
Retiming for DSM with Area-Delay Trade-offs and Delay
Constraints

Abdallah Tabbara, Robert K. Brayton, A. Richard Newton

Department of Electrical Engineering and Computer Sciences,
University of California, Berkeley, CA 94720

{atabbara,brayton,rnewton}@ic.eecs.berkeley.edu

Abstract
The concept of improving the timing behavior of a circuit by
relocating registers is called retiming and was first presented
by Leiserson and Saxe. They showed that the problem of
determining an equivalent minimum area (total number of
registers) circuit is polynomial-time solvable. In this work
we show how this approach can be reapplied in the DSM
domain when area-delay trade-offs and delay constraints are
considered. The main result is that the concavity of the trade-
off function allows for a casting of this DSM problem into a
classical minimum area retiming problem whose solution is
polynomial time solvable.

1 Motivation
Retiming is a technique for optimizing sequential

circuits. It repositions the registers in a circuit leaving the
combinational portion unchanged. The main objective of one
form of retiming is to find a circuit with the minimum
number of registers for a specified clock period. There are
two common variants on this theme:
a) minimizing the clock period without regard to the

number of registers in the final circuit or,
b) minimizing the number of registers in the final circuit

with no constraints on the clock period.
Over a decade and a half have elapsed since Leiserson

and Saxe first presented a graph-theoretic formulation to
solve this problem for single-clock edge-triggered sequential
circuits, where proposed algorithms have polynomial time
complexity. Since then research efforts have focussed on
incorporating retiming in a synthesis framework, addressing
issues that arise due to retiming, and extending the domain of
circuits for which retiming can be applied. For digital circuit
design the most useful problem is that of constrained
minimum area retiming. One motivation for these algorithms
is to examine the area-delay trade-off of the implementation.
However, due to the high computational expense of certain
forms of this optimization, its use has been limited.

It is generally agreed, within the EDA community [11],
that Deep Sub-Micron (DSM) semiconductor technology is
forcing major discontinuities in traditional design methods.
The complexity and scale of integration, as well as the
significant cost of design errors promotes a re-evaluation of
design practice and an increase in "co-design" early in the
design process. For this reason, and to handle complexity
issues associated with DSM, block-oriented design
methodologies have been advocated as a means of reducing
complexity of design [3]. In this methodology high-level
design and budgeting constraints play an important role
where high-level information is used to externally constrain
the design of sub-blocks in terms of three metrics: timing,
area and power. Design using distributions (for example
area-delay-power trade-offs of components) is also becoming
more important. Wire delays will also play an important role
in DSM. As system on a chip (SOC) designs and faster clock
speeds become a reality, timing and wire delays will become
more critical; on some global wires, the delay will become
lower bounded by an integer number of clock cycles.

In the following we present a solution of a specific
formulation of a problem that will become relevant in the
next few technology generations. In Section 2 we state the
problem and then describe previous minimum area retiming
approaches, since this problem is very related to the problem
we are trying to solve. In Section 3 we describe a formulation
of a solution and then discuss an algorithm. In Section 4 we
describe the implementation and present initial results in
Section 5.

2 Background
Retiming is a procedure that involves relocating registers

across logic blocks to allow the circuit to be operated under a
faster clock. Leiserson and Saxe first proposed the technique,
where the algorithmic basis of retiming circuits with registers
was described without specifically focusing on
implementation aspects. Retiming to achieve the minimum
clock period is termed minimum period retiming, while
retiming to minimize the number of registers for a given
target clock period is called minimum area retiming.

2.1 Problem Statement
A new "retiming problem" comes up in a non-iterative

flow [7] for deep sub-micron applications. The problem,
which we call minimum area retiming with trade-offs and
constraints (MARTC), can be formulated as follows:

Given: a graph G(V,E) (i.e. system-level view), where
each node v (i.e. component) has a specified area delay trade-
off curve av(d), which gives for each number of clock cycles

d (i.e. the number of registers retimed into the node v), the
area required to perform the computation associated with the
node v (i.e. many possible implementations with different
latencies). On each edge e(u,v) (i.e. wire), there is an integer
k(e(u,v)), giving the required number of clock cycles
associated with that edge. This lower bound is provided by a
current placement of the components using optimally
buffered wires. The lower bound states that it is impossible
to send a signal over this wire in less clock cycles. To satisfy
the edge one needs to put at least k(e(u,v)) registers on it. On
each edge e(u,v) there is an initial number w(e(u,v)) of
registers given. These represent the initial latencies allowed
between u and v.

