
xGiotto Language Report

Marco A.A. Sanvido, Arkadeb Ghosal, and Thomas A. Henzinger

Report No. UCB/CSD-3-1261

July 2003

Computer Science Division (EECS)
University of California
Berkeley, California 94720

xGiotto Language Report1

Marco A.A. Sanvido, Arkadeb Ghosal, and Thomas A. Henzinger
University of California at Berkeley

Berkeley, 94704, CA
{msanvido,arkadeb,tah}@eecs.berkeley.edu

June, 2003

1
Revision: 0.2

Chapter 1

Introduction

xGiotto is an eXtension of the programming language Giotto [1]. Giotto

was developed essentially for embedded systems with a periodical control, as
example for implementing an autopilot system for a model helicopter [4]. In
particular Giotto focused on the strict separation of timing and functionality.
The timing allowed to simplify the temporal behavior analysis, necessary to
prove system safety and reactivity [3]. Discerning the timing and functionality,
exposed the functionality and made it more tractable and analyzable in respect
of execution times analysis.
xGiotto builds on top of Giotto in the sense that the strict separation of
timing and functionality is respected and even made more clear at the syntac-
tical level. In Giotto the functionality was explicitly external to the Giotto

program, as opposed by xGiotto where the functionality is expressed in the
programm itself. This makes an xGiotto program self contained.
Another key aspect made more clear in xGiotto is the fixed logical execution
time of a task. The logical execution time of a task is specified in the program
and therefore made independent from the executing platform. This makes the
timing behavior of a xGiotto program platform-independent and determinis-
tic. Therefore, we shift the role of guaranteeing the timing behavior of a program
from the programmer to the compiler. The compiler will map the program to a
given platform only if the platform will guarantee its logical execution time.
Moreover, in Giotto tasks were single periodical entities, with fixed intertask
connections. Each task was executed periodically, copying its input parameters
and reading its generated output parameters at a formally defined point in
time. In xGiotto this is more flexible, introducing the ability to start sporadic,
asynchronous, and multiple instances of a tasks. The fixed logical execution time
concept is therefore preserved, but made more independent from the periodical
execution of xGiotto .
This report is not intended as a programmer’s tutorial, and it is intentionally
kept concise. Its function is to serve as a reference for programmers, and imple-
mentors.

1

Chapter 2

Vocabulary

• Identifiers are sequences of letters and digits. The first character must
be a letter.

ident = letter {letter | digit}.

• Numbers are integers or real numbers. Integers are sequences of digits.
A real number always contains a decimal point.

number = digit {digit} ["." {digit}].

• Operators and delimiters are the special characters, character pairs, or
reserved words listed below. These reserved words consist exclusively of
capital letters and cannot be used in the role of identifiers.

+ = ARRAY AT COMPLETION
- == RECORD ELSE ˆ
∗ < TYPE TASK |
/ <= WHENEVER EVENT &
. > UNTIL OF THEN
; >= PORT END OUTPUT
{ } TIMING WHEN VAR
() [] !

• Comments may be inserted between any two symbols in a program. They
are arbitrary character sequences opened by the bracket /* and closed by
*/ . Comments do not affect the meaning of a program and can be nested.

2

Chapter 3

Declarations and Scope
Rules

Every identifier occurring in a program must be introduced by a declaration,
unless it is a predefined identifier. Declarations also serve to specify certain
permanent properties of an object, such as whether it is a type, a port, an
event, a task, or a timing.

3.1 Type Declarations

A type determines the set of values that ports and events of that type can
assume. A type declaration is used to bind an identifier to a type. There are
three predefined types: INTEGER, REAL, BOOLEAN. A type can be constructed
by combining basic types and with two structured types: RECORDand ARRAY.
A record is an inhomogeneous set of values, whereas an array is a homogeneous
vector with a fixed number of elements of the same type.

TypeDecl = "TYPE" {Ident (ArrayDecl | RecordDecl)}.
ArrayDecl = "ARRAY" Number "OF" TypeId.
RecordDecl = "RECORD" ’{’ {TypeId Ident ’;’ }’}’.

3.1.1 Predefined types

1. INTEGERare one-complement 32 bits wide values.

2. REALare 32 bits wide floating point numbers.

3. BOOLEANcan have values TRUEand FALSE.

3.1.2 Structured Types

1. A RECORDis an inhomogeneous set of values, the number of elements are
fixed with possibly different types. The record type declaration specifies

3

for each element, called a field, its type and an identifier that denotes the
field. The scope of these field identifiers is the record definition itself.

2. An ARRAYis a homogeneous vector with a fixed number of elements of
the same type. The array consists of a fixed number of elements called
its length. The elements of the array are designated by indices, which are
integers between 0 and the length of the array minus 1.

