can be created at system start or created/terminated during runtime
 - more than one instance can exist (unique PID)
- Processes work autonomously and concurrently
Process Constructs

5 basic constructs

- Start
- State
- Input
- Output
- NextState
Process

Process Example
Process - Variable Manipulation

DCL
Counter Integer := 0;

A

B

Counter := Counter + 1

S2
Procedure

- Substate machine
- Can be recursive
- Local to a process or globally available depending on scope
- Remote procedures
Time

- Communication mechanism
 - asynchronous signals
 - events occur instantaneously

- Important aspect of real-time systems
 - timer mechanism
 - expired timer generates a signal

- Defined abstractly
 - efficient mapping to time of target system
 - possible to simulate before target availability
Time

Diagram showing the relationship between Timer, e, d, T, c, b, a, Process, and an arrow indicating the flow of information or process.
SDL System Example

- Surprise…

The Belt Controller!