Problem: The optimization problem is to find a retiming
of the graph G represented by the graph Gr such that:

Minimize: ∑=
v

vr daGA)()(

Subject to:)),(()),((vuekvuewr ≥

delay

area

≥ k(e(u,v))

G

u

v
w(e(u,v))

Figure 1. Problem statement

2.2 Leiserson-Saxe Retiming Algorithm
In this section we describe the Leiserson-Saxe retiming

approach. In this approach they model a circuit as a graph,
and then give polynomial time algorithms for solving
different objective functions of the retiming problem.

2.2.1 Notation

A sequential circuit can be represented by a directed
graph G(V,E), where each vertex v corresponds to a gate, and
directed edge e(u,v) represents a connection from the output
of gate u to the input of gate v, passing through zero, or more
registers. Each edge has a weight w(e(u,v)), which is the
initial number of registers between the output of gate u and
the input of gate v. Each vertex has a constant delay d(v). A
special vertex, the "host", is introduced in the graph, with
edges from it to all primary inputs of the circuit, and edges
from all primary outputs to the host.

A retiming is a labeling of the vertices ZVr →: , where
Z is the set of integers. The retiming label r(v) for a vertex v
represents the number of registers moved from its output
towards its inputs. The weight of an edge e(u,v) after
retiming, denoted by wr(e(u,v)) is given by

)()()),(()),((urvrvuewvuewr −+=
One may define the weight w(p) of any path p originating

at vertex u and terminating at vertex v (represented as
vup →:), as the sum of the weights on the edges of p, and

its delay d(p) as the sum of the delays of the vertices on p. A
path with w(p) = 0 corresponds to a purely combinational
path with no registers on it. Therefore the clock period can be
calculated as

)(
0)(,

pdc MAX
pwp =

=

Another important concept is that of the W and D
matrices which are defined as follows:

)(),(

)(),(

),()(,

:

pdvuD

pwvuW

MAX
MIN

vuWpwp

vup

=

→
=

=

The matrices are defined for all pairs of vertices (u,v)
such that there exists a path vup →: that does not include
the host vertex. W(u,v) denotes the minimum latency, in
clock cycles, for the data flowing from u to v and D(u,v)
gives the maximum delay from u to v for the minimum
latency.

2.2.2 Minimum Area Retiming

Let the total number of registers of a circuit after
retiming r be denoted by:

∑=
e

rr ewGS)()(

The minimum area retiming problem can be stated as
minimizing S(Gr), subject to timing constraints. But, given
the relationship between wr(e) and w(e) one can rewrite S(Gr)

∑
∑

∑

−+=

−+=

=

v

e

e
rr

vrvFOvFIGS

urvrew

ewGS

)(|))(||)((|)(

))()()((

)()(

where |FI(v)| and |FO(v)| are the number of fanins and
fanouts of node v. The minimum area retiming problem can
then be formulated as the following linear program:

Minimize: ∑ −
v

vrvFOvFI)(|))(||)((|

Subject to:

cvuDvuvuWvrur
vuewvrur

>∀−≤−
≤−

),(:,,1),()()(
)),(()()(

The case where not all register costs are the same can be
modeled as:

∑ ∑∑
∑

∑

→→

−+=

−+=

=

v veve

e

e
rr

vrecostecostGS

urvrewecost

ewecostGS

)())()(()(

))()()()((

)()()(

?:?:

The significance of the objective function and the
constraints is as follows (the reader is referred to [4] for
details)
� The objective function represents the number of

registers added to the retimed circuit in relation to the
original circuit

� The first constraint ensures that the weight wr(e(u,v)) for
each edge (i.e. the number of registers between the
output of gate u and the input of gate v) after retiming is
non-negative.

� The second constraint ensures that after retiming, each
path whose delay is larger than the clock period has at
least one register on it.

This formulation assumes that all registers fanout to
exactly one gate. However, in physical circuits a register can
fanout to several gates. Thus registers at the fanouts of a gate
can be combined or shared. To accurately model the number
of registers in a circuit one needs to take this sharing into
account. This can be accomplished by using the model given
by Leiserson and Saxe in [4], which introduces for every gate
u with multiple fanouts a mirror vertex mu. The objective
function of the linear program can also be modified as
described in [4].

It is also pointed out in [4] that the dual of this problem
is an instance of a minimum cost network flow problem,
hence the problem can be solved efficiently as a minimum
cost flow problem.