3.2 Port Declaration

Port declarations serve to introduce ports and associate them with identifiers
that must be unique. They also serve to associate fixed data types with the
ports. The ports scope is global for reading, i.e. ports can be read in all timing
blocks, but ports can be written only at specific events (called termination event,
see 4.3).

PortDecl = "PORT" {TypeId Ident [InitPort] ’;’}.

Ports can be initialized with an optional predefined value. The value will be
assigned to the port during program initialization. If no initial value is specified,
the port will be initialized to its default value (e.g. 0 for INTEGERand FALSE
for BOOLEAN). The format of the initialization must be compatible with the
type structure of the port.

InitPort = ’=’ InitPortVal.
InitPortVal = number | "{" InitPortVal {"," InitPortVal }"} ".

3.3 Event Declaration

Event declarations serve to introduce events and declare them as: external,
completion, or composed. Event identifiers must be unique. The external event
TIME is predefined and bound to the system clock. A TIME event is triggered
every 1ms, if not specified otherwise.

EventDecl = "EVENT"
{TypeId Ident
["AT" Ident | "WHEN" EventExpression] ’;’
}.

3.3.1 External Events

External events are generated externally by interrupts. The binding is per-
formed in a system dependent manner and specified in the program with AT
interrupt name.

4

3.3.2 Completion Events

Completion events are generated internally by the program. They are similar to
software interrupts. To generate a completion event the program must bind it
to a specific task at run-time. When the task terminates its computation raises
the completion event. Note that is a platform dependent event.

3.3.3 Composed Events

Composed events are generated by evaluating event expressions. The evaluation
of such expressions is executed by the arrival of events of the expression. If the
event expression is TRUEthen the event is raised.
Event expression are concatenation of OR-sequences or AND-sequences. An
OR-sequence expression is evaluated to TRUEif an event of the concatenation is
raised, and an AND-sequence expression is evaluated to TRUEif all the events
of the concatenation were raised at some point in the past. Once the composed
event is raised, the event expression is reset.

EventExpression = ETerm {"|" ETerm}.
ETerm = EFactor {"&" EFactor}.
EFactor = Ident | ’(’ EventExpression ’)’.

3.4 Task Declaration

Task declarations consist of a task heading and a task body. The heading
specifies the task identifier, the formal input parameters, the formal output
parameters, and if any, the formal completion event, and local variables. The
body contains declarations and statements and is enclosed by brackets.
All variables declared within a task body are local to the task. The values
of local variables are set to their default (e.g. 0 for INTEGER and FALSE for
BOOLEAN) upon entry to the task.

TaskDecl = "TASK" Ident
FPars "OUTPUT" FPars
["VAR" FPars] ["COMPLETION" EFPar]
Body.

Body = ’{’ StatSeq ’}’.
StatSeq = Stat {";" Stat}.

3.4.1 Formal Parameters

Formal parameters are identifiers which denote actual parameters specified in
the task call. The correspondence between formal and actual parameters is
established when the task is activated (see 4.3). The input parameters are
passed by value, i.e. are local ports to which the result of the evaluation of

5

the corresponding actual parameter is assigned as initial value. The output
parameters are passed by value-reference, i.e. are local ports with the actual
parameter as initial value, but their value is instantaneously copied back to the
actual parameter at task termination (see 4.3).
The VAR formal parameter declaration is used to declare local variables. The
formal event parameter is the completion event, which will be raised when the
task computation is completed.

FPars = ’(’ [TypeId Ident {’,’ TypeId Ident }] ’)’.
EFPar = ’[’ TypeId Ident ’]’.

All formal parameters (input, output, event and local) are local to the task,
i.e. their scope is the task body of the task declaration only.
The task body will be explained later in section 4.2.

3.4.2 Examples of Task Declarations:

TASK ReadInt(INTEGER x0; INTEGER x1) OUTPUT (INTEGER y)
VAR (INTEGER i) {

i = 10*x0 + x1;
y = i+10;

}

TASK Filter(REAL x; BOOLEAN on) OUTPUT (REAL y) COMPLETION
[INTEGER e]{

IF (on) {
y = 0.5*y + 0.5*x;

} ELSE {
y = x;

}
e = e + 1;

}

3.5 Timing Declaration

A timing is executed in logical zero time, i.e. no relevant computation is per-
formed by the system and therefore no relevant execution time is necessary. A
timing describes only the reaction of the system. The computation burden is
released to the tasks.
The heading specifies the timing identifier. The body contains declarations
and statements and is enclosed by brackets. In the timing body only timing
statements are allowed (see 4.3).

TimingDecl = "TIMING" Ident ’(’ ’)’ TBody.
TBody = ’{’TStatSeq ’}’.
TStatSeq = TStat {";" TStat}.

