Implementation Verification: Equivalence Checking

Prof. Kurt Keutzer
EECS
UC Berkeley

With thanks to Srinivas Devadas, MIT

Design Process

Design: specify and enter the design intent

Verify:
verify the correctness of design and implementation

Implement:
refine the design through all phases
Design Verification

Is the design consistent with the original specification?
Is what I think I want what I really want?

Implementation Verification

Is the implementation consistent with the original design intent?
Is what I implemented what I wanted?
Manufacture Verification (Test)

Is the manufactured circuit consistent with the implemented design?

Did they build what I wanted?

Implementation verification for ASIC’s

Apply gate-level simulation ("the golden simulator") at each step to verify functionality:

- 0-1 behavior on regression test set

and timing:

- Maximum delay of circuit across critical paths
Advantages of gate-level simulation
- verifies timing and functionality simultaneously
- approach well understood by designers

Disadvantages of gate-level simulation?
- computationally intensive - only 1 - 10 clock cycles of 100K gate design per 1 CPU second
- incomplete - results only as good as your vector set - easy to overlook incorrect timing/behavior
Alternative - Static Sign-off

Use static analysis techniques to verify:
- functionality: formal equivalence-checking techniques
- and timing: use static timing analysis

Problem: RTL to RTL Verification

After verification RTL may still be modified
- RTL level improvements for:
 - performance
 - power
 - area
 - testability

Need to verify that new RTL is correct
Problem: RTL to Gates Verification

Verify the gate level implementation is consistent with the RTL level design

Errors may have occurred due to
- synthesis (heaven forbid!!)
- manual intervention

Problem: Gates to Gates Verification

Verify the modified gate level implementation is consistent with the RTL level design

Errors may have occurred due to
- Incorrect synthesis or module generation (heaven forbid!!)
- Test insertion
- Scan chain reordering
- Clock tree synthesis
- Post layout “tweaks”
Problem: Layout to Gates Verification (LVS)

Verify the modified gate level implementation is consistent with the RTL level design

Errors may have occurred due to

- Errors in physical design tools
- Manual changes in layout

Verification is primarily graphical or "topological"

Solving Layout to Gates Verification (LVS)

Extract gate level models from physical level

Graphically compare extracted model against gate-level schematic (layout versus schematic)

Flag any discrepancies
Solving Gates to Gates Verification

Extract combinational portions
Combinational Equivalence Checking

Presumes equivalence-relation given (or discovered) between sequential circuits

Approaches
- Canonical forms - bdd’s and variants
- Test-oriented methods
 - static, dynamic learning
- symbolic manipulation
 - graph isomorphism
 - structural reductions

These techniques form the foundation of implementation verification

The Comparison Mitre

```
Primary Inputs, Register and Black Box Outputs

spec

implementation

COMPARE

0 or 1
```
Verification and Testing

Given two single-output circuits A and B

Are A and B equivalent can be posed as: Is there a test for F s-a-0?

If F s-a-0 is redundant, A ≡ B else test vector produces different outputs for A and B.

Enumeration-Simulation Methods

Enumerate the ON-set cubes, i.e., all tests for s-a-0 on A. Cube-simulate these tests on B to check if B produces a 1. If not A ∉ B.

Do so for OFF-set of A also.

This is similar to containment check of a cube in a cover, except we do not explicitly store the two-level covers.
Binary Decision Tree

Do not have to store entire set of nodes, but have to enumerate them (slight improvement over two-level tautology).

Potentially exponential # nodes.

Decision Graph

Share nodes in tree \Rightarrow graph.

