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ABSTRACT

The concept of improving the timing behavior of a circuit by relocating

registers is called retiming and was first presented by Leiserson and Saxe.

They showed that the problem of determining an equivalent minimum area

(total number of registers) circuit is polynomial-time solvable. In this work,

we show how this approach can be reapplied in the Deep Sub-Micron (DSM)

domain when area-delay trade-offs and delay constraints are considered. The

main result is that the concavity of the trade-off function allows for a casting

of this DSM problem into a classical minimum area retiming problem. The

solution paves the way for this retiming for DSM approach to be

incorporated in a retiming and architectural floorplanning DSM design flow.

Some examples are presented and, a new register-based interconnect strategy

for DSM that implements the developed retiming technique on global wires

is proposed.
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On the importance of good notation (and representation in general):

By relieving the brain of all unnecessary work, a good notation sets it free to
concentrate on more advanced problems, and in effect increases the mental
power of the race. Before the introduction of the Arabic notation,
multiplication was difficult, and the division even of integers called into play
the highest mathematical faculties. Probably nothing in the modern world
would have more astonished a Greek mathematician than to learn that ... a
large proportion of the population of Western Europe could perform the
operation of division for the largest numbers. This fact would have seemed to
him a sheer impossibility ... Our modern power of easy reckoning with
decimal fractions is the almost miraculous result of the gradual discovery of
a perfect notation.

Alfred North Whitehead



Chapter 1 

Background

1.1. Motivation

1.1.1. Challenges of DSM

There has been a lot of debate about the challenges that the EDA

industry will face in the DSM era. In this section, a few of the issues that are

relevant to this work will be presented.

1.1.1.1. Managing Design Complexity

It is generally agreed, within the EDA community [1], that Deep Sub-

Micron (DSM) semiconductor technology is forcing major discontinuities in

traditional design methods. The complexity and scale of integration, and the

need for greater design productivity, as well as the significant cost of design

errors, promote a re-evaluation of design practice. The increasing raw

capacity and level of integration is making possible the realization of a

complete System-on-Chip (SoC) design. In the near future, a single chip will

host a big number of different computational modules (microprocessor,

controllers, DSP’s, I/O unit, analog circuits, custom hardware, etc…)

together with a large amount of (possibly distributed) memory blocks.

For these reasons, and to handle complexity issues associated with

DSM, top-down block-oriented design methodologies have been advocated,

as a means of reducing design complexity [5]. In such methodologies high-

level design and budgeting constraints play an important role where high-
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level information is used to externally constrain the design of sub-blocks in

terms of the three most important design metrics: performance, area and

power.

On the other hand, bottom-up approaches such as component-based

design methodologies have also been suggested. The chip-level assembly of

pre-characterized intellectual property (IP) modules with specified area-

delay-power flexibilities is the goal. Proponents of these methods claim that

the required productivity objectives can be met through replication and

reuse. Managing concurrency is an essential issue that has to be addressed.

It is conceivable that the best strategy would be to combine both of the

aforementioned approaches (i.e. combine pre-designed and characterized

modules with different flexibilities along with new modules that serve a

special purpose in a given design). We can therefore deduce that design

methodologies using distributions (for example area-delay-power trade-offs

of components) are becoming more important. System-level integration tools

would have to solve complex optimization problems that involve meeting

system level constraints provided by the environment while simultaneously

balancing different trade-offs and exploring the possibly huge design space.

1.1.1.2. Global Interconnect

In such an IP integration framework, interconnect delays will play an

increasingly important role in DSM. As System-on-Chip (SoC) designs and

faster clock speeds become a reality, timing and interconnect delays will

become more critical. Interconnect effects that impact performance,

compromise signal integrity, and increase power dissipation are becoming

more pronounced as technology moves deeper into sub-micron feature sizes,

and designs are operated at higher frequencies [1][15]. According to NTRS,

by 2006 designs will contain over 100M transistors in less than 0.1µm
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technology with an increase in the number of I/O pins by a factor of 1.5 over

present day technologies. More devices on chip and closer packed

interconnects with thinner aspect ratios will mean more potential for

simultaneous current surges, more coupling events that have the potential of

causing false switching or delayed signals, and increased difficulty in

determining circuit timing in the design flow [15]. Signal delay and

degradation in the deep sub-micron era can have a crippling effect on the

performance of designs. Signal preservation cannot be solved as an after

thought in the design process. It must be dealt with at an early stage in the

flow in order to minimize delay, and accommodate parasitic effects.

Increased clock frequencies, larger chip dimensions, and smaller feature

sizes (i.e. more device capacity) are making for variable inter-module

interconnect lengths, as well as making interconnect delay at the global level

dominant over that of devices [16]. While system timing constraints are

being met by increased clock speeds, functional timing constraints (i.e.

relative timing requirements between module inputs) are becoming harder to

satisfy because of this interconnect delay, and the variable wire lengths.

Thus, when global wire delays approach or exceed the global clock

period of the design, the delay on some global wires will become lower

bounded by an integer number of clock cycles, based on a preselected

system-level clock and an initial placement of the modules. The challenge is

to use these delay flexibilities along with flexibilities in the implementation

of the modules being integrated to improve the design (using the area, delay,

and power metrics) while satisfying the pre-specified performance

constraints (such as I/O timing constraints).
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1.1.2. Application Domain

The target application of this work is the chip level assembly of IP

blocks, each under 100k gates in size, either as hard, firm, or soft macros [9].

