Design

- From an idea…
- … build something that performs a certain function
- Never done directly:
 - some aspects are not considered at the beginning of the development
 - the designer wants to explore different possible implementations in order to maximize (or minimize) a cost function
- Models can be used to reason about the properties of an object
Informal specification leads to:
- unambiguous specification
- various stages not logically connected
- costly redesign

We need:
- Formal specification: ```await i; emit o```
- Set of Properties: ```AG i \rightarrow o```
- Set of Performance Indices: ```Time (i,o)```
- Set of Constraints: ```Time (i,o) < 10 s```
Functions vs. computation

- Functions specify only a relation between two sets of variables (input and output)
- Computations describe how the output variables can be derived from the value of the input variables.

Model of Computation

- A MoC is a framework in which to express what sequence of actions must be taken to complete a computation
- An instance of a model of computation is a representation of a function under a particular interpretation of its constituents
- Not necessarily a bijection (in fact almost never!)
- Examples: Finite State Machine, Turing Machine, differential equation
Partial recursive functions

- Functions need not be computable
- A particular set of functions is obtained by recursive definitions with unbounded search. They are called Partial Recursive Functions.
- Church’s Thesis: “The set of computable functions is the set of Partial Recursive Functions”
- Accept or reject!
- Models which can represent all partial recursive functions are called Turing-complete
- Example: Turing Machines
So why different models?

- Different models = different properties
- Turing-complete models are too powerful!
- Some problems may be undecidable

Properties of a Design

Property:
A (redundant) assertion of the behavior of a design

Verification of Property:
E.g. Determinacy

- Inherent in model of computation
 - Dataflow network
- or Verify syntactically
 - FSM network
- or Verify semantically
 - Petri net
Models Of Computation
and languages

- Need to distinguish between *model* and *language*
- Language needs to
 - be expressive enough for application domain
 (write things once…)
 - have semantics in desired MOC
- MOC needs to
 - be powerful enough for application domain
 - have appropriate synthesis and validation algorithms

Control versus Data Flow

- Fuzzy distinction, yet useful for:
 - specification (language, model, ...)
 - synthesis (scheduling, optimization, ...)
 - validation (simulation, formal verification, ...)
- Rough classification:
 - control:
 - don’t know when data arrive (quick reaction)
 - time of arrival often matters more than value
 - data:
 - data arrive in regular streams (samples)
 - value matters most
Control versus Data Flow

- Specification, synthesis and validation methods emphasize:
 - for control:
 - event/reaction relation
 - response time
 (Real Time scheduling for deadline satisfaction)
 - priority among events and processes
 - for data:
 - functional dependency between input and output
 - memory/time efficiency
 (Dataflow scheduling for efficient pipelining)
 - all events and processes are equal

Models Of Computation for reactive systems

- Main MOCs:
 - Communicating Finite State Machines
 - Dataflow Process Networks
 - Petri Nets
 - Discrete Event
 - Codesign Finite State Machines

- Main languages:
 - StateCharts
 - Esterel
 - Dataflow networks
Finite State Machines

- Functional decomposition into states of operation
- Inputs and outputs are sequences of events
- Typical domains of application:
 - control functions
 - protocols (telecom, computers, ...)
- Different communication mechanisms:
 - synchronous
 (classical FSMs, Moore ‘64, Kurshan ‘90)
 - asynchronous
 (CCS, Milner ‘80; CSP, Hoare ‘85)

FSM Example

- Informal specification:

 *If the driver
 *turns on the key, and
 *does not fasten the seat belt within 5 seconds
 *then an alarm beeps
 *for 5 seconds, or
 *until the driver fastens the seat belt, or
 until the driver turns off the key
FSM Example

KEY_ON => START_TIMER

WAIT

OFF

KEY_OFF or
BELT_ON =>

END_TIMER_5 =>
ALARM_ON

END_TIMER_10 or
BELT_ON or
KEY_OFF =>

ALARM_OFF

If no condition is satisfied, implicit self-loop in the current state

FSM Definition

- FSM = (I, O, S, r, δ, λ)
- I = {KEY_ON, KEY_OFF, BELT_ON, END_TIMER_5, END_TIMER_10}
- O = {START_TIMER, ALARM_ON, ALARM_OFF}
- S = {OFF, WAIT, ALARM}
- r = OFF

δ : 2^I × S → S

e.g. δ({KEY_OFF}, WAIT) = OFF

λ : 2^I × S → 2^O

e.g. λ({KEY_ON}, OFF) = {START_TIMER}

note: self-loop not implied in the function
Non-deterministic FSMs

- δ and λ may be relations instead of functions:
 - $\delta \subseteq 2^I \times S \times S$
 - *implicit “and”*
 - e.g. $\delta(\{\text{KEY_OFF, END_TIMER_5}\}, \text{WAIT}) = \{\{\text{OFF}\}, \{\text{ALARM}\}\}$
 - $\lambda \subseteq 2^I \times S \times 2^O$
 - *implicit “or”*

- Non-determinism can be used to describe:
 - an unspecified behavior
 (incomplete specification)
 - an unknown behavior
 (environment modeling)

NDFSMS: incomplete specification

- E.g. error checking first partially specified:

 NDFSMS: incomplete specification

 - BIT or not BIT => BIT or not BIT => BIT or not BIT => ERR
 - BIT or not BIT => ...
 - BIT or not BIT => ...