- Partial sharing
- Fully shared

2N nodes
Definition of a Binary Decision Diagram

A Binary Decision Diagram having root vertex v denotes a Boolean function f_v

1. If v is a terminal vertex:
 (a) if $\text{value}(v) = 1$, then $f_v = 1$
 (b) if $\text{value}(v) = 0$, then $f_v = 0$

2. If v is a nonterminal vertex with $\text{index}(v) = n$ then f_v is the function:

 \[f_v(x_1, \ldots, x_n) = \neg f_{\text{low}(v)}(x_1, \ldots, x_{n-1}) + f_{\text{high}(v)}(x_1, \ldots, x_{n-1}) \]

Definition of an Ordered BDD

A Binary Decision Diagram is ordered iff:

1. If v is a non-terminal vertex:
 (a) if $\text{low}(v)$ is a non-terminal then, $\text{index}(v) < \text{index}(\text{low}(v))$ and
 (b) if $\text{high}(v)$ is a non-terminal then, $\text{index}(v) < \text{index}(\text{high}(v))$ and

This property implies the property of freedom in BDDs: In traversing any path from a vertex in a OBDD to its root then we encounter each decision variable at most once.
Ordered Binary Decision Diagram

Inputs satisfy ordering restriction. Each node/vertex v in the graph has $\text{index}(v)$. Two children are $\text{low}(v)$ and $\text{high}(v)$. 0 and 1 are terminal vertices, others are non-terminal.

- $\text{index}(v) < \text{index}(\text{low}(v))$ for all v
- $\text{index}(v) < \text{index}(\text{high}(v))$

Reduced, Ordered BDDs

An Ordered Binary Decision Diagram (OBDD) may still have "redundant" vertices.

Definition: An OBDD is reduced, if it contains no vertex v with $\text{low}(v) = \text{high}(v)$, nor does it contain distinct vertices v and v' such that the subgraphs rooted by v and v' are isomorphic.

Can reduce an OBDD in $O(|G| \log |G|)$ time.
Some Properties of a ROBDD

Proof that ROBDDs are canonical - 1

If \(G, G' \) are ROBDD’s of a Boolean function \(f \) with \(k \) inputs then \(G \) and \(G' \) are identical.

Base Case: \(i=0 \). \(f \) has 0 inputs.
\(f \) can be the 0 or 1 ROBDD.
In either case \(G \) and \(G' \) are identical.

Induction Hypothesis: Suppose that for any Boolean function \(f \) with \(i < k \) inputs then if \(H, H' \) are each ROBDD, with the same ordering, of the Boolean function \(f \) then \(H, H' \) are identical.

Let \(G, G' \) be ROBDDs for \(f \) under the same ordering.

Let \(x_i \) be the input with lowest index (i.e. the root of the ROBDD) in the ROBDDs \(G, G' \).
Proof that ROBDDs are canonical - 2

By hypothesis, \(f_0 \equiv f_0' \), \(f_1 \equiv f_1' \).

Let us consider a number of cases regarding sharing between \(f_0, f_1 \), and \(f_0', f_1' \).

If there is no sharing of vertices between \(f_0, f_1 \) and \(f_0', f_1' \), then \(G \) is identical to \(G' \).

Proof that ROBDDs are canonical - 3

Suppose a vertex \(u \) *is* shared across \(f_0, f_1 \).

Then *if* there is a corresponding single \(u' \) shared in \(f_0', f_1' \), then \(G \) and \(G' \) are identical.
Proof that ROBDDs are canonical - 4

Alternatively, if \(u \) in \(G \) is realized as two (or more) vertices \(u', u'' \) in \(G' \), then \(G, G' \) are not identical:

But the ROBDDs rooted at \(u' \), \(u'' \) both realize the same Boolean function with the same ordering. So \(G' \) is not reduced because there are two such vertices in \(G' \). But this contradicts the assumption that \(G, G' \) are each ROBDDs.

Therefore, in each case \(G \) is identical to \(G' \). Therefore ROBDDs are a canonical representation.

ROBDDs are Canonical - use 1

Given an ordering, a logic function has a unique ROBDD.

Given two circuits, checking their equivalence reduces to a Directed Acyclic Graph isomorphism check between their respective ROBDDs

- can be done in linear time in \(|G_1| = |G_2| \).
- constructing ROBDD for a given function and ordering could take exponential time.
ROBDD - approach 2

Given two single-output circuits \(A \) and \(B \)

What is the ROBDD of this function?
If 0 then circuits \(A \) and \(B \) are equivalent
Else they are not

ROBDD Construction

Given ordering and multilevel network.