6

3.5.1 Example of Timing Declaration:

TIMING Button() {
[A]Coin();
[B]Coin();
Press(on)(k)[K];

}

7

Chapter 4

Statements

4.1 Expressions

Expressions denote rules of computation and whereby constants and current
port values are combined to derive other values by the application of operators.
Expressions consist of operands and operators. Parentheses may be used to
express specific associations of operators and operands.

4.1.1 Operands

Operands are denoted by designators, with the exception of number constants.
A designator consists of an identifier referring to the port, and possibly followed
by selectors, if the designated object is an element of a structure (i.e. array or
record).
If a designates an array, then a[e] denotes that element of a whose index is the
current value of the expression e. The type of e must be an integer type. If r
designates a record, r.f denotes the field f of the record p.

Designator = Ident [’.’ Designator | ’[’ Expression ’]’].

If the designated object is a port e, then the designator refers to the current
value of the port.

4.1.2 Operators

Operands are composed into expressions by using operators. The binding of the
operators is strictly defined by the EBNF definition.

Expression = SimExpr [RelOp SimExpr].
SimExpr = Term { AddOp Term }.
Term = Factor { MulOp Factor }.
Factor = Designator

| "TRUE"

8

| "FALSE"
| Number
| ’-’ Factor
| ’!’ Factor
| ’(’ Expression ’)’.

The following tables list all available operators.

Logical operators:

symbol result
| logical disjunction
& logical conjunction
! logical negation

Arithmetic operators:

symbol result
+ sum
− difference
∗ product
/ division

The operators +, −, ∗, and / apply to operands of numeric types. The type
of the result is that operand’s type which includes the other operand’s type,
except for division (/), where the result is the real type which includes both
operand types. When used as operators with a single operand, − denotes sign
inversion and + denotes the identity operation.

Relations:

symbol relation
== equal
! = unequal
< less
<= less or equal
> greater
>= greater or equal

4.1.3 Examples of Expressions

1987 (INTEGER)
i/3 (REAL)
p | q (BOOLEAN)

(i+j) * (i-j) (INTEGER)
i + x (REAL)
a[i+j] * a[i-j] (REAL)
(0<=i) & (i<100) (BOOLEAN)
t.key == 0 (BOOLEAN)

9

4.2 Task Statements

The body of a task defines the computation the task will perform in fixed logical
time. In a task there are three different type of computations which can be made
only on the local ports of the task (i.e. a task is side-effect free). The results
of the computation stored in the local output port will be copied to the global
port during the task termination (see 4.3).

Stat = [Assignment | IfStatement | WhileStatement].

4.2.1 Assignments

The result of the evaluation of the expression replaces the actual value of the
operand denoted by the designator.

Assigment = Designator "=" Expression.

4.2.2 If

If the BOOLEANexpression is evaluated to TRUEthe first statement sequence is
executed otherwise –if present– the statement sequence in the ELSEblock is be
executed.

IfStatement = "IF" ’(’ Expression ’)’ ’{’ StatSeq ’}’
["ELSE" ’{’ StatSeq ’}’].

4.2.3 While

The while statement will execute the statements in its block until the result of
the evaluation of the BOOLEANexpression is evaluated to FALSE.

WhileStatement = "WHILE" ’(’ Expression ’)’ ’{’ StatSeq ’}’ .

4.3 Timing Statements

The body of a timing declaration defines the reaction of the system. The timing
body will be executed in logical zero-time, i.e. the computation time needed to
execute the statements of the timing body can be neglected. The timing body
does not perform any operations, with the only exception of the evaluation of
the expression of the if-statements. Ports values can only be read.
A timing statement can invoke a task (i.e. TaskActivation), can declare
how to react to a following (i.e. ReactionStatement), and can conditionally
execute timing statements (i.e. IfStatement). Timing statements can be
repeated at the occurrence of an event (i.e. WheneverStatement).

TStat = [TaskActivation | TimingActivation
| IfStatement | WheneverStatement].

10

4.3.1 Event Operands

All timing statements refer to an event operand, i.e. when the event rises one or
more timing statements will be evaluated in logical zero time. Event operands
can also count event, i.e. the timing statement will only be executed when the
number of specified events has been fired. The name of the event can be left
out, as an abbreviation for the predefined event TIME.

Event = ’[’ [Number] [Ident] ’]’.

Examples of Event Operands:

[A] reference to event A
[10A] reference to 10 times event A
[10] 10 times the event TIME
[] in the next time instance

4.3.2 Task Activation and Termination

When a task is activated, the task will start performing the computation on its
input, output and local ports. The computation will take a fixed logical execu-
tion time, which is specified by the termination event. When the termination
event is raised, the actual output ports will be instantaneously updated and the
memory used by task destroyed, and recollected.
The task will raise a completion event when the real execution time terminates.

TaskActivation = Ident AParsValue AParsRef Event [ComplEv ent].