 - Then completed as *even parity*:

 - BIT or not BIT => ...
 - BIT or not BIT => ...

 - SYNC =>
 - BIT or not BIT => ERR
 - BIT or not BIT => ERR

 - SYNC =>
NDFSM: time range

- Special case of unspecified/unknown behavior, but so common to deserve special treatment for efficiency
- E.g. undetermined delay between 6 and 10 s

![NDFSM Diagram]

NDFSMs and FSMs

- Formally FSMs and NDFSMs are equivalent (Rabin-Scott construction, Rabin ‘59)
- In practice, NDFSMs are often more compact
- *Language-theoretic* non-determinism (equivalence-oriented) is subtly different from *FSM* non-determinism (containment-oriented)

 For we need one FSM compatible with the NDFSM

- Two classes of FSM non-determinism
 - Output (deterministic in language theoretic sense)
 - State
Modeling Concurrency

- Need to compose parts described by FSMs
- Interconnected FSMs specify system
- How do the interconnected FSMs talk to each other?

FSM Composition

- Bridle complexity via hierarchy: *FSM product yields an FSM*
- Fundamental hypothesis:
 - all the FSMs change state together (*synchronicity*)
- System state = Cartesian product of component states
 (state explosion may be a problem...)
- E.g. seat belt control + timer

![State Transition Diagram](image)
FSM Composition

Given
- \(M_1 = (I_1, O_1, S_1, r_1, \delta_1, \lambda_1) \) and
- \(M_2 = (I_2, O_2, S_2, r_2, \delta_2, \lambda_2) \)

Find the composition
- \(M = (I, O, S, r, \delta, \lambda) \)

given a set of constraints of the form:
- \(C = \{ (o, i_1, \ldots, i_n) : o \text{ is connected to } i_1, \ldots, i_n \} \)
FSM Composition

- Unconditional product $M' = (I', O', S', r', \delta', \lambda')$
 - $I' = I_1 \cup I_2$
 - $O' = O_1 \cup O_2$
 - $S' = S_1 \times S_2$
 - $r' = r_1 \times r_2$
 - $\delta' = \{ (A_1, A_2, s_1, s_2, t_1, t_2) : (A_1, s_1, t_1) \in \delta_1$ and $A_2, s_2, t_2) \in \delta_2 \}$
 - $\lambda' = \{ (A_1, A_2, s_1, s_2, B_1, B_2) : (A_1, s_1, B_1) \in \lambda_1$ and $A_2, s_2, B_2) \in \lambda_2 \}$

- Note:
 - $A_1 \subseteq I_1$, $A_2 \subseteq I_2$, $B_1 \subseteq O_1$, $B_2 \subseteq O_2$
 - $2^{X \cup Y} = 2^X \times 2^Y$

FSM Composition

- Constraint application
 - $\lambda = \{ (A_1, A_2, s_1, s_2, B_1, B_2) : \lambda' : for all (o, i_1, \ldots, i_n) \in C$
 $o \in B_1 \cup B_2$ if and only if $i_j \in A_1 \cup A_2$ for all $j \}$

- The application of the constraint rules out the cases where the connected input and output have different values (present/absent).

- Outcomes:
 - λ is empty or incompletely specified
 - λ is a function
 - λ is a relation
FSM Composition

- \(I = I_1 \cup I_2 \)
- \(O = O_1 \cup O_2 \)
- \(S = S_1 \times S_2 \)
- Assume that \(o_1 \in O_1, i_3 \in I_2, o_1 = i_3 \) (communication)
- \(\delta \) and \(\lambda \) are such that, e.g., for each pair:
 - \(\delta_1(\{i_1\}, s_1) = t_1, \lambda_1(\{i_1\}, s_1) = \{o_1\} \)
 - \(\delta_2(\{i_2, i_3\}, s_2) = t_2, \lambda_2(\{i_2, i_3\}, s_2) = \{o_2\} \)

 we have:
 - \(\delta(\{i_1, i_2, i_3\}, (s_1, s_2)) = (t_1, t_2) \)
 - \(\lambda(\{i_1, i_2, i_3\}, (s_1, s_2)) = \{o_1, o_2\} \)

 i.e. \(i_3 \) is in input pattern iff \(o_2 \) is in output pattern

Problem: what if there is a cycle?

- Moore machine: \(\delta \) depends on input and state, \(\lambda \) only on state
 - composition is always well-defined
- Mealy machine: \(\delta \) and \(\lambda \) depend on input and state
 - composition may be undefined

What if \(\lambda_1(\{i_1\}, s_1) = \{o_1\} \) but \(o_2 \notin \lambda_2(\{i_3\}, s_2) \)?

Is \(o_1 \) output or not?

