Least Fixed Point semantics

- Let X be the set of all sequences
- A network is a mapping F from the sequences to the sequences (where I represents the input sequence):
 \[
 X = F(X, I)
 \]
- The behavior of the network is defined as the unique least fixed point of the equation
- If F is continuous then the least fixed point exists
 \[
 \text{LFP} = \text{LUB}(\{ F^n(\perp, I) : n \geq 0 \})
 \]

Non-monotonic processes

- “Canonical” non-monotonic process: *fair merge*

 \[
 [x_1, x_2, x_3, \ldots] \xrightarrow{\text{FM}} [x_1, y_1, x_2, y_2, x_3, y_3, \ldots]
 \]

 \[
 [y_1, y_2, y_3, \ldots] \xrightarrow{\text{FM}} [x_1, y_1, x_2, y_2, y_3, \ldots]
 \]

 \[
 [x_1, x_2] \xrightarrow{\text{FM}} [x_1, y_1, x_2, y_2]
 \]

 \[
 [y_1, y_2] \xrightarrow{\text{FM}} [x_1, y_1, x_2, y_2]
 \]
Non-monotonic processes

- In the previous example, we have:
 \(([x_1, x_2], [y_1, y_2, y_3, \ldots]) \leq ([x_1, x_2, x_3, \ldots], [y_1, y_2, y_3, \ldots])\)
- but \([x_1, y_1, x_2, y_2, x_3, y_3, \ldots]\) and \([x_1, y_1, x_2, y_2, y_3, \ldots]\) are incomparable.
- The process is not monotonic (needs prediction of the future to be really fair)
- The least fixed point may not exist

From Kahn networks to Data-flow networks

- Each process becomes an actor: set of pairs of
 - firing rule
 (number of required tokens on inputs)
 - function
 (including number of consumed and produced tokens)
- Formally shown to be equivalent, but actors with firing are more intuitive
- Mutually exclusive firing rules imply monotonicity
- Generally simplified to blocking read
Examples of Data-flow actors

- **SDF**: Synchronous (or, better, Static) Data-flow
 - fixed input and output tokens

- **BDF**: Boolean Data-flow
 - control token determines consumed and produced tokens

Static scheduling of DF

- Key property of DF networks: output sequences do not depend on time of firing of actors
- SDF networks can be statically scheduled at compile-time
 - execute an actor when it is known to be fireable
 - no overhead due to sequencing of concurrency
 - static buffer sizing
- Different schedules yield different
 - code size
 - buffer size
 - pipeline utilization
Static scheduling of SDF

- Based only on *process graph* (ignores functionality)
- Network state: number of tokens in FIFOs
- Objective: find schedule that is *valid*, i.e.:
 - *admissible*
 (only fires actors when fireable)
 - *periodic*
 (brings network back to initial state by firing each actor at least once)
- Optimize cost function over admissible schedules

Balance equations

- Number of produced tokens must equal number of consumed tokens on every edge

- Repetitions (or firing) vector v_S of schedule S: number of firings of each actor in S
- $v_S(A) n_p = v_S(B) n_c$
- must be satisfied for each edge
Balance equations

平衡方程

- 平衡每个边:
 - $3v_S(A) - v_S(B) = 0$
 - $v_S(B) - v_S(C) = 0$
 - $2v_S(A) - v_S(C) = 0$
 - $2v_S(A) - v_S(C) = 0$

$$M v_S = 0$$
iff S is periodic

- 全秩（如在此案例）
 - 无非零解
 - 无周期调度

(太多令牌在一个周期内积累在 A->B 或 B->C)
Balance equations

- Non-full rank
 - infinite solutions exist (linear space of dimension 1)
- Any multiple of \(q = [1 \ 2 \ 2]^T \) satisfies the balance equations
- ABCBC and ABBCC are minimal valid schedules
- ABABBCBCBC is non-minimal valid schedule

\[
M = \begin{bmatrix}
2 & -1 & 0 \\
0 & 1 & -1 \\
2 & 0 & -1 \\
2 & 0 & -1
\end{bmatrix}
\]