The design of such a system involves the placement and wireplanning for

performance [11] of 200-2000 modules whose average size is 50k gates with

a dynamic range of module sizes of 1-500k gates [16]. Modules can be of

different types: hard (layout), firm (gate level), or soft (RTL). Such a

network has a large number of nets: 40k-100k with 10-100 pins per modules.

This application domain puts limitations on which techniques can be

used to address performance and timing issues. In order to manage

complexity, components are abstracted where the designer may not be able

to massage the function in order to remedy interconnect delay or parasitic

problems, but has to work with a given set of implementations with different

trade-offs (such as area vs. delay trade-offs).

Industry experts agree that IP integration is the ideal technology for

rapid SoC design development in a cost-efficient and fast time-to-market

manner. This technology has not been widely adopted yet (full-custom

designs are still favored) mostly because many issues still need to be

resolved in terms of interfacing these components together. One idea, now

finding wide acceptance in the community, is to register-bound IP’s, thus

temporally decoupling the inside of the block from the outside. This allows

IP blocks to be treated as “components” or “black-boxes” that are immune to

glitches at the input, and do not generate any at their outputs. It also supports

“plug-and-play” capabilities during design where system developers can

substitute one black box IP by another, given that they have the same

functionality.
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1.2. New Design Methodology for DSM

Following is a brief overview of a new design methodology for DSM

being developed as part of the NexSIS [9] project. The main thrust of this

work i.e. the retiming for DSM approach is currently being incorporated into

the NexSIS floorplanning and synthesis environment.

1.2.1. The Domain

The system-level integration framework being advocated supports one-

level hierarchy of design. This is considered as the minimum number of

levels needed to support reuse, midway between flat (very costly in terms of

running time with low probability of convergence) and two-level or higher

(may generate solutions that are to far away from the global optimum). The

objective of this framework is the placement and routing of 200-2000

modules of average size 50k gates and a dynamic range of 1-500k gates. The

types of IP modules that are envisioned are hard (layout), firm (gates +

aspect ratio), and soft (RTL). The number of pins for each of those modules

is between 10-100 pins, while the number of nets at the global level is

between 40k-100k nets. It should be noted that this is a dramatically different

problem than the one typically addressed in current design frameworks.

1.2.2. Design Flow Architecture

The aim of this new design flow (which is based on [11]) is to minimize

the number of design iterations by supporting two critical guiding notions:

planning at the early stages of the flow, and incremental successive

refinement during the integration process. One of the main characteristics of

this new design flow for DSM is the integration of retiming with

architectural floorplanning in order to have a better handle on timing issues.
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Placement RoutingRetiming

Functional Decomposition

Logic Synthesis

Figure 1 DSM Design Flow

The proposed flow has the following components:

• Functional Decomposition: This step provides an entry point for reused

IP’s, where RTL descriptions may already be well characterized, and

area-delay trade-off are taken in as an important performance criterion.

The result is a set of modules with some area-delay trade-off estimates

• Retiming: This step takes in lower bound timing constraints from

placement, and creates upper bound constraints. This is a path-based

approach that reduces the area of modules whenever possible. It can be

made refinable and incremental, depending on the granularity of the

representation.

• Placement and Routing: The initial placement and routing step can be a

min-cut or any constructive approach. It has to be fast, and gives lower

bounds on delays between modules. Subsequent iterations take in upper

bounds from retiming as flexibility on placement. This step replaces

modules resulting in better lower bound constraints. The main objective

is to reduce total chip area, where delays are reduced indirectly.

• Logic Synthesis: The main assumption is that the problem can be solved

in a predictable manner for a given size module. This step can be
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performed in parallel for the different modules and provides better area-

delay trade-off estimates for subsequent iterations.

• Iterations: There are two iterations within this flow:

• Between placement/routing and retiming: This may iterate many

times until no further improvements are possible. This step is very

similar to initial min-cut partitioning followed by low temperature

simulated annealing.

• Between floorplanning/wireplanning and logic synthesis/layout: This

involves only a few iterations, where for each iteration, information is

retained through area-delay trade-offs to guarantee convergence.

Note that unlike current design flows, iterations are made incremental,

with information from previous iterations being kept around to be used in

subsequent iterations.

1.3. Retiming Problem Statement

Retiming is a technique for optimizing sequential circuits. It is a

procedure that repositions the registers in a circuit leaving the combinational

portion unchanged. The main objective of one form of retiming is to find a

circuit with the minimum number of registers for a specified clock period.

There are two common variants on this theme:

a) minimizing  the clock period without regard to the number of registers in

the final circuit or,

b) minimizing the number of registers in the final circuit with no constraints

on the clock period.

Over a decade and a half have elapsed since Leiserson and Saxe first

presented a graph-theoretic formulation to solve this problem for single-

clock edge-triggered sequential circuits, where proposed algorithms have
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polynomial time complexity. Since then research efforts have focused on

incorporating retiming in a synthesis framework, addressing issues that arise

due to retiming, and extending the domain of circuits for which retiming can

be applied. For digital circuit design, the most useful problem is that of

constrained minimum area retiming. One motivation for these algorithms is

to examine the area-delay trade-off of the implementation. However, due to

the high computational expense of certain forms of this optimization, its use

has been limited.

A new "retiming problem" comes up in the non-iterative (i.e.

constructive) flow [11] for deep sub-micron applications described above.