4.3.3 Timing Activation

The timing activation statements register in the system which timing block has
to be executed upon raising of an determined event.

TimingActivation = Event Ident ’(’ ’)’.

4.3.4 Whenever and Do

The WHENEVERand DOstatements declare a recurrent timing block execution
on a given event of a timing statement sequence until another event is raised.
The DO timing statement sequence is performed at most once, whereas the
WHENEVERtiming statements sequence is performed only after the first event is
raised. If the UNTIL event is specified the recurrent timing block execution is
terminated at the raise of the until event.

WheneverStatement = "WHENEVER" Event ["UNTIL" Event]
’{’ TStatSeq ’}’.

DoStatement = "DO" ’{’ TStatSeq ’}’ ’WHENEVER’ Event
["UNTIL" Event].

11

Although WHENEVERand DOstatements can be replaced by timing containing
cyclic timing activations, the use of WHENEVERand DOstatements are recom-
mended in the most frequently occurring situations, because readability.

4.3.5 If

The IF statements specify the conditional execution of timing statements. The
expression preceding a statement is evaluated. If the expression evaluates to
TRUEthe associated timing statement sequence is executed. If the expression
evaluates to FALSE the timing statement sequence following the symbol ELSE
is executed, if there is one. Events can also be tested as ˆeventname .

IfStatement = "IF" Expression ’{’ TStatSeq ’}’
["ELSE" ’{’ TStatSeq ’}’].

12

Chapter 5

Program Semantics

Arrival of an event causes a particular effect. An event combined with the effect
it causes is called a reaction. Reactions take logical zero time for executions i.e.
the effect of arrival of an event is executed instantaneously by the system. A
reaction can be invocation of a block of code, deactivation of another reaction or
termination of a task and is referred as timing reaction, deactivation reaction, or
termination reaction respectively. A reaction consists of a tuple (ε, α, η) where
ε ∈ E and α implies the desired action when ε occurs for η times. The default
value for η is 1.

• For a timing reaction α is an address of timing code and implies that when
η repetitions of ε occurs the timing code at the address denoted by α is
invoked.

• For a deactivation reaction α is a timing reaction. This implies that when
ε occurs for η times the timing reaction(denoted by α) has to be removed.
For example for a WHENEVER[εA] UNTIL [εB] {program block p} state-
ment the deactivation reaction is
(εB , (eventA, start address of p)).

• For a termination reaction α is a tuple (po, t, spi
) which implies that when

event ε occurs the ports po are updated with the evaluation of task t on
spi

(the valuation of the ports pi at the instance of task invocation).

The execution of a xGiotto program yields a possibly infinite sequence of
program configurations, called trace. Each configuration tracks the value of the
ports and the status of the reaction sets. Formally a (program) configuration
c is a tuple (s,Υ,Ψ,Ω) where s is a valuation of ports called port state, Υ is
timing reaction set, Ψ is deactivation reaction set and Ω is termination reaction
set. The port state s is defined as ϑ(P) where ϑ is an evaluation function for
the port set, P. Every reaction in its respective set can be identified by an index
number. Thus the ith reaction in Υ is Υ(i). The associated event, action and
counter is Υ(i)ε, Υ(i)α and Υ(i)η.

13

The configuration c is initial if the port state is initial, the timing reaction set
consists of the starting reaction (Υ = (start, program)), the deactivation reaction
set is empty (Ψ = φ) and the termination reaction set is empty (Ω = φ). The
initialport state consists of initial port values as discussed in section 3.2. The
start event is common to all xGiotto programs and on its arrival the program
starts executing. Consider a configuration c = (s,Υ,Ψ,Ω) at some instant. If
an event ε′, arrives such that

(∃i.1 ≤ i ≤ n1 ∧ Υ(i)ε = ε′) ∨

(∃j.1 ≤ j ≤ n2 ∧ Ψ(j)ε = ε′) ∨

(∃k.1 ≤ k ≤ n3 ∧ Ω(k)ε = ε′) (5.1)

where |Υ| = n1, |Ψ| = n2, and |Ω| = n3 respectively, then c is updated to a new
configuration succ(c) = (s′,Υ′,Ψ′,Ω′) as follows:

1. If ∃k.1 ≤ k ≤ n3 ∧ Ω(k)ε = ε′:
Ω(k)η = Ω(k)η − 1. If Ω(k)η = 0 then Ω′ = Ω − Ω(k) and Ω(k)α.po is
updated with the evaluation of Ω(k)α.t on Ω(k)α.spi

.