Static SDF scheduling

- Main SDF scheduling theorem (Lee ‘86):
 - A connected SDF graph with \(n \) actors has a periodic schedule iff its topology matrix \(M \) has rank \(n-1 \)
 - If \(M \) has rank \(n-1 \) then there exists a unique smallest integer solution \(q \) to
 \[
 M q = 0
 \]
 - Rank must be at least \(n-1 \) because we need at least \(n-1 \) edges (connectedness), providing each a linearly independent row
 - Admissibility is not guaranteed, and depends on initial tokens on cycles
Admissibility of schedules

- No admissible schedule:
 BACBA, then deadlock…
- Adding one token (delay) on A→C makes
 BACBACBA valid
- Making a periodic schedule admissible is always possible, but changes specification...

Admissibility of schedules

- For example: adding initial token changes FIR order
From repetition vector to schedule

- Repeatedly schedule fireable actors up to number of times in repetition vector
 \[q = [1 \ 2 \ 2]^T \]

- Can find either ABCBC or ABBCC
- If deadlock before original state, no valid schedule exists (Lee ‘86)

From schedule to implementation

- Static scheduling used for:
 - behavioral simulation of DF (extremely efficient)
 - code generation for DSP
 - HW synthesis (Cathedral by IMEC, Lager by UCB, …)

- Issues in code generation
 - execution speed (pipelining, vectorization)
 - code size minimization
 - data memory size minimization (allocation to FIFOs)
 - processor or functional unit allocation
Compilation optimization

- Assumption: code stitching
 (chaining custom code for each actor)
- More efficient than C compiler for DSP
- Comparable to hand-coding in some cases
- Explicit parallelism, no artificial control dependencies
- Main problem: memory and processor/FU allocation depends on scheduling, and vice-versa

Code size minimization

- Assumptions (based on DSP architecture):
 - subroutine calls expensive
 - fixed iteration loops are cheap
 ("zero-overhead loops")
- Absolute optimum: single appearance schedule (SAS)
 e.g. ABCBC -> A (2BC), ABBCC -> A (2B) (2C)
 - may or may not exist for an SDF graph...
 - buffer minimization relative to single appearance schedules
 (Bhattacharyya ‘94, Lauwereins ‘96, Murthy ‘97)
Buffer size minimization

- Assumption: no buffer sharing
- Example:

\[
q = \begin{bmatrix} 100 & 100 & 10 & 1 \end{bmatrix}^T
\]

- Valid SAS: \((100 \ A) (100 \ B) (10 \ C) \ D\)
 - requires 210 units of buffer area
- Better (factored) SAS: \((10 \ (10 \ A) (10 \ B) \ C) \ D\)
 - requires 30 units of buffer areas, but...
 - requires 21 loop initiations per period (instead of 3)\(^{19}\)

Dynamic scheduling of DF

- SDF is limited in modeling power
 - no run-time choice
 - cannot implement Gaussian elimination
- More general DF is too powerful
 - non-Static DF is Turing-complete (Buck ‘93)
 - bounded-memory scheduling is not always possible
- BDF: semi-static scheduling of special “patterns”
 - if-then-else
 - repeat-until, do-while
- General case: thread-based dynamic scheduling
 (Parks ‘96: may not terminate, but never fails if feasible)\(^{20}\)
Example of Boolean DF

- Compute absolute value of average of n samples

Example of general DF

- Merge streams of multiples of 2 and 3 in order (removing duplicates)

- Deterministic merge (no “peeking”)
Summary of DF networks

- **Advantages:**
 - Easy to use (graphical languages)
 - Powerful algorithms for
 - verification (fast behavioral simulation)
 - synthesis (scheduling and allocation)
 - Explicit concurrency

- **Disadvantages:**
 - Efficient synthesis only for restricted models
 - (no input or output choice)
 - Cannot describe reactive control (blocking read)