The problem, which we call minimum area retiming with trade-offs and

constraints (MARTC), can be formulated as follows:

Given: a graph G(V,E) (i.e. system-level view), where each node v (i.e.

component) has a specified area delay trade-off curve av(d), which gives for

each number of clock cycles d (i.e. the number of registers retimed into the

node v), the area required to perform the computation associated with the

node v (i.e. many possible implementations with different latencies). On each

edge e(u,v) (i.e. wire), there is an integer k(e(u,v)), giving the required

number of clock cycles associated with that edge. This lower bound is

provided by a current placement of the components using optimally buffered

wires. The lower bound states that it is impossible to send a signal over this

wire in less clock cycles. To satisfy the edge one needs to put at least

k(e(u,v)) registers on it. On each edge e(u,v) there is an initial number

w(e(u,v)) of registers given. These represent the initial latencies allowed

between u and v.

Problem: The optimization problem is to find a retiming of the graph G

represented by the graph Gr such that:

Minimize:
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∑=
v

vr daGA )()(

Subject to:
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delay

area

≥ k(e(u,v))
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u

v
w(e(u,v))

Figure 2: Retiming Problem statement

1.4. Goals and Report Roadmap

In this work, the aim is to incorporate retiming into the chip-level

assembly of modules framework that was described in Section 1.2, where in

this application domain, communication delays at the chip-level will become

dominant. We present a solution to the retiming problem that was stated in

Section 1.3 and that will become important in the next few technology

generations as discussed earlier.

First, we describe in Chapter 2 previous minimum area retiming

approaches, since this problem is very much related to the problem that we

are trying to address, and provides the basic building blocks for our solution

approach. In Chapter 3, we present a formulation of a solution and then

discuss a possible algorithm. We then describe in Chapter 4 the

implementation of our solution technique in a dedicated software package
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that will be integrated into NexSIS, an IP integration framework and design

environment [9]. We then present initial results in Chapter 5, and propose in

Chapter 6 a new register-based IP interconnect scheme that implements the

registers allocated on global wires.



Chapter 2 

Retiming

2.1. Leiserson-Saxe Retiming

In this section, we describe the Leiserson-Saxe retiming approach. In

this approach they model a circuit as a graph, and then give polynomial time

algorithms for solving different objective functions of the retiming problem.

2.1.1. Notation

A sequential circuit can be represented by a directed graph G(V,E),

where each vertex v corresponds to a gate, and directed edge e(u,v)

represents a connection from the output of gate u to the input of gate v,

passing through zero, or more registers. Each edge has a weight w(e(u,v)),

which is the initial number of registers between the output of gate u and the

input of gate v. Each vertex has a constant delay d(v). A special vertex, the

"host", is introduced in the graph, with edges from it to all primary inputs of

the circuit, and edges from all primary outputs to the host.

A retiming is a labeling of the vertices ZVr →: , where Z is the set of

integers. The retiming label r(v) for a vertex v represents the number of

registers moved from its output towards its inputs. The weight of an edge

e(u,v) after retiming, denoted by wr(e(u,v)) is given by

)()()),(()),(( urvrvuewvuewr −+=
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One may define the weight w(p) of any path p originating at vertex u

and terminating at vertex v (represented as vup →: ), as the sum of the

weights on the edges of p, and its delay d(p) as the sum of the delays of the

vertices on p. A path with w(p) = 0 corresponds to a purely combinational

path with no registers on it. Therefore, the clock period can be calculated as

)(
0)(,

pdc MAX
pwp =

=

Another important concept is that of the W and D matrices which are

defined as follows:

)(),(

)(),(

),()(,

:

pdvuD

pwvuW

MAX

MIN

vuWpwp

vup

=

→

=

=

The matrices are defined for all pairs of vertices (u,v) such that there

exists a path vup →:  that does not include the host vertex. W(u,v) denotes

the minimum latency, in clock cycles, for the data flowing from u to v and

D(u,v) gives the maximum delay from u to v for the minimum latency.

2.1.2. Minimum Area Retiming

Let the total number of registers of a circuit after retiming r be denoted

by:

∑=
e

rr ewGS )()(

The minimum area retiming problem can be stated as minimizing S(Gr),

subject to timing constraints. But, given the relationship between wr(e) and

w(e) one can rewrite S(Gr) as:
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∑
∑

∑

−+=

−+=

=

v

e

e
rr

vrvFOvFIGS

urvrew

ewGS

)(|))(||)((|)(

))()()((

)()(

where |FI(v)| and |FO(v)| are the number of fanins and fanouts of node

v. The minimum area retiming problem can then be formulated as the

following linear program:

Minimize:

∑ −
v

vrvFOvFI )(|))(||)((|

Subject to:

cvuDvuvuWvrur

vuewvrur

>∀−≤−
≤−

),(:,,1),()()(

)),(()()(

The case where not all register costs are the same can be modeled as:

∑ ∑∑
∑

∑

→→
−+=

−+=

=

v veve

e

e
rr

vrecostecostGS

urvrewecost

ewecostGS

)())()(()(

))()()()((

)()()(

?:?:

The significance of the objective function and the constraints is as

follows (the reader is referred to [7] for details)

• The objective function represents the number of registers added to the

retimed circuit in relation to the original circuit

• The first constraint ensures that the weight wr(e(u,v)) for each edge (i.e.

the number of registers between the output of gate u and the input of gate

v) after retiming is non-negative.
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• The second constraint ensures that after retiming, each path whose delay

is larger than the clock period has at least one register on it.

This formulation assumes that all registers fanout to exactly one gate.