2. If ∃j.1 ≤ j ≤ n2 ∧ Ψ(j)ε = ε′:
Ψ(j)η = Ψ(j)η − 1. If Ψ(j)η = 0 then Ψ′ = Ψ − Ψ(j) and Υ′ = Υ −
{timing reactionΨ(j)α}

3. If ∃i.1 ≤ i ≤ n1 ∧ Υ(i)ε = ε′:
port state remains same and Υ(i)η = Υ(i)η − 1. If Υ(i)η = 0 then Υ′ =
Υ − Υ(i) and the reactions sets are updated according to the xGiotto

program block at the address given by Υ(i)α as follows:

• for every task invocation t(pi)(po)[ηε′′]:
Ω′ = Ω ∪ (ε′′, α, η) where α is the tuple (po, t, spi

) where spi
is the

value of pi at that instant.

• for every timing call [ηε′′]ξ():
Υ′ = Υ′ ∪ (ε′′, address of ξ, η)

• for every WHENEVER[ηε′′] {program block p }:
Υ′ = Υ′ ∪ (ε′′, start address of p, η)

• for every WHENEVER[ηAεA] UNTIL [ηBεB] {program block p }:
Υ′ = Υ′ ∪ Υnew and Ψ′ = Ψ ∪ (εB ,Υnew, ηB)
where Υnew = (εA, start address of p, ηA)

• for every IF (port expression) {program block p 1 } ELSE {program
block p 2 }:
There are two possible successors: succ(c) 1 and succ(c) 2 containing
the information for p 1 and p 2 respectively. Depending on whether
the evaluation of data expression is evaluated to TRUEor FALSE,
succ(c) is assigned the information of succ(c) 1 or succ(c) 2 respec-
tively.

14

• for every IF (ε′′) {program block p 1 } ELSE {program block p 2}:
There are two successors succ(c) 1 and succ(c) 2 due to the possibil-
ity of the events ε′′ being present or absent. Any other informations
that has been previously added goes to both of the successors. For
succ(c) 1: Υ′ = Υ′ ∪ {(ε′′, start address of p 1)} and for succ(c) 2:
Υ′ = Υ′ ∪ {(!ε′′, start address of p 2)}.

A reaction is not repeated in its respective reaction set. The reactions are
executed in sequential order. The termination reactions are executed followed
by the deactivation reactions and then the timing reactions.

15

Chapter 6

Compiler

The compiler is divided in two parts, the front-end which parses the xGiotto

program, and three back-ends which generates E code, F code, and memory
layout description. The parser is a one-pass recursive-descendant parser for the
LL1 grammar of xGiotto . E code [2] is the instruction set used by the Em-
bedded Machine and is used for implementing the reactive part of the program.
F code is a instruction set of a simple stack based machine for implementing the
functionality code. The memory layout description consists of addresses, sizes,
and system bindings for all ports and events.
The three back ends are explained in the next sections. The compiler is written
in Java. The prototype implementation provides also an emulator which is able
to execute the compiled xGiotto program.

6.1 Reactivity Code Generation

For each timing block the compiler generates E code and necessary F code to glue
the activation and termination phases of task invocations. This is illustrated in
the following example.

Example of TIMING Compilation:

The timing block T1 invokes a task P1 and reactivates itself at the arrival of
the event A. The termination of the invoked task is the same event A.

TIMING T1() {
P1(p)(q)[A];
[A]T1();

}

The corresponding E code and F code for T1 are as follows:

E code: F code:
(0) CALL 7 [0] ALLOC 8,4
(1) CALL 9 [1] COPYR 4,4

16

(2) CALL 0 [2] COPYS 4,0
(3) SCHEDULE 4 [3] RETURN
(4) FUTURETE 6,4,1 [4] RETURNE 0
(5) JUMP 8 [5] DELETE 8,4
(6) CALL 5 [6] RETURN
(7) RETURN [7] LOADP 0,4
(8) FUTURE 0,4,1 [8] RETURN
(9) RETURN [9] PUSH 4

[10] RETURN

E code instruction at (0) and at (1) call the F code at [7] and [9] respectively.
This loads the value of the port p and the address of port q on the stack.
Thereafter the call instruction at (2) calls the F code at [0]. The F code at [0]
generates the task context, i.e. allocates the task ports (input, output and local)
and the task stack. In particular the first argument of the ALLOC instruction
specifies that 8 bytes are needed for the ports (p and q are INTEGERof 4 bytes
each). The second argument specifies that 4 bytes are needed in order to store
the address of the output port q. The termination reaction needs this address in
order to update the global q with the local copy of q. The following instructions
at [1] and [2] copy the values from the stack to the task context. COPYRcopies
the address of output port from the stack to the task context, and COPYScopies
the value of the input port to the task context. At this point the the activation
of the task is completed.
E code instruction at (3) then schedules the task execution. Its argument is the
task entry point (i.e. address [4]). In this example the task code is empty and
therefore there is just one instruction at [4], a return from the task. This is a
special return instruction, which generates an event at completion of the task
execution.
E code instruction FUTURETEat (4) activates the termination reaction for the
task invocation. The first argument (i.e. (6)) is the E code address to be exe-
cuted, the second argument (i.e. (4)) is the address of the event A and the last
argument is the number of event occurrences, in this case 1. E code instruction
at (5) jumps to instruction at (8), which activates the timing reaction for the
timing block T1. The first argument (i.e. (0)) is the E code address to be exe-
cuted, the second argument is the event address and the third argument is the
number of occurrences. E code instruction at (9) returns from the E machine
interpreter.
At this point two reactions are active in the system: one for handling the termi-
nation reaction, and the other one for handling the timing reaction. The latter
starts to execute the E code at address (0) at the arrival of event A.
The termination reaction starts the termination phase of the task, i.e. it will
copy the output port q to the global space and deallocate the resources used
by the task. In order to deallocate the task context the DELETE instruction
at [5] gets the context address via the stack. The special future instruction
FUTURETE, does that. It stores the context of the task and copy it on the stack
before executing the reaction.

