Models Of Computation for reactive systems

- Main MOCs:
 - Communicating Finite State Machines
 - Data-flow Process Networks
 - Petri Nets
 - Discrete Event
 - Codesign Finite State Machines
- Main languages:
 - StateCharts
 - Esterel
 - Data-flow networks

Dataflow networks

- A bit of history
- Syntax and semantics
 - actors, tokens and firings
- Scheduling of Static Data-flow
 - static scheduling
 - code generation
 - buffer sizing
- Other Data-flow models
 - Boolean Data-flow
 - Dynamic Data-flow
Data-flow networks

- Powerful formalism for data-dominated system specification
- Partially-ordered model (no over-specification)
- Deterministic execution independent of scheduling
- Used for
 - simulation
 - scheduling
 - memory allocation
 - code generation
 for Digital Signal Processors (HW and SW)

A bit of history

- Karp computation graphs (‘66): seminal work
- Kahn process networks (‘58): formal model
- Dennis Data-flow networks (‘75): programming language for MIT DF machine
- Several recent implementations
 - graphical:
 - Ptolemy (UCB), Khoros (U. New Mexico), Grape (U. Leuven)
 - SPW (Cadence), COSSAP (Synopsys)
 - textual:
 - Silage (UCB, Mentor)
 - Lucid, Haskell
Dataflow network

- A data-flow network is a collection of functional nodes which are connected and communicate over unbounded FIFO queues
- Nodes are commonly called actors
- The bits of information that are communicated over the queues are commonly called tokens

Intuitive semantics

- (Often stateless) actors perform computation
- Unbounded FIFOs perform communication via *sequences of tokens* carrying values
 - integer, float, fixed point
 - matrix of integer, float, fixed point
 - image of pixels
- State implemented as self-loop
- Determinacy:
 - unique output sequences given unique input sequences
 - Sufficient condition: *blocking read*
 (process cannot test input queues for emptiness)
Intuitive semantics

- At each time, one actor is fired
- When firing, actors consume input tokens and produce output tokens
- Actors can be fired only if there are enough tokens in the input queues

Example: FIR filter
- single input sequence \(i(n)\)
- single output sequence \(o(n)\)
- \(o(n) = c1 \times i(n) + c2 \times i(n-1)\)
Intuitive semantics

- Example: FIR filter
 - single input sequence $i(n)$
 - single output sequence $o(n)$
 - $o(n) = c_1 i(n) + c_2 i(n-1)$
Intuitive semantics

- Example: FIR filter
 - single input sequence $i(n)$
 - single output sequence $o(n)$
 - $o(n) = c_1 i(n) + c_2 i(n-1)$
Intuitive semantics

- Example: FIR filter
 - single input sequence $i(n)$
 - single output sequence $o(n)$
 - $o(n) = c_1 i(n) + c_2 i(n-1)$

![Diagram of FIR filter](image)

Intuitive semantics

- Example: FIR filter
 - single input sequence $i(n)$
 - single output sequence $o(n)$
 - $o(n) = c_1 i(n) + c_2 i(n-1)$

![Diagram of FIR filter](image)
Intuitive semantics

- Example: FIR filter
 - single input sequence i(n)
 - single output sequence o(n)
 - o(n) = c1 i(n) + c2 i(n-1)
Intuitive semantics

- Example: FIR filter
 - single input sequence $i(n)$
 - single output sequence $o(n)$
 - $o(n) = c_1 i(n) + c_2 i(n-1)$

Questions

- Does the order in which actors are fired affect the final result?
- Does it affect the “operation” of the network in any way?
- Go to Radio Shack and ask for an unbounded queue!!
Formal semantics: sequences

- Actors operate from a sequence of input tokens to a sequence of output tokens
- Let tokens be noted by $x_1, x_2, x_3, \text{etc…}$
- A sequence of tokens is defined as
 \[X = [x_1, x_2, x_3, \ldots] \]
- Over the execution of the network, each queue will grow a particular sequence of tokens
- In general, we consider the actors mathematically as functions from sequences to sequences (not from tokens to tokens)

Ordering of sequences

- Let X_1 and X_2 be two sequences of tokens.
- We say that X_1 is less than X_2 if and only if (by definition) X_1 is an initial segment of X_2
- Homework: prove that the relation so defined is a partial order (reflexive, antisymmetric and transitive)
- This is also called the prefix order
- Example: $[x_1, x_2] \leq [x_1, x_2, x_3]$
- Example: $[x_1, x_2]$ and $[x_1, x_3, x_4]$ are incomparable
Chains of sequences

- Consider the set S of all finite and infinite sequences of tokens.
- This set is partially ordered by the prefix order.
- A subset C of S is called a chain iff all pairs of elements of C are comparable.
- If C is a chain, then it must be a linear order inside S (hence the name chain).
- Example: $\{ [x_1], [x_1, x_2], [x_1, x_2, x_3], \ldots \}$ is a chain.
- Example: $\{ [x_1], [x_1, x_2], [x_1, x_3], \ldots \}$ is not a chain.

(Least) Upper Bound

- Given a subset Y of S, an upper bound of Y is an element z of S such that z is larger than all elements of Y.
- Consider now the set Z (subset of S) of all the upper bounds of Y.
- If Z has a least element u, then u is called the least upper bound (lub) of Y.
- The least upper bound, if it exists, is unique.
- Note: u might not be in Y (if it is, then it is the largest value of Y).
Complete Partial Order

- Every chain in S has a least upper bound
- Because of this property, S is called a Complete Partial Order
- Notation: if C is a chain, we indicate the least upper bound of C by lub(C)
- Note: the least upper bound may be thought of as the limit of the the chain

Processes

- Process: function from a p-tuple of sequences to a q-tuple of sequences
 \[F : S^p \rightarrow S^q \]
- Tuples have the induced pointwise order:
 \[Y = (y_1, \ldots, y_p), \quad Y' = (y'_1, \ldots, y'_p) \text{ in } S^p : \]
 \[Y \leq Y' \text{ iff } y_i \leq y'_i \text{ for all } 1 \leq i \leq p \]
- Given a chain C in S^p, $F(C)$ may or may not be a chain in S^q
- We are interested in conditions that make that true
Continuity and Monotonicity

- Continuity: F is continuous iff (by definition) for all chains C, lub(F(C)) exists and
 \[F(\text{lub}(C)) = \text{lub}(F(C)) \]
- Similar to continuity in analysis using limits
- Monotonicity: F is monotonic iff (by definition) for all pairs X, X'
 \[X \leq X' \Rightarrow F(X) \leq F(X') \]
- Continuity implies monotonicity
 - intuitively, outputs cannot be “withdrawn” once they have been produced
 - timeless causality. F transforms chains into chains