However, in physical circuits a register can fanout to several gates. Thus

registers at the fanouts of a gate can be combined or shared. To accurately

model the number of registers in a circuit one needs to take this sharing into

account. This can be accomplished by using the model given by Leiserson

and Saxe in [7], which introduces for every gate u with multiple fanouts a

mirror vertex mu. The objective function of the linear program can also be

modified as described in [7].

It is also pointed out in [7] that the dual of this problem is an instance of

a minimum cost network flow problem, hence the problem can be solved

efficiently as a minimum cost flow problem.

2.2. Modern Techniques

Although the algorithms mentioned above are polynomial in the circuit

size, naive implementations suffer the worst-case (O(n3) time and O(n2)

space) for all circuits. Recently, algorithms for handling large VLSI circuits

were introduced [14][4]. In the following subsections, we list several such

algorithms.

2.2.1. Shenoy-Rudell Approach

Shenoy and Rudell [14] describe two major hurdles towards an efficient

implementation of minimum area retiming:

• computing the W and D matrices

• solving the minimum cost circulation problem
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Their method takes advantage of on-the-fly computations and eliminates

the need to completely set up the problem (which can be huge in size) before

starting to solve it.

They point out that the method proposed by Leiserson-Saxe to compute

the W and D matrices, is an algorithm with O(|V|3) time and O(|V|2) space

complexity even in the best case, because it is based on solving the all-pairs

shortest-paths algorithm1. The advantage in [14] is the space savings

obtained by an algorithm that computes in O(|V|) space and generates a

smaller set of constraints.

One of the best known methods to solve the minimum cost circulation

problem is a group of cost-scaling techniques. A disadvantage of these

techniques is that the graph cannot change during the computations.

Consequently, the period edges must be determined before starting the cost-

scaling algorithm.  Shenoy and Rudell’s implementation is based on the

generalized cost-scaling framework of Goldberg and Tarjan and has time

complexity O(|V||E| lg |V| lg |V| C) where C is one more than the number of

registers in the circuit.

2.2.2. ASTRA and Minaret

The ASTRA algorithm [4] proposed an alternative view of retiming

using the equivalence between retiming and clock skew optimization. The

Minaret algorithm [8] uses the linear programming formulation and

incorporates the ASTRA approach to reduce the number of variables and

constraints.

                                               
1 To be fair, in [7] the authors state that, for sparse graphs one could use an O(|V||E|+|V|2

lg|V|) time algorithm which uses the Fibonacci heap data structure due to Fredman and
Tarjan, and this could dramatically improve the running time although the space
requirements would still be the same.
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The introduction of clock skew at a register has an effect similar to

moving it across module boundaries (gates). The effect of applying a positive

clock skew on a register is equivalent to moving it from the inputs to the

outputs. Similarly, application of a negative clock skew is equivalent to

moving it from the output to the inputs. Hence both retiming and clock skew

are equivalent and can be used for retiming optimization of sequential

circuits. Since clock skew is a continuous optimization while retiming is

discrete, the minimum clock period achievable by clock skew may not be

obtained by retiming. This relationship between skew and retiming motivates

the following two-phase solution to the minimum period retiming problem in

the ASTRA approach [4].

• Phase A: The clock skew problem is solved to find the optimal values of

the skew at each register, with the objective of minimizing the clock

period, or to satisfy a given feasible clock period. This involves the

(possibly repeated) application of the Bellman-Ford algorithm on a

constraint graph.

• Phase B: The skew solution is translated to a retiming by relocating

registers across gates in an attempt to set the values of all skews to be as

close to zero as possible. The algorithm attempts to reduce the magnitude

of all registers’ skews by moving each positive skew register opposite to

the direction of signal propagation and each negative skew register in the

direction of signal propagation.

After Phase B, all skews are forced to zero. This can cause the clock

period to increase from Phase A; however, it is shown that this increase will

be no greater than the maximum gate delay. The minimum clock period

using skews may not be achievable using retiming, since retiming allows

cycle-borrowing only in discrete amounts (corresponding to gate delays),

while skew is a continuous optimization.
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As in the Leiserson-Saxe approach, Minaret [8] also formulates the

minimum area retiming problem as a linear program. The ASTRA approach

is utilized to obtain reliable bounds on the variables in this linear program.

These bounds are then used to reduce the problem size by reducing both the

number of variables and the number of constraints. By spending a small

amount of additional CPU time on the ASTRA runs, this method leads to

significant reductions in the total execution time of the minimum area

retiming problem.

2.3. The Minimum Cost Network Flow Problem

The minimum area retiming problem can be reduced to the minimum

cost network flow problem [7], by noting that the formulation presented

earlier can be recast into a minimum cost flow problem. One can regard each

edge e(u,v) as a network flow arc having infinite capacity and cost w(e(u,v))

per unit of flow. The dual of the linear programming problem given asks that

one assign to each edge a non-negative flow f(e(u,v)) such that:

Minimize:

∑
),(

)),(()),((
vue

vuefvuew

Subject to:

|)(||)(|)()(
??

vFIvFOefef
vv

−=− ∑∑
>−→

Thus the lags r(v) in the minimum area retiming are the dual variables

(potentials) for the optimal flow f*(e), which most minimum cost flow

algorithms compute. The dominant cost in solving the minimum area

retiming problem is solving the minimum cost flow problem, for which

many algorithms exist. Using the algorithm due to Orlin [10], the problem
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can be solved in O(|E|2 lg|V| + |V||E| lg2 |V|) time. Under the assumption

that the largest number of registers on any single edge in the circuit is at

most polynomial in |V|, the algorithm of Goldberg and Tarjan can be used.