17

6.2 Functionality Code Generation

The generation of the F code is illustrated by the following example. The glue
code for the task invocation is not shown explicitly.

Example of TASK Compilation

TASK FACT(INTEGER a) OUTPUT (INTEGER b) {
b = 1;
WHILE (a > 0) {

b = b*a;
a = a-1;

}
}

The F code generated for the task FACT, which computes the factorial of the
input parameter is:

4 PUSH 1,0
5 STOREP 4,4 b = 1
6 LOADP 0,4
7 PUSH 0,0
8 GTR 0,0 a > 0
9 NOT 0,0
10 CJUMP 20,0
11 LOADP 4,4
12 LOADP 0,4
13 MULT 0,0
14 STOREP 4,4 b = b*a
15 LOADP 0,4
16 PUSH 1,0
17 SUB 0,0
18 STOREP 0,4 a = a - 1
19 JUMP 6,0
20 RETURNE 0,0

The F code is a simple instruction set for a single stack machine. All partial
computations are stored in the stack. Ports values are loaded or stored via
their addresses in the local context of the task. During task activation all input
and output ports are called-by-value, and local ports are set to their defaults.
During task termination the values of the output ports are copied back to the
global ports.

6.2.1 F code Instructions

In the following subsection all the F code instructions are listed (opcode name
and id). The following notation is used to denote that two operands value1
and value2 are popped from the task stack and the value result is pushed
back the stack: ..., value1, value2 => result

18

• ADD[0]: Addition of two INTEGER
..., value1, value2 => ..., value1+value2

• SUB[1]: Subtraction of two INTEGER
..., value1, value2 => ..., value1-value2

• MULT[2]: Multiplication of two INTEGER
..., value1, value2 => ..., value1*value2

• DIV[3]: Division of two INTEGER
..., value1, value2 => ..., value1/value2

• INV[4]: Inversion of an INTEGER
..., value1 => ..., -value1

• NOT[5]: Inversion of an BOOLEAN
..., value1 => ..., !value1

• ADR[6]: Addition of two REAL
..., value1, value2 => ..., value1+value2

• SBR[7]: Subtraction of two REAL
..., value1, value2 => ..., value1-value2

• MULTR[8]: Multiplication of two REAL
..., value1, value2 => ..., value1*value2

• DIVR[9]: Division of two REAL
..., value1, value2 => ..., value1/value2

• INVR[10]: Inversion of an REAL
..., value1 => ..., -value1

• EQU[11]: Returns TRUEif the two INTEGERare equal
..., value1, value2 => ..., value1=value2

• NEQ[12]: Returns TRUEif the two INTEGERare different
..., value1, value2 => ..., value1!=value2

19

• LSE[13]: Returns TRUEif the INTEGER value1 is less or equal to the
INTEGER value2
..., value1, value2 => ..., value1<=value2

• LSS[14]: Returns TRUEif the INTEGER value1 is less to the INTEGER
value2
..., value1, value2 => ..., value1<value2

• GTE[15]: Returns TRUEif the INTEGER value1 is greater or equal to
the INTEGER value2
..., value1, value2 => ..., value1>=value2

• GTR[16]: Returns TRUEif the INTEGER value1 is greater to the INTEGER
value2
..., value1, value2 => ..., value1>value2

• EQUR[17]: Returns TRUEif the two REALare equal
..., value1, value2 => ..., value1=value2

• NEQR[18]: Returns TRUEif the two REALare different
..., value1, value2 => ..., value1!=value2

• LSER[19]: Returns TRUEif the REAL value1 is less or equal to the REAL
value2
..., value1, value2 => ..., value1<=value2

• LSSR[20]: Returns TRUEif the REAL value1 is less to the REAL value2
..., value1, value2 => ..., value1<value2

• GTER[21]: Returns TRUEif the REAL value1 is greater or equal to the
REAL value2
..., value1, value2 => ..., value1>=value2

• GTRR[22]: Returns TRUE if the REAL value1 is greater to the REAL
value2
..., value1, value2 => ..., value1>value2

20

• PUSH[40] value: Push the value on the stack
... => ..., value

• POP[41]: Pops a value form the stack
..., value => ...