ROBDD of \(a \) and \(b \)

Proceed through network, constructing the ROBDD for each gate output, by applying the gate operator to the ROBDDs of the gate inputs
Build ROBDD: Procedure Apply

Compute $f_1 \ <op> \ f_2$

$<op>$ can be AND, OR, XOR, XNOR, etc.

To apply the operator to the ROBDDs represented by f_1 and f_2

1) If v_1 and v_2 are terminal vertices, simply generate a terminal vertex u with

 $$\text{value}(u) = \text{value}(v_1) \ <op> \ \text{value}(v_2)$$

2) Else if $\text{index}(v_1) = \text{index}(v_2) = i$

 Call algorithm apply recursively on $\text{low}(v_1)$ and $\text{low}(v_2)$ to generate a new vertex u, $\text{low}(u)$, $\text{high}(v_1)$ and $\text{high}(v_2)$ to generate $\text{high}(u)$, after creating vertex u, $\text{index}(u) = i$

Procedure Apply - 2

3) If $\text{index}(v_1) = i$, but $\text{index}(v_2) > i$, then create a new vertex u having index i, and apply algorithm recursively on $\text{low}(v_1)$ and v_2 to generate $\text{low}(u)$, and on $\text{high}(v_1)$ and v_2 to generate $\text{high}(u)$.

4) If $\text{index}(v_2) = i$, but $\text{index}(v_1) > i$, then create a new vertex u having index i, and apply algorithm recursively on $\text{low}(v_2)$ and v_1 to generate $\text{low}(u)$, and on $\text{high}(v_2)$ and v_1 to generate $\text{high}(u)$.

$O(G_1 \cdot G_2)$ complexity (though recursive).

“Multiplying” the two graphs.
Given ordering and multilevel network.

ROBDD of $a \cdot b$

Begin with ROBDDs for primary inputs

Proceed through network, constructing the ROBDD for each gate output, by applying the gate operator to the ROBDDs of the gate inputs

Build ROBDD of $a \cdot b$ using apply

If $\text{index}(v_1) = i$, but $\text{index}(v_2) > i$, then create a new vertex u having index i, and apply algorithm recursively on $\text{low}(v_1)$ and v_2 to generate $\text{low}(u)$, and on $\text{high}(v_1)$ and v_2 to generate $\text{high}(u)$.
ROBDD Construction – 2c

Given ordering <<a,1>,<b,2>,<c,3>,<d,4>,<0,100>,<1,100>> and multilevel network.

Build ROBDD of $a \cdot b$ using apply

If $\text{index}(v_1) = i$, but $\text{index}(v_2) > i$, then create a new vertex u having index i, and apply algorithm recursively on $\text{low}(v_1)$ and v_2 to generate low(u), and on $\text{high}(v_1)$ and v_2 to generate high(u).

ROBDD Construction – 2d

Given ordering <<a,1>,<b,2>,<c,3>,<d,4>,<0,100>,<1,100>> and multilevel network.

Build ROBDD of $a \cdot b$ using apply

If $\text{index}(v_1) = i$, but $\text{index}(v_2) > i$, then create a new vertex u having index i, and apply algorithm recursively on $\text{low}(v_1)$ and v_2 to generate low(u), and on $\text{high}(v_1)$ and v_2 to generate high(u).
ROBDD Construction – 3a

Given ordering <<<a,1>,<b,2>,<c,3>,<d,4>,<0,100>,<1,100>> and multilevel network.

Build ROBDD of \(a \times b \) using apply

If index\((v_2) = i \), but index\((v_1) > i \), then create a new vertex \(u' \) having index \(i \), and apply algorithm recursively on low\((v_2) \) and \(v_1 \) to generate low\((u') \), and on high\((v_2) \) and \(v_1 \) to generate high\((u') \).

ROBDD Construction – 3b

Given ordering <<<a,1>,<b,2>,<c,3>,<d,4>,<0,100>,<1,100>> and multilevel network.

Build ROBDD of \(a \times b \) using apply

If index\((v_2) = i \), but index\((v_1) > i \), then create a new vertex \(u' \) having index \(i \), and apply algorithm recursively on low\((v_2) \) and \(v_1 \) to generate low\((u') \), and on high\((v_2) \) and \(v_1 \) to generate high\((u') \).
ROBDD Construction – 3c

Given ordering \(<a,1>,<b,2>,<c,3>,<d,4>,<0,100>,<1,100>\) and multilevel network.