2.3 Improved Techniques
Although the algorithms mentioned above are

polynomial in the circuit size, naive implementations suffer
the worst-case (O(n3) time and O(n2) space) for all circuits.
Recently, algorithms for handling large VLSI circuits were
introduced [10] [2]. In the following subsections, we list
several such algorithms.

2.3.1 Shenoy-Rudell Approach

Shenoy and Rudell [10] describe two major hurdles
towards an efficient implementation of minimum area
retiming:
� computing the W and D matrices
� solving the minimum cost circulation problem

Their method takes advantage of on-the-fly computations
and eliminates the need to completely set up the problem
(which can be huge in size) before starting to solve it.

They point out that the method proposed by Leiserson-
Saxe to compute the W and D matrices, is an algorithm with
O(|V|3) time and O(|V|2) space complexity even in the best
case, because it is based on solving the all-pairs shortest-
paths algorithm1. The advantage in [10] is the space savings
obtained by an algorithm that computes in O(|V|) space and
generates a smaller set of constraints.

One of the best methods known to solve the minimum
cost circulation problem is a group of cost-scaling
techniques. A disadvantage of these techniques is that the
graph cannot change during the computations. Consequently,
the period edges must be determined before starting the cost-
scaling algorithm. Shenoy and Rudell’s implementation is
based on the generalized cost-scaling framework of Goldberg
and Tarjan and has time complexity O(|V||E| lg |V| lg |V| C)
where C is one more than the number of registers in the
circuit.

1 To be fair, in [4] the authors state that, for sparse graphs
one could use an O(|V||E|+|V|2 lg|V|) time algorithm which
uses the Fibonacci heap data structure due to Fredman and
Tarjan, and this could dramatically improve the running time
although the space requirements would still be the same.

2.3.2 ASTRA and Minaret

The ASTRA algorithm [2] proposed an alternative view
of retiming using the equivalence between retiming and
clock skew optimization. The Minaret algorithm [5] uses the
linear programming formulation and incorporates the
ASTRA approach to reduce the number of variables and
constraints.

The introduction of clock skew at a register has an effect
similar to moving it across module boundaries (gates). The
effect of applying a positive clock skew on a register is
equivalent to moving it from the inputs to the outputs.
Similarly application of a negative clock skew is equivalent
to moving it from the output to the inputs. Hence both
retiming and clock skew are equivalent and can be used for
retiming optimization of sequential circuits. Since clock
skew is a continuous optimization while retiming is discrete,
the minimum clock period achievable by clock skew may not
be obtained by retiming. This relationship between skew and
retiming motivates the following two-phase solution to the
minimum period retiming problem in the ASTRA approach
[2].
� Phase A: The clock skew problem is solved to find the

optimal values of the skew at each register, with the
objective of minimizing the clock period, or to satisfy a
given feasible clock period. This involves the (possibly
repeated) application of the Bellman-Ford algorithm on
a constraint graph.

� Phase B: The skew solution is translated to a retiming
by relocating registers across gates in an attempt to set
the values of all skews to be as close to zero as possible.
The algorithm attempts to reduce the magnitude of all
registers’ skews by moving each positive skew register
opposite to the direction of signal propagation and each
negative skew register in the direction of signal
propagation.

After Phase B, all skews are forced to zero. This can
cause the clock period to increase from Phase A; however, it
is shown that this increase will be no greater than the
maximum gate delay. The minimum clock period using
skews may not be achievable using retiming, since retiming
allows cycle-borrowing only in discrete amounts
(corresponding to gate delays), while skew is a continuous
optimization.

As in the Leiserson-Saxe approach, Minaret [5] also
formulates the minimum area retiming problem as a linear
program. The ASTRA approach is utilized to obtain reliable
bounds on the variables in this linear program. These bounds
are then used to reduce the problem size by reducing both the
number of variables and the number of constraints. By
spending a small amount of additional CPU time on the
ASTRA runs, this method leads to significant reductions in
the total execution time of the minimum area retiming
problem.