• LOADP[42] adr, n: Loads n values of the port at address adr and pushes
it on the stack
... => ..., value1,...,valueN

• STOREP[43] adr, n: Stores the n values popped from the stack in the
port at address adr
..., value1,...,valueN => ...

• LOADE[44] adr, n: Loads n bytes of the event at address adr value and
pushes it on the stack
... => ..., value1,...,valueN

• STOREE[45] adr, n: Stores the n values popped from the stack in the
event at address adr
..., value,...,valueN => ...

• COPYR[46] adr: Copies from the global memory space the output port
value at address adr to the task context ctx
..., ctx => ..., ctx

• COPYS[47] adr: Copies from the global memory space the input port
value at address adr to the task context ctx
..., ctx => ..., ctx

• COPYE[48] adr: Copies from the global memory space the event at ad-
dress adr to the task context ctx
..., ctx => ..., ctx

• LOADF[49] arg: Returns on the stack if event at address adr was fired

• JUMP[60] arg: Jump to the instruction at arg

21

• CJUMP[61] arg: Jumps to the instruction at arg if popped value is TRUE
..., value => ...

• RETURN[62]: Returns from the Embedded Machine

• RETURNE[63]: Fires the completion event of the task and the returns
from the Embedded Machine

• ALLOC[80] lsize, rsize: Allocates lsize values for the local ports of the task
and rsize values to store the address of the output ports. The allocated
context reference is pushed on the stack
... => ..., ctx

• DELETE[81] lsize, rsize: Deallocates the context ctx and updates the out-
put port in the global memory space
..., ctx => ...

• WRITE[100] arg: Writes the INTEGERvalue arg on the screen (used for
debugging)

• WRITER[101] arg: Writes the REAL value arg on the screen (used for
debugging)

• WRITEB[102] arg: Writes the BOOLEANvalue arg on the screen (used for
debugging)

6.3 The Task Context

Each task needs a private memory space in order to store its local port values
and a stack to perform its operation. xGiotto does not allow any task to
access the global memory space (i.e. a task is side-effect free).
The compiler assumes a given structure in which the port are stored. This
is important during task activation and task termination. During activation,
the actual parameters have to be passed to the task. During termination the
generated task output ports have to be updated in the global memory space.
During task activation the compiler will put the actual parameters on the stack
(first input ports values, then output ports addresses and the completion event
address) . The compiler generates glue F code for the task activation that
generates a new task context and copies the actual parameter for the stack to
the task context stack. The order of the actual parameters on the stack after

22

the call to the ALLOC instruction (see the E code in the previous section) is
shown:

(only if COMPLETION declared)
context adr

output port adr n
....
output port adr 1
input port value n
...
input port value 1

event adr

6.4 Memory Layout

The memory layout is a simple description of the memory structure of the
program. It contains a declaration of all ports and events defined in the program.
For each port its name, address, and size is specified. When a port is an output
to the system, then the address will be a platform-dependent memory mapped
I/O location. Similar to a port, each event is defined by its name, address,
and size. In addition, external events specify the external interrupt, and event
expressions store the expression which will be evaluated at run-time.
During start-up the system loads the memory layout, allocates the ports and
events as required and binds the external interrupts. The system defines a
default TIME event which will be always bound to the timer interrupt.
For example the following program declaration:

PORT
INTEGER p; INTEGER q;

EVENT
INTEGER A AT int1;

The compiler generates the following memory layout:

Ports: 2
p 4 0
q 4 4

Events: 2
TIME 4 0 timer
A 4 4 int1

The memory layout file structure is as follows (EBNF):

MemoryLayoutFile = NofPorts:4 {PortElem}
NofEvents:4 {EventElem}.

PortElem = name:String adr:4 size:4.

23

EventElem = name:String adr:4 size:4 form:4
[interrupt:String | EventExp].

EventExp = ["1" op:4 EventExp EventExp |
"0" EventIndex:4].

24

Chapter 7

Examples

7.1 Conference

In this example we program an automatic paper writer. The program will
generate 2 papers of 15 pages each (simulated by a number) as soon as the
external CallForPaper event is raised. The first paper will be written at
the arrival of the external event Deadline . The second paper will wait for
the extended deadline (i.e. the second arrival of the Deadline event). The
external function MakeScience is external to this program.