Build ROBDD of \(a \cdot b\) using apply

If \(\text{index}(v_2) = i\), but \(\text{index}(v_1) > i\), then create a new vertex \(u'\) having index \(i\), and apply algorithm recursively on low\((v_2)\) and \(v_1\) to generate low\((u')\), and on high\((v_2)\) and \(v_1\) to generate high\((u')\).

ROBDD Construction – 3d

Given ordering \(<a,1>,<b,2>,<c,3>,<d,4>,<0,100>,<1,100>\) and multilevel network.

Build ROBDD of \(a \cdot b\) using apply

If \(v_1\) and \(v_2\) are terminal vertices, simply generate a terminal vertex \(u\) with

\[\text{value}(u) = \text{value}(v_1) \text{<op>} \text{value}(v_2)\]

\[\text{low}(u') = \text{value}(v_1)\]

\[\text{high}(u') = \text{value}(v_2)\]
ROBDD Construction – 3e

Given ordering <<a,1>,<b,2>,<c,3>,<d,4>,<0,100>,<1,100>> and multilevel network.

Build ROBDD of \(a \cdot b \) using apply

If index\((v_2) = i \), but index\((v_1) > i \), then create a new vertex \(u' \) having index \(i \), and apply algorithm recursively on low\((v_2) \) and \(v_1 \) to generate low\((u') \), and on high\((v_2) \) and \(v_1 \) to generate high\((u) \).

ROBDD Construction – 3f

Given ordering <<a,1>,<b,2>,<c,3>,<d,4>,<0,100>,<1,100>> and multilevel network.

Build ROBDD of \(a \cdot b \) using apply

If \(v_1 \) and \(v_2 \) are terminal vertices, simply generate a terminal vertex \(u \) with value\((u) = value(v_1) \) op value\((v_2) \)

\(\text{high}(u') \)

\(0 \)
ROBDD Construction – 3g

Given ordering <<a,1>,<b,2>,<c,3>,<d,4>,<0,100>,<1,100>> and multilevel network.

Build ROBDD of \(a \cdot b\) using apply

\[
\text{If } v_1 \text{ and } v_2 \text{ are terminal vertices, simply generate a terminal vertex } u \text{ with value}(u) = \text{value}(v_1) \text{ <op>} \text{value}(v_2)
\]

\[
\text{high}(u')
\]

ROBDD Construction – 4a

Given ordering <<a,1>,<b,2>,<c,3>,<d,4>,<0,100>,<1,100>> and multilevel network.

Build ROBDD of \(a \cdot b\) using apply

After returning from recursion:

If index(\(v_1\)) = i, but index(\(v_2\)) > i, then create a new vertex \(u\) having index \(i\), and apply algorithm recursively on low(\(v_1\)) and \(v_2\) to generate low(\(u\)), and on high(\(v_1\)) and \(v_2\) to generate high(\(u\)).
ROBDD Construction – 4b

Given ordering <<a,1>,<b,2>,<c,3>,<d,4>,<0,100>,<1,100>> and multilevel network.

Build ROBDD of \(a \cdot b\) using apply

If index(v₁) = i, but index(v₂) > i, then create a new vertex \(u\) having index \(i\), and apply algorithm recursively on low(v₁) and v₂ to generate low(u), and on high(v₁) and v₂ to generate high(u).

ROBDD Construction – 4c

Given ordering <<a,1>,<b,2>,<c,3>,<d,4>,<0,100>,<1,100>> and multilevel network.

Build ROBDD of \(a \cdot b\) using apply

After returning from recursion:
If index(v₁) = i, but index(v₂) > i, then create a new vertex \(u\) having index \(i\), and apply algorithm recursively on low(v₁) and v₂ to generate low(u), and on high(v₁) and v₂ to generate high(u).
ROBDD Construction – 4d

Given ordering \(<\langle a,1\rangle,\langle b,2\rangle,\langle c,3\rangle,\langle d,4\rangle,\langle 0,100\rangle,\langle 1,100\rangle\rangle\) and multilevel network.