2.4 Minimum Cost Network Flow
The minimum area retiming problem can be reduced to

the minimum cost network flow problem [4], by noting that
the formulation presented earlier can be recast into a
minimum cost flow problem. One can regard each edge
e(u,v) as a network flow arc having infinite capacity and cost
w(e(u,v)) per unit of flow. The dual of the linear

programming problem given asks that one assign to each
edge a non-negative flow f(e(u,v)) such that:

Minimize: ∑
),(

)),(()),((
vue

vuefvuew

Subject to: |)(||)(|)()(
??

vFIvFOefef
vv

−=− ∑∑
>−→

Thus the lags r(v) in the minimum area retiming are the dual
variables (potentials) for the optimal flow f*(e), which most
minimum cost flow algorithms compute. The dominant cost
in solving the minimum area retiming problem is solving the
minimum cost flow problem, for which many algorithms
exist. Using the algorithm due to Orlin [6], the problem can
be solved in O(|E|2 lg|V| + |V||E| lg2 |V|) time. Under the
assumption that the largest number of registers on any single
edge in the circuit is at most polynomial in |V|, the algorithm
of Goldberg and Tarjan can be used. More recent work,
which is more relevant here, presents an algorithm for
handling convex costs [8]. In this work the authors present a
method for extending the work of Orlin [6] to handle convex
costs while still retaining the strong polynomial properties of
the problem.

Even though the minimum cost flow problem is of
interest in this problem, from a theoretical point of view, the
implementation of these algorithms is not very practical in
terms of performance [10]. Only the ideas of how to solve
the convexity of the costs and the proofs that this can be
done, as well as the polynomial complexity proofs, are
relevant here. In practice better approaches need to be found
to implement the convex costs approach.

3 Minimum Area Retiming with Area-
Delay Trade-offs
The solution of MARTC is based on the minimum area

retiming approach without clocking constraints. Algorithms
for solving the resulting problem are then discussed.

3.1 Transformation
In order to cast the problem at hand as a minimum area

retiming problem, we first state some assumptions:
� The area-delay trade-off curves are monotone

decreasing and convex: the slope of the curve decreases
less rapidly as the delay increases (i.e. the second
derivative is positive). Without this assumption the
problem could possibly become NP-hard, since the
exploration of all possible combinations of trade-offs at
the different nodes would be required (i.e. a
combinatorial problem)

� Delays at the nodes are irrelevant. This is because we
assume that the wire delays being considered are much
larger than the delays at the nodes and the clock period.
This seems to be a valid assumption in the DSM regime
[7].

� The clock period is the time granularity in this problem.
As clocking speeds increase, this fact will become more
valid.

We now transform the problem at hand into a minimum
area retiming problem. The nodes are split to form one edge,
which can now contain registers. These will represents
registers retimed into the node in order to increase its delay
but decrease its area. This problem matches closely the

original Leiserson-Saxe formulation of minimum area
retiming (i.e. without clock constraints), except that the
function being optimized is area instead of the number of
registers and is convex instead of linear. Thus the
mathematical programming problem is:

Minimize: ∑=
e

rer vuewaGA))),((()(

Subject to:

)),(()),(()()(
)),(()()()),(()),((

vuekvuewvrur
vuekurvrvuewvuewr

−≤−⇒
≥−+=

where ae represents the area-delay trade-off convex function
for the node associated with that edge. The constraint
represents the transformed non-negativity (lower bound)
constraint on the number of registers on certain edges.
Initially, registers can be positioned anywhere within the
circuit.

≥ k

u v
w(e(u,v))

G
w

Figure 2. Transformation at the graph level

Using the approach of [8] for transforming piecewise-
linear convex costs into additional edges and vertices of
linear costs and keeping in mind the duality of the two
problems, one can transform this problem into an exact
minimum area retiming problem. This is accomplished by
splitting nodes in the original graph not by one edge but by
several edges, one for each line segment of the trade-off
curve. The equation for the total area can then be rewritten
as:

∑∑
∑∑

∑∑∑
∑

→−→+=

−+=

−+=

=

e v
sp

e l
ll

e l
ll

e
e

e
rer

vrvvslopevvslopeGA

urvrlslopeGA

urvrlslopevuewa

vuewaGA

)())()(()(

))()()(()(

))()()(())),(((

))),((()(

where vp and vs are the predecessor and successor of v
respectively. Thus each linear piece is converted to a
corresponding arc with cost equal to its slope, and weight
constrained by its projected length on the delay axis.

)()),((0
)()),((
lwidthvuew

lslopevuecost
≤≤

=

In general, there are two possible types of constraints:

)),(()),(()()(
),(()),(()()(

vuewvuewurvr
vuewvuewvrur

u
l

−≤−
−≤−

where wl and wu denote the upper and lower bound on the
weights respectively. For created edges wl = 0 while for
original edge wu = ∞ . Since it is guaranteed that registers
on segments with lower cost (more negative slope) will be
preferred, the resulting optimal retiming will always be
correct in terms of filling edges with bigger area reductions
first, due to the concavity of the area-delay trade-off curves.

delay

area

l vlul

Figure 3. Transformation at the vertex level

Lemma 1: Given two consecutive segments, l1 and l2

(slope(l1) < slope(l2)), in the split node then it is always the
case that l1 is completely filled (wr(l1) = width(l1)) whenever
l2 gets filled (wr(l2) > 0), in the minimum retiming solution.