PROGRAM conference {

TYPE paper ARRAY 15 OF INTEGER;

PORT
paper p1;
paper p2;

EVENT
INTEGER C AT CallForPaper;
INTEGER D AT Deadline;

TASK Writing(INTEGER seed) OUTPUT (paper p)
VAR (INTEGER i) {
i = 0;
WHILE (i<15) {paper[i] = MakeScience(seed,i); i++};

}

TIMING Call() {
Writing(1)(p1)[D];
Writing(5)(p2)[2D];

}

25

{Call()[C]}
}

7.2 xGiotto includes Giotto

In this example we demonstrate that xGiotto is a superset of Giotto . To
demonstrate this we show how a single mode in Giotto is translated in a
xGiotto program. To note is the fact that all events are timing events.

PROGRAM GiottoMode {

PORT
INTEGER p = 0;
INTEGER q = 0;

TASK P1(INTEGER a, INTEGER b) OUTPUT (INTEGER c){}
TASK P2(INTEGER a) OUTPUT (INTEGER b){}

TIMING ModeA() {
P1(p, q)(p)[1000];
P2(q)(q)[500];

[500]ModeB();
}
TIMING ModeB() {

P2(q)(q)[500];
[500]ModeA()

}

{[1]ModeA();}

}

In the following example we extend the previous program adding a mode switch,
and therefore showing that all the features of Giotto are programmable in
xGiotto . The translation is semantically equivalent: it can be shown that
independently from the running platform, at any point in time the value of the
Giotto and xGiotto ports will be equivalent.

PROGRAM GiottoModeSwitch {

PORT
INTEGER p; INTEGER q;
INTEGER r; INTEGER s;
INTEGER t; INTEGER u;

26

EVENT
BOOLEAN SWITCH_MODE AT buttonSwitchMode;

TASK P1(INTEGER a) OUTPUT (INTEGER b){}
TASK P2(INTEGER a) OUTPUT (INTEGER b){}
TASK P3(INTEGER a) OUTPUT (INTEGER b){}

TIMING ModeA() {
IF (SWITCH_MODE) {[]ModeC()}
ELSE {

P1(p)(q)[20];
P2(r)(s)[10];
[10]ModeX();

}
}

TIMING ModeX() {
IF (SWITCH_MODE) {[]ModeInt12()}
ELSE {[]ModeB();}

}

TIMING ModeB() {
P2(r)(s)[10];
[10]ModeA();

}

TIMING ModeInt12() {
P3(r)(s)[10];
[10]ModeC();

}

TIMING ModeC() {
IF (SWITCH_MODE) {[]ModeA();}
ELSE {

P1(p)(q)[20];
P3(t)(u)[10];
[10]ModeY();

}
}

TIMING ModeY() {
IF (SWITCH_MODE) {[]ModeInt21();}
ELSE {[]ModeD();}

}

TIMING ModeD() {

27

P3(t)(u)[10];
[10]ModeC()

}

TIMING ModeInt21() {
P2(r)(s)[10];
[10]ModeA();

}

{[]ModeA();}

}

28

Bibliography

[1] T.A. Henzinger, B. Horowitz, and C.M. Kirsch, Giotto: A time-triggered
language for embedded programming, Proceedings of the IEEE 91 (2003),
no. 1, 84–99.

[2] T.A. Henzinger and C.M. Kirsch, The Embedded Machine: Predictable,
portable real-time code, Proc. of the International Conference on Program-
ming Language Design and Implementation, ACM Press, 2002, pp. 315–326.

[3] T.A. Henzinger, C.M. Kirsch, R. Majumdar, and S. Matic, Time-
safety checking for embedded programs, EMSOFT 02: Embedded Software
(A. Sangiovanni-Vincentelli and J. Sifakis, eds.), Lecture Notes in Computer
Science 2491, Springer-Verlag, 2002, pp. 76–92.

[4] C.M. Kirsch, M.A.A. Sanvido, T.A. Henzinger, and W. Pree, A Giotto-
based helicopter control system, EMSOFT 02: Embedded Software
(A. Sangiovanni-Vincentelli and J. Sifakis, eds.), LNCS 2491, Springer-
Verlag, 2002, pp. 46–60.

29

	Introduction
	Vocabulary
	Declarations and Scope Rules
	Type Declarations
	Predefined types
	Structured Types

	Port Declaration
	Event Declaration
	External Events
	Completion Events
	Composed Events

	Task Declaration
	Formal Parameters
	Examples of Task Declarations:

	Timing Declaration
	Example of Timing Declaration:

	Statements
	Expressions
	Operands
	Operators
	Examples of Expressions

	Task Statements
	Assignments
	If
	While

	Timing Statements
	Event Operands
	Task Activation and Termination
	Timing Activation
	Whenever and Do
	If

	Program Semantics
	Compiler
	Reactivity Code Generation
	Functionality Code Generation
	F code Instructions

	The Task Context
	Memory Layout

	Examples
	Conference
	xGiotto includes Giotto

	Bibliography