Recent work, which is more relevant here, presents an algorithm for handling

convex costs [12]. In this work, the authors present a method for extending

the work of Orlin [10] to handle convex costs while retaining the strong

polynomial properties of the problem.

Although the minimum cost flow problem is of interest in this problem,

from a theoretical point of view, the implementation of these algorithms is

not very practical in terms of performance [14]. Only the ideas of how to

solve the convexity of the costs and the proofs that this can be done, as well

as the polynomial complexity proofs, are relevant here. In practice better

approaches need to be found to implement the convex costs approach.
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Minimum Area Retiming with Area-Delay Trade-Offs

In this chapter, the solution of MARTC, which is based on the minimum

area retiming approach without clocking constraints, is presented.

Algorithms for solving the resulting problem are then discussed.

3.1. Transformations

In order to cast the problem at hand as a minimum area retiming

problem, we first state some assumptions:

• The area-delay trade-off curves are monotone decreasing and convex: the

slope of the curve decreases less rapidly as the delay increases (i.e. the

second derivative is positive). Without this assumption the problem could

possibly become NP-hard, since the exploration of all possible

combinations of trade-offs at the different nodes would be required (i.e. a

combinatorial problem)

• Delays at the nodes are irrelevant. This is because we assume that the

wire delays being considered are much larger than the delays at the nodes

and the clock period. This seems to be a valid assumption in the DSM

regime [11][16].

• The clock period is the time granularity in this problem. As clocking

speeds increase, this fact will become more valid.

We now transform the problem at hand into a minimum area retiming

problem. The nodes are split to form one edge, which can now contain

registers. These will represent registers retimed into the node in order to
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increase its delay but decrease its area. This problem matches closely the

original Leiserson-Saxe formulation of minimum area retiming (i.e. without

clock constraints), except that the function being optimized is area instead of

the number of registers and is convex instead of being linear. Thus the

mathematical programming problem is:

Minimize:

∑=
e
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where ae represents the area-delay trade-off convex function for the

node associated with that edge. The constraint represents the transformed

non-negativity (lower bound) constraint on the number of registers on certain

edges. Initially, registers can be positioned anywhere within the circuit.

≥ k

u v
w(e(u,v))

G
w

Figure 3: Transformation at the Graph Level

Using the approach of [12] for transforming piecewise-linear convex

costs into additional edges and vertices of linear costs and keeping in mind

the duality of the two problems, one can transform this problem into an exact
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minimum area retiming problem. This is accomplished by splitting nodes in

the original graph not by one edge but by several edges, one for each line

segment of the trade-off curve. The equation for the total area can then be

rewritten as:
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where vp and vs are the predecessor and successor of v respectively. Thus

each linear piece is converted to a corresponding arc with cost equal to its

slope, and weight constrained by its projected length on the delay axis.
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In general, there are two possible types of constraints:
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where wl and wu denote the upper and lower bound on the weights

respectively. For created edges wl = 0 while for original edge wu = ∞ .
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delay
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Figure 4: Transformation at the Vertex Level

Since it is guaranteed that registers on segments with lower cost (more

negative slope) will be preferred, the resulting optimal retiming will always

be correct in terms of filling edges with bigger area reductions first. This is

due to the concavity of the area-delay trade-off curves.

Lemma 1: Given two consecutive segments, l1 and l2 (slope(l1) <

slope(l2)), in the split node then it is always the case that l1 is completely

filled (wr(l1) = width(l1)) whenever l2 gets filled (wr(l2) > 0), in the minimum

retiming solution.

Proof: Assume that a minimum solution such that the lemma is false

(wr(l1) < width(l1) whenever wr(l2) > 0). We know that the coefficient of the

retiming function at internal nodes is negative (slope(l1)-slope(l2) < 0)

because the trade-off delay curve is convex. Since node retimings have

negative coefficients for the internal nodes of the split node one can move

registers from l2 to l1 across a node v (r(v) is increased). This will reduce the

cost of the solution even further (A(Gr) is decreased) because it corresponds

to a positive retiming of the node v in between. This can be done until the

segment l1 is filled completely (wr(l1) = width(l1)) and no further
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improvements are possible, proving that the given solution is not a

minimum.

Theorem 1: The vertex level transformation is correct in the sense that a

solution to the linear program is a minimum area solution for the original

problem.

Proof: The lemma shows that no further minimum area retiming is

possible at the vertex level. Thus, no special care has to be taken in solving

the linear program since the resulting solution is guaranteed to be a minimum

solution of the original problem.

In the following, we turn the reader’s attention to the following

important points about this description method.

3.1.1. Granularity

As with classical retiming approaches, the view here is that the graph

represents a network of functional elements and globally clocked registers.

The model is not concerned with the level of complexity of the functional

elements, so the granularity of the problem can be controlled by the

description. This fact can used to control the complexity and level of

optimization required in solving this problem.

3.1.2. Constraints

The constraints presented at each edge are independent and are set at the

functional decomposition phase of the IP integration flow. For added edges,

they represent the different possible ranges of implementations for a given

module, while for original edges, they represent the lower bound constraints

determined by placement of the modules. Note that it is possible to describe

modules whose implementation has a delay which is greater than one global
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clock cycle, and this is done by having lower bound constraint on added

edges used to represent area-delay trade-offs of modules.

3.1.3. More General Delay Models

As described in [7] it is possible to extend the methods described in this

section to deal with functional elements in which the propagation delay

through individual functional elements are non-uniform. That work, with

minor modifications, generalizes the original circuit model to handle this

situation, and shows how the retiming problem can be reapplied to this more

general case.