Proof: Assume that a minimum solution such that the
lemma is false (wr(l1) < width(l1) whenever wr(l2) > 0). We
know that the coefficient of the retiming function at internal
nodes is negative (slope(l1)-slope(l2) < 0) because the trade-
off delay curve is concave. Since node retimings have
negative coefficients for the internal nodes of the split node
one can move registers from l2 to l1 across a node v (r(v) is
increased). This will reduce the cost of the solution even
further (A(Gr) is decreased) because it corresponds to a
positive retiming of the node v in between. This can be done
until the segment l1 is filled completely (wr(l1) = width(l1))
and no further improvements are possible, proving that the
given solution is not a minimum.

Theorem 1: The vertex level transformation is correct in
the sense that a solution to the linear program is a minimum
area solution for the original problem.

Proof: The lemma shows that no further minimum area
retiming is possible at the vertex level. Thus no special care
has to be taken in solving the linear program since the
resulting solution is guaranteed to be a minimum solution of
the original problem.

3.2 The Algorithm
The algorithm is a two-phase process. The first phase

involves checking satisfiability of constraints or deriving
constraints if none are given. In the second phase, after
constraints have been handled, the minimization process
begins resulting in a minimum area retiming of the given
circuit.

3.2.1 Phase I

Checking feasibility can be easily performed on the
transformed graph as a constraint problem. Constraints are
given by:

),()),(()),(()()(
),(),(()),(()()(
vurvuewvuewurvr

vurvuewvuewvrur
lu

ul
−=−≤−

=−≤−

From these constraints we set up a weight matrix R where the
entry R(u,v) represents the upper bound ru(u,v) on the
difference r(u)-r(v), while R(v,u) represents the lower bound
rl(u,v). This constraint matrix R is a difference bound matrix
(DBM) [1], where there is no need to specify the tightness of
the constraints (i.e. a flag in each entry of the matrix) since
all are tight. Satisfiability of given constraints can be

determined using a classical all-pairs-shortest-path
computation on this DBM [1].

In order to derive constraints, we apply an all-pairs-
shortest-path approach to convert the DBM into canonical
form [1], which represents tight constraints on the retimings.
We then derive upper and lower bounds on the number of
registers using the equations:

),()),(()),((
),()),(()),((

vurvuewvuew
vurvuewvuew

lu
ul

−=
−=

3.2.2 Phase II

Now that the problem has been cast as a minimum area
retiming problem with no cycle time constraint, it is easy to
see that the problem can be solved using a linear
programming approach originally suggested by Leiserson
and Saxe. Many approaches have been described above on
how to do this in an efficient manner.

One the of first approaches [4] is a minimum cost flow
dual formulation which can be used to derive the optimal
flow and then the optimal potential which directly translates
into retimings at the nodes.

Using the improved techniques [10] [5] discussed earlier,
one can optimize the space requirement and reduce the
number of constraints and variables required thus making the
problem more manageable.

Yet another method which can be used, which in some
cases may not be efficient, is a relaxation-based approach. In
this approach, the information derived from the slacks
computed in the first phase can be used to decide where to
put the registers on the edges with the most negative cost and
then new slacks are derived for the subgraphs, until the
minimum area solution is reached.

The algorithm has the following steps:
� consider the area-delay trade-off curve for each node in

the original graph
� split the node accordingly by representing each

segment, where an edge corresponding to a segment has
- a cost equal to slope of the segment
- a lower and upper bound derived from the length

of the segment on the time axis.
� solve the minimum area retiming of the resulting

problem
� translate the solution into a retiming of the original

graph
As described earlier, the construction will result in the

correct retiming at the nodes and this can be attributed to the
special form of the node splitting and the concave piece-wise
linear area-delay trade-off curves.

4 Implementation
Our implementation approach is to reuse already

available capabilities in the retime package in SIS [9]. In the
following we give, first a description of what is available in
the retime package, and second what were the modifications
needed to make the package work for the new problem.