Build ROBDD of \(a \times b\) using apply

If index\((v_2) = i\), but index\((v_1) > i\), then create a new vertex \(u'\) having index \(i\), and apply algorithm recursively on low\((v_2)\) and \(v_1\) to generate low\((u')\), and on high\((v_2)\) and \(v_1\) to generate high\((u')\).

ROBDD Construction – 4e

Given ordering \(<\langle a,1\rangle,\langle b,2\rangle,\langle c,3\rangle,\langle d,4\rangle,\langle 0,100\rangle,\langle 1,100\rangle\rangle\) and multilevel network.

Build ROBDD of \(a \times b\) using apply

If index\((v_2) = i\), but index\((v_1) > i\), then create a new vertex \(u'\) having index \(i\), and apply algorithm recursively on low\((v_2)\) and \(v_1\) to generate low\((u')\), and on high\((v_2)\) and \(v_1\) to generate high\((u')\).
ROBDD Construction – 4f

Given ordering <<a,1>,<b,2>,<c,3>,<d,4>,<0,100>,<1,100>> and multilevel network.

Build ROBDD of a * b using apply

If index(v₂) = i, but index(v₁) > i, then create a new vertex u' having index i, and apply algorithm recursively on low(v₂) and v₁ to generate low(u'), and on high(v₂) and v₁ to generate high(u').

ROBDD Construction – 4g

Given ordering <<a,1>,<b,2>,<c,3>,<d,4>,<0,100>,<1,100>> and multilevel network.

Build ROBDD of a * b using apply

If v₁ and v₂ are terminal vertices, simply generate a terminal vertex u with

\[\text{value}(u) = \text{value}(v₁) \text{ <op> value}(v₂) \]

\[\text{low}(u') \]

Kurt Keutzer

53

54
ROBDD Construction – 4h

Given ordering <<a,1>,<b,2>,<c,3>,<d,4>,<0,100>,<1,100>> and multilevel network.

Build ROBDD of \(a \cdot b \) using apply

If \(v_1 \) and \(v_2 \) are terminal vertices, simply generate a terminal vertex \(u \) with \(\text{value}(u) = \text{value}(v_1) \text{ op } \text{value}(v_2) \)

\[\text{low}(u') \]

ROBDD Construction – 4i

Given ordering <<a,1>,<b,2>,<c,3>,<d,4>,<0,100>,<1,100>> and multilevel network.

Build ROBDD of \(a \cdot b \) using apply

If index\((v_2) = i\), but index\((v_1) > i\), then create a new vertex \(u' \) having index \(i \), and apply algorithm recursively on \(\text{low}(v_2) \) and \(v_1 \) to generate \(\text{low}(u') \), and on \(\text{high}(v_2) \) and \(v_1 \) to generate \(\text{high}(u') \).
ROBDD Construction – 4j

Given ordering <<a,1>,<b,2>,<c,3>,<d,4>,<0,100>,<1,100>> and multilevel network.

Build ROBDD of \(a \times b \) using apply

If \(v_1 \) and \(v_2 \) are terminal vertices, simply generate a terminal vertex \(u \) with

\[
\text{value}(u) = \text{value}(v_1) \oplus \text{value}(v_2)
\]

ROBDD Construction – 4k

Given ordering <<a,1>,<b,2>,<c,3>,<d,4>,<0,100>,<1,100>> and multilevel network.

Build ROBDD of \(a \times b \) using apply

If \(v_1 \) and \(v_2 \) are terminal vertices, simply generate a terminal vertex \(u \) with

\[
\text{value}(u) = \text{value}(v_1) \oplus \text{value}(v_2)
\]
ROBDD Construction – 4l

Given ordering <<a,1>,<b,2>,<c,3>,<d,4>,<0,100>,<1,100>> and multilevel network.

Build ROBDD of \(a \cdot b \) using apply

Proceed to AND gate

Is this an ROBDD?

After returning from recursion:

If index(v₁) = i, but index(v₂) > i, then create a new vertex \(u \) having index i, and apply algorithm recursively on low(v₁) and v₂ to generate low(u), and on high(v₁) and v₂ to generate high(u).