3.2. Algorithm

The algorithm is a two-phase process. The first phase involves checking

the satisfiability of constraints or deriving constraints if none are given. In

the second phase, after constraints have been handled, the minimization

process begins resulting in a minimum area retiming of the given circuit.

3.2.1. Phase I: Checking Satisfiability

Checking feasibility can be easily performed on the transformed graph

as a constraint problem. Constraints are given by:
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From these constraints we set up a weight matrix R where the entry

R(u,v) represents the upper bound ru(u,v) on the difference r(u)-r(v), while

R(v,u) represents the lower bound rl(u,v). This constraint matrix R is a

difference bound matrix (DBM) [12], where there is no need to specify the

tightness of the constraints (i.e. a flag in each entry of the matrix) since all
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are tight. Satisfiability of given constraints can be determined using a

classical all-pairs-shortest-path computation on this DBM [12].

In order to derive constraints, we apply an all-pairs-shortest-path

approach to convert the DBM into canonical form [12], which represents

tight constraints on the retimings. We then derive upper and lower bounds on

the number of registers using the equations:
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3.2.2. Phase II: Minimum Area Retiming

Now that the problem has been cast as a minimum area retiming

problem with no cycle time constraint, it is easy to see that the problem can

be solved using a linear programming approach originally suggested by

Leiserson and Saxe. Many approaches have been described above on how to

do this in an efficient manner.

One the of first approaches [7] is a minimum cost flow dual formulation

which can be used to derive the optimal flow and then the optimal potential

which directly translates into retimings at the nodes.

Using the improved techniques [14] [8] discussed earlier, one can

optimize the space requirement and reduce the number of constraints and

variables required thus making the problem more manageable.

Yet another method which can be used, which in some cases may not be

efficient, is a relaxation-based approach. In this approach, the information

derived from the slacks computed in the first phase can be used to decide

where to put the registers on the edges with the most negative cost. Then

new slacks are derived for the subgraphs, until the minimum area solution is

reached.



26

The algorithm has the following steps:

• consider the area-delay trade-off curve for each node in the original

graph

• split the node accordingly by representing each segment, where an edge

corresponding to a segment has

• a cost equal to slope of the segment

• a lower and upper bound derived from the length of the segment on

the time axis.

• solve the minimum area retiming of the resulting problem

• translate the solution into a retiming of the original graph

As described earlier, the construction will result in the correct retiming

at the nodes and this can be attributed to the special form of the node

splitting and the convex piece-wise linear area-delay trade-off curves.
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Retiming Software Package

Initially, our implementation approach was to reuse already available

capabilities in the retime package in SIS [13]. In the following, we first give

a description of what were the modifications needed to make the package

work for the new problem. We then describe how a new implementation of

this software package will be integrated into NexSIS, a new IP integration

SoC framework currently being developed.

4.1. Retiming Package

The retime package contains an implementation of the two types of

retiming using the Leiserson-Saxe approach described earlier. We

concentrate here on describing the minimum area capabilities. Modifications

done on the retime package to handle the new problem are as follows:

• building of the retiming graph was changed

• splitting of nodes to handle piece-wise linear area-delay trade-off

segments was added

• data about weights and area-delay trade-off curve is externally specified

and read in.

• no register sharing is considered

• W and D matrix are not relevant in this formulation and so are not

computed

• clocking constraints are not added to the constraints matrix because they

are not relevant
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• Phase I: checking/deriving external timing constraints

• Phase II: the resulting linear program is solved using the Simplex

approach

4.2. NexSIS

This is a very brief description of some of the initial work that has been

done so far to create the kernel of a new IP integration SoC framework.

4.2.1. Component Database (Cobase)

The first part of the implementation has been focused on designing a

new data structure able to hold design useful information about an SoC

design. The characteristics that were deemed necessary for such a database

are:

• hiearchical descriptions

• representation at different abstraction levels

• a focal point for the integration of different design tools into flows

The main parts of the description, which were modeled after previous

design approaches namely OCT are:

• Component: This the basic unit of description in the database. A

component can have descriptions at many different abstraction level by

different tools. To basic components in this description are:

• Module: will represent the different IP blocks being used, e.g.

• Net: will represent wiring information. This connectivity information

can be point to point or bus structures.

• View: represents a given abstraction level description of a component. At

this point in time only the floorplanning view is of interest

• FloorplanView: provides a very high level description of an SoC
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• Model: a tool representation at a different abstraction level. Two special

types of models available at all abstraction levels are:

• ContentsModel: provides instantiation information

• InterfaceModel: provides connectivity information

In Figure 5 is a view of the database representation of the Alpha 21264

microprocessor.

Figure 5: Database View
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Examples

There is currently work being done on creating benchmarks for the SoC

integration domain. In this chapter, two examples that are currently being

used to evaluate the different parts of the flow are presented.

5.1. A Simple Retiming Example

An example circuit, presented here is S27 derived from the ISCAS89

benchmark, which was used in [8]. The example was chosen to be small in

order to show some of the aspects of the algorithm being used.

The retime graph has 17 edges and 8 nodes (the one first built by SIS

from the original circuit). For convenience, the area-delay trade-off curve

was the same for all nodes, but this doesn’t affect the performance or

correctness of the algorithm. Only the maximum number of segments of

these curves affects the complexity of the algorithm since the number of

constraints required to handle the splitting of nodes is |E| + 2k|V| where k is

the maximum number of segments.