4.1 The Retime Package
The retime package contains an implementation of the

two types of retiming using the Leiserson-Saxe approach
described earlier. We concentrate here on describing the

minimum area capabilities. Modifications done on the retime
package to handle the new problem are as follows:
� building of the retiming graph was changed
� splitting of nodes to handle piece-wise linear area-delay

trade-off segments was added
� data about weights and area-delay trade-off curve is

externally specified and read in.
� no register sharing is considered
� W and D matrix are not relevant in this formulation and

so are not computed
� clocking constraints are not added to the constraints

matrix because they are not relevant
� Phase I: checking/deriving external timing constraints
� Phase II: the resulting linear program is solved using the

Simplex approach

5 Retiming Example
An example circuit, presented here is s27 derived from

the ISCAS89 benchmark, which was used in [5]. The
example was chosen to be small in order to show some of the
aspects of the algorithm being used.

The retime graph has 17 edges and 8 nodes (the one first
built by SIS from the original circuit). For convenience, the
area-delay trade-off curve was the same for all nodes, but
this doesn’t affect the performance or correctness of the
algorithm. Only the maximum number of segments of these
curves affects the complexity of the algorithm since the
number of constraints required to handle the splitting of
nodes is |E| + 2k|V| where k is the maximum number of
segments.

The number of registers was not changed from the
original circuit specification. The example shows an
interesting case of retiming, and what could possibly occur
during this process:

Figure 4. s27 retiming example

The results of retiming of this graph are:
� The register between G8 and G11 could not be moved

because of the restrictions of correct retiming, even
though a possible decrease in area would result.

� The register before G12 was moved into G12 to
minimize the area of that node. It may seem that a
combinational cycle between G12 and G13 has been
introduced, but this is not so since there is a delay
within G12.

� The register in G12 was not moved into G13 and G15
even though it decreases area because of correct
retiming constraints.

� The register after G10 was moved back into it. It was
not possible to move this register forward into G11
because this results again in incorrect retiming.

Thus, the resulting circuit has minimum area within the
constraints of the trade-off function and correct retiming.

6 Conclusions
In this paper we showed how the minimum area retiming

approach can be reapplied to a problem arising in DSM,
where area-delay trade-offs and delay constraints are
considered. We presented a framework to cast that problem
into a classical minimum area retiming problem with no
cycle constraints. Results show the correctness of this
approach, but in cases where the area-delay trade-off has
many segments, the number of constraints may have to be
reduced using available methods. Our initial implementation
in SIS has not addressed efficiency issues, just feasibility.
However, we should be able to apply many of the techniques
in the literature used to make retiming efficient.

Acknowledgements
We’re grateful for financial support for this research

provided by the SRC under contract 98-DC-324, and for the
support of the California Micro program and participating
industrial sponsors, Fujitsu, Motorola, Cadence, Synopsys,
Intel, and Metamor Inc.

References
[1] R. Alur, "Timed Automata", NATO-ASI Summer School

on Verification of Digital and Hybrid Systems, 1998.
[2] R.B. Deokar and S.S. Sapatnekar, "A Fresh Look at

Retiming via Clock Skew Optimization", DAC pp. 310-
315, 1995.

[3] F. Eory, "Systems to Silicon Design: Methodology for
Deep Sub-micron ASICs", SuperCon, 1997.

[4] C.E. Leiserson and J.B. Saxe, "Retiming Synchronous
Circuitry", Algorithmica, vol. 6, pp. 5-35, 1991.

[5] N. Maheshwari and S.S. Sapatnekar, "An Improved
Algorithm for Minimum-Area Retiming", DAC, 1997.

[6] J.B. Orlin, "A Faster Strongly Polynomial Minimum
Cost Flow Algorithm", Operations Research, vol.41,
no.2, pp. 338-50, 1993.

[7] R.H.J.M. Otten and R.K. Brayton "Planning for
Performance", DAC, 1998.

[8] Y. Pinto, R. Shamir, "Efficient Algorithms for
Minimum-Cost Flow Problems with Piecewise-Linear
Convex Costs", Algorithmica, vol.11, pp. 256-277,
1994.

[9] E. Sentovich, "Sequential Circuit Synthesis at the Gate
Level", Ph.D. Thesis, UC Berkeley, Chap. 5, 1993.

[10] N. Shenoy and R. Rudell, "Efficient Implementation of
Retiming", ICCAD, pp. 226-233, 1994.

[11] "National Technology Roadmap for Semiconductors",
Semiconductor Industry Association, 4300 Stevens
Creek Blvd., Suite 271, San Jose, CA 95129.