Causality analysis in Mealy FSMs (Berry ‘98)
Moore vs. Mealy

- Theoretically, same computational power (almost)
- In practice, different characteristics
- Moore machines:
 - non-reactive
 (response delayed by 1 cycle)
 - easy to compose
 (always well-defined)
 - good for implementation
 - software is always “slow”
 - hardware is better when I/O is latched

- Mealy machines:
 - reactive
 (0 response time)
 - hard to compose
 (problem with combinational cycles)
 - Esterel compilation algorithm
 - problematic for implementation
 - software must be “fast enough”
 (synchronous hypothesis)
 - may be needed in hardware, for speed
Hierarchical FSM models

- Problem: how to reduce the size of the representation?
- Harel’s classical papers on StateCharts (language) and bounded concurrency (model): 3 orthogonal exponential reductions
- Hierarchy:
 - state a “encloses” an FSM
 - being in a means FSM in a is active
 - states of a are called OR states
 - used to model pre-emption and exceptions
- Concurrency:
 - two or more FSMs are simultaneously active
 - states are called AND states
- Non-determinism:
 - used to abstract behavior

Models Of Computation for reactive systems

- Main MOCs:
 - Communicating Finite State Machines
 - Dataflow Process Networks
 - Petri Nets
 - Discrete Event
 - Codesign Finite State Machines
- Main languages:
 - StateCharts
 - Esterel
 - Dataflow networks
StateCharts

- An extension of conventional FSMs
- Conventional FSMs are inappropriate for the behavioral description of complex control
 - flat and unstructured
 - inherently sequential in nature
- StateCharts supports repeated decomposition of states into sub-states in an AND/OR fashion, combined with a synchronous (instantaneous broadcast) communication mechanism

State Decomposition

- OR-States have sub-states that are related to each other by exclusive-or
- AND-States have orthogonal state components (synchronous FSM composition)
 - AND-decomposition can be carried out on any level of states (more convenient than allowing only one level of communicating FSMs)
- Basic States have no sub-states (bottom of hierarchy)
- Root State: no parent states (top of hierarchy)
To be in state U the system must be either in state S or in state T.

To be in state U the system must be both in states S and T.
StateCharts Syntax

- The general syntax of an expression labeling a transition in a StateChart is $e[c]/a$, where:
 - e is the event that triggers the transition
 - c is the condition that guards the transition (cannot be taken unless c is true when e occurs)
 - a is the action that is carried out if and when the transition is taken
- For each transition label:
 - event condition and action are optional
 - an event can be the changing of a value
 - standard comparisons are allowed as conditions and assignment statements as actions

StateCharts Actions and Events

- An action a on the edge leaving a state may also appear as an event triggering a transition going into an orthogonal state:
 - executing the first transition will immediately cause the second transition to be taken simultaneously
- Actions and events may be associated to the execution of orthogonal components: $start(A), stopped(B)$
Graphical Hierarchical FSM Languages

- Multitude of commercial and non-commercial variants:
 - StateCharts, UML, StateFlow, ...
- Easy to use for control-dominated systems
- Simulation (animated), SW and HW synthesis
- Extended with arithmetics
- Original StateCharts have problems with instantaneous reaction (micro-steps):
 - behavior is implementation-dependent
 - not a truly synchronous language!!!!

Summary of Finite State Machines

- Advantages:
 - Easy to use (graphical languages)
 - Powerful algorithms for
 - synthesis (SW and HW)
 - verification
- Disadvantages:
 - Sometimes over-specify implementation
 (sequencing is fully specified)
 - Numerical computations cannot be specified compactly
 (need extended FSMs)
Synchronous Languages

- Assumptions:
 - the system continuously reacts to internal and external events by emitting other events
 - events can occur only at discrete instants
 - zero (negligible) reaction time
- Both control (Esterel) and data flow (Lustre, Signal)
- Very simple syntax and clean semantics (based on FSMs)
- Deterministic behavior
- Simulation, software and hardware synthesis, verification

ESTEREL

- Designed at INRIA by Berry et al.
- Concurrent modules:
 - interface signals, possibly with values
 - local signals and variables
 - statements, e.g.:
 - `await` (single or multiple signals)
 - `do stmt1 watching signal [timeout stmt2]`
 (instantaneous killing of stmt1)
 - `trap exception in stmt1 [handle do stmt2]`
 (allow stmt1 to terminate)
 - allows “external” procedures and functions
Example: readable counter

module counter:
 input go, reset, req; output ack(integer);
 var t:integer in
 loop do
 t:=0;
 every go do
 t:=t+1;
 await req; emit ack(t)
 end
 end
 watching reset
end
end.

Other communicating FSM models

- Synchronous (Esterel, StateCharts):
 all FSMs make a transition simultaneously

- A-synchronous (not synchronous):
 communication is mediated by “channels”:
 - blocking write/blocking read (CSP, CCS)
 (rendez-vous: both partners must be ready)
 - non-blocking write/blocking read (CFSMs, SDL)
 (bounded or unbounded FIFOs)
 - non-blocking write/non-blocking read
 (shared variables)