The number of registers was not changed from the original circuit

specification. The example shows an interesting case of retiming, and what

could possibly occur during this process:
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Figure 6: S27 Retiming Example

The results of retiming of this graph are:

• The register between G8 and G11 could not be moved because of the

restrictions of correct retiming, even though a possible decrease in area

would result.

• The register before G12 was moved into G12 to minimize the area of that

node. It may seem that a combinational cycle between G12 and G13 has

been introduced, but this is not so since there is a delay within G12.

• The register in G12 was not moved into G13 and G15 even though it

decreases area because of correct retiming constraints.

• The register after G10 was moved back into it. It was not possible to

move this register forward into G11 because this results again in

incorrect retiming.
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Thus, the resulting circuit has minimum area within the constraints of

the trade-off function and correct retiming.

5.2. A Simple SoC Example: The Alpha 21264

In order to get a better feel for SoC design we collected information

about the Alpha 21264 microprocessor. This simple example has served as

an initial driver for designing the kernel for NexSIS (see Figure 5). In Figure

7 we show the floorplan of this complex microprocessor.

Figure 7 The Alpha 21264 Floorplan

Analysis of the information available in this floorplan and using the fact

that it is to scale, we come up with the data about the design presented in
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Table 1. Note that the granularity of the design is the same as the one

described earlier when discussing the application domain of SoC design.

Unit # Aspect Ratio # Transistors

Instruction cache 1 0.73 2.9M
ITB 1 0.56 284k
PC 1 0.91 488k
Branch Predictor 1 0.53 337k
Data cache 1 0.82 2.8M
DTB 2 0.74 419k
MBox 1 0.61 586k
LD/ST Reorder Unit 1 0.78 612k
L2 Cache/System IO 1 0.79 596k

Integer Exec 2 0.75 290k
2 0.54 404k

Integer Queue 1 0.5 617k
Integer Reg File 2 0.91 217k
Integer Mapper 1 0.71 432k

FP div/sort 1 0.57 252K
FP add 1 0.97 429k
FP Queue 1 0.81 515k
FP Reg File 1 0.67 296k
FP Mapper 1 0.81 515k
FP mul 1 0.61 725k

uP 24 0.81 15.2M

Table 1 The Alpha 21264 Blocks

The block diagram presented in Figure 8 generates a network of

modules description (Figure 5) of this SoC. More data needs to be collected

about this and other examples to make them more realistic benchmarks for

SoC intergration.
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Figure 8 The Alpha 21264 Block Diagram



Chapter 6 

Interconnect Strategy

Retiming [17] and placement techniques [11] of modules will be able to

satisfy delay constraints as long as interconnect delay is within bounds and

can be properly characterized and predicted. To this end and to remedy the

global wire delay problem, this chapter focuses on suggesting interconnect

solutions, when the registers retimed onto wires can not be absorbed by

reassigning wires to slower metal layers. We have devised a registered

interconnect strategy for the IP integration component-based design SoC

domain. This strategy is presented here.

6.1. Pipelined IP Interconnect (PIPE)

In DSM, global wires contribute significantly to the delay of a circuit

and therefore need to be “retimed” in order to satisfy the functional timing

constraint requirements. The idea here is to insert registers (i.e. pipelining)

within the (register bounded) global interconnect wires in order to reduce

“perceived” delays thus permitting modules to meet constraints on the

relative timing of inputs. We propose to use registers that have the following

characteristics:

• high performance,

• minimum area impact because of the large number of module pins, and

• low clock loading (to minimize clock distribution problems),

• small delay, and

• low power consumption



36

6.2. Circuit Implementation

The focus of this section is the implementation aspects of the pipelined

interconnect strategy, and the exploration of the different implementation

choices.

6.2.1. Driver/Receiver

As stated earlier, the requirement here is for registers to be present at the

boundaries of the IP blocks. This is a desirable requirement as explained

before (i.e. straightforward synchronous integration), and can be easily

satisfied by design. Therefore, in order to minimize crosstalk effects and

glitching, static (or pseudo-static) high-speed (edge-triggered) registers

should be used at the IP boundaries. In addition, the driver should be able to

support the required fanout. These are the guiding metrics for the

driver/receiver design choices.  We leave the choice of registers at the IP

boundaries to the designer and assume standard CMOS line drivers. We

focus next on the circuit implementation of the registers needed to support

our proposed pipelined interconnect strategy.

6.2.2. IP Interconnect Strategy Implementation

6.2.2.1. True Single Phase Clock (TSPC) Latches

TSPC latches are commonly used in high performance digital systems

due to their simplicity and fast operation [6]. The advantages of this choice

are: the single clock phase which avoids clock overlap problems, and the low

clock loading (1 NMOS gate in the case of split-output TSPC). Figure 9

shows the TSPC latch, and the split-output TSPC latch.
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Figure 9: TSPC Latch (with and without split-output)

The split-output latch however not only has lower performance because

of the threshold drop on the clocked NMOS: the presence of two

interconnect wires internally increases the susceptibility to crosstalk effects

between the lines marked “A” and  “B” in Figure 9. Because of this, the

split-output solutions will not be considered in the sequel even though they

have half the clock loading of the regular TSPC latch.

We can generalized the above TSPC latch and recognize that there are

four basic stages in TSPC latch or register design as show in Figure 10 [19]

Figure 10: The basic four TSPC stages

A p-latch consists of two p-stages while an n-latch consists of two n-

stages. A precharged latch is formed by a precharged stage followed by a

non-precharged stage. A non-precharge latch is formed by two non-

precharge stages. Registers are formed by the combination of these latches.
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6.2.2.2. C2MOS-like Full Latch

The PN-SN-Full Latch (P)-INV register in Figure 11 has a C2MOS-like

stage at the end to utilize the available precharged-node signal. This register

is data-dependent during its evaluation phase but works perfectly for both

one and zero inputs [20].

Figure 11: D Flip-Flop (PN-SN-FL(P))

6.2.2.3. Pipelines

Using the TSPC basic stages shown earlier we have devised several

interconnect pipeline schemes. We present these configurations here, and

leave the evaluation of these schemes for future work.

For each single stage block we can have the combinations listed below.

The notation below stands for the following:

• SN = Static N

• PN= Precharged N

• SP = Static P

• PP = Precharged P

• “-” = Delimiter between half stages

• Full Latch = C2MOS NORA stage

We have identified four basic schemes for implementing a positive edge

register, and these are:

1) SP-PN-SN (This is a D Flip Flop (DFF) as in Figure 12)
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2) PP-SP-Full Latch (N)

3) SP-SP-SN-SN

4) PP-SP-PN-SN

Figure 12: D Flip-Flop (SP-PN-SN)

These four schemes can each be implemented as:

• lumped: optimally buffered wire segments surrounded by registers (see

Figure 13), or

• distributed: registers split up into stages which replace the buffers.

Each interconnect segment consists of four wire segments of length lcrit

(at m4 in 0.35µm technology lcrit is ~600λ = 600*0.35µm = 210µm =

0.21mm, where delay on a wire of lcrit length is ~250ps). Given the

prediction for DSM designs, we picked a global clock of 500 MHz (intra-

module clocks are projected to be one order of magnitude faster or ~5GHz)

which amounts to ~4 lcrit’ s (about ~0.84mm). Given a ~16mm chip

dimension (at 0.35µm technology), we see that ~20 clock cycles to cross the

chip is conceivable, as pointed out by Dally [3]. Note that the 4 lcrit  and 20

global clock cycle estimate also holds for smaller scale technologies as

pointed out earlier. Interconnect was modeled as optimally buffered HSPICE

lossy transmission lines.
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Figure 13: Interconnect Segment

The schemes described above can be evaluated with or without coupling

to account for crosstalk. Initial results [18] show that these possible solutions

provide a wide range of implementations that can potentially be used in a

trade-off optimization setting, just as was done in the case of modules.
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Future Work

There is still a lot of work to be done to make the whole flow described

in Section 1.2 a reality. Here we outline a few of the tasks that are currently

being focused on.

7.1. Integration of Retiming with Architectural

Floorplanning

The conventional VLSI design flow consists of an integration of various

steps and tools in order to synthesize a circuit. Typically, the flow introduces

a separation between the logic synthesis step and the physical design step.

For designs with aggressive performance goals, this division entails hundreds

of iterations between synthesis and physical design before converging to the

desired implementation and achieving closure on design constraints,

especially timing. In this work we plan to address this issue and lay the

groundwork for a new design flow that exploits (a) the recently proposed

idea of planning for performance [11] at the early stages of the flow in order

to minimize design iteration, (b) recent work in the area of retiming [17], and

(c) results of a recent study of delays in DSM [16]. The retiming work

promises to permit area and delay trade-off decisions at the early stages of

floor planning. In this work, we will introduce retiming into the architectural

floorplanning stage, and show how it has the potential to address and provide

solutions to timing closure issues in deep sub-micron [16].
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7.2. Retiming-Driven Simultaneous Placement and Routing

The rapid scaling of IC technology leads to smaller devices, closer

interconnects and higher degrees of on chip integration, which requires a

stronger interaction between the high level synthesis and the low level

physical design. Based on the idea of planning for performance [11], a new

DSM design methodology has been proposed in Section 1.2, where retiming

explores the area delay tradeoffs at a floorplanning level, combining

synthesis and physical design and minimizing the number of iterations

needed. Our proposed future research work in retiming-driven simultaneous

placement and routing is to: (a) integrate module placement and routing

within the same data structure, (b) search a feasible place/route solution that

satisfies the constraints prescribed by retiming, and (c) incrementally change

(or update) the solution within a reasonable number of iterations.

Optimization algorithms and schemes to be explored need to be scalable as

well as able to handle the size of problem envisioned in this application

domain.

7.3. Interconnect Strategy Evaluation

In Chapter 6 we have proposed a new interconnect scheme for the IP

integration framework. We outlined several domain requirements on the

suitable interconnect solution, and then proceeded to present a pipelined

interconnect strategy using TSPC registers. Our initial studies [18] show that

this scheme has the potential to perform well with respect to area, delay, and

power. In future work, we will evaluate the different trade-offs of the

proposed TSPC-based pipelined schemes. This will be done by building an

adequate test bench in order to evaluate using layout, modeling and

simulation to measure performance, area, and power requirements.
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Chapter 8 

Conclusions

In this work we showed how the minimum area retiming approach can

be reapplied to a problem arising in DSM, where area-delay trade-offs and

delay constraints are considered. We presented a framework to cast that

problem into a classical minimum area retiming problem with no cycle

constraints. Results show the correctness of this approach, but in cases where

the area-delay trade-off has many segments, the number of constraints may

have to be reduced using available methods. Our initial implementation in

SIS has not addressed efficiency issues, just feasibility. However, we should

be able to apply many of the techniques in the literature used to make

retiming efficient. This will be left to the implementation currently being

developed, to be incorporated in the NexSIS framework.
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