ROBDD Construction – 4m

Given ordering <<a,1>,<b,2>,<c,3>,<d,4>,<0,100>,<1,100>> and multilevel network.

Build ROBDD of \(a \cdot b \) using apply

Proceed to AND gate

Is this an ROBDD?
ROBDD Construction – 4n

Given ordering <<a,1>, <b,2>, <c,3>, <d,4>, <0,100>, <1,100>> and multilevel network.

ROBDD Construction - 9

Given ordering <<a,1>, <b,2>, <c,3>, <d,4>, <0,100>, <1,100>> and multilevel network.
Example OR’ing of ROBDDs

Let’s consider the function $f_1 = \overline{x_1 x_3} = \overline{x_1} + \overline{x_3}$ and $f_2 = x_2 x_3$. We can represent these functions using ROBDDs.

New created graph

After reduction

Sensitivity to Ordering

Given a function with n inputs, one input ordering may require exponential # vertices in ROBDD, while other may be linear in size.

Let’s consider the function $f = x_1 x_2 + x_3 x_4 + x_5 x_6$.

Kurt Keutzer
Heuristic Input Ordering

BDD can be viewed as a multiplexor-based multilevel circuit.

Look at an (optimized) multilevel network and decide ordering for the BDD.

Generalize to multiple levels.

Resolve “conflicts” heuristically.

Summary of equivalence checking procedure

Given circuits C1 and C2 to be verified for equivalence
A1) create the “comparison mitre” circuit D1
A2) find a variable ordering for the ROBDD for D1
A3) build the ROBDD and check for 0
or
B1) find a variable ordering for the ROBDD’s of C1, C2
B2) build the ROBDD for each of C1, C2
B3) Check to see that the DAGs are isomorphic
Solving RTL-to-Gates Verification

1. Step 1: (formally) translate HDL source into netlist
2. Step 2: Perform gates-to-gates verification

Solving RTL-to-RTL Verification

1. Step 1: (formally) translate both HDL sources into netlists
2. Step 2: Perform gate-to-gate verification on netlists
Current status of equivalence checking

Equivalence checkers are now able to routinely verify complex (>1M gate) integrated circuit designs
Commercial (e.g. Synopsys/formality 44% market share, Verplex LEC 33%) or proprietary (e.g. IBM/verity) solutions exist
Static sign-off methodology more widely used
Successful equivalence checkers must orchestrate a number of different approaches
 - syntactic equivalence
 - automatic test pattern generation-like approaches
 - BDD-based techniques
 - pattern-reduction methods
A few open problems remain
 • retimed circuits
 • circuits with differing state assignments

Open problems in implementation verification

More robust equivalence checking
Verification of equivalence between sequential circuits in which there is no obvious register-equivalence
 • retimed circuits
 • circuits with differing state assignments
Better diagnostics when circuits are not equivalent
Implementation verification between RTL and behavioral models
Retimed circuits

Circuits are equivalent (modulo some initial state issues) but it is not possible to show that they are equivalent using Boolean equivalence

Encoding Problems

Some logic specifications are “symbolic” rather than binary-valued

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADD</td>
<td>+</td>
</tr>
<tr>
<td>SUB</td>
<td>-</td>
</tr>
<tr>
<td>XOR</td>
<td>Exclusive-OR</td>
</tr>
<tr>
<td>INC</td>
<td>Increment</td>
</tr>
</tbody>
</table>

Can assign any binary code to the symbolic values, so long as they are different
Different State Encodings

Circuit 1

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADD</td>
<td>00</td>
</tr>
<tr>
<td>SUB</td>
<td>01</td>
</tr>
<tr>
<td>XOR</td>
<td>10</td>
</tr>
<tr>
<td>INC</td>
<td>11</td>
</tr>
</tbody>
</table>

Circuit 2

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADD</td>
<td>11</td>
</tr>
<tr>
<td>SUB</td>
<td>10</td>
</tr>
<tr>
<td>XOR</td>
<td>00</td>
</tr>
<tr>
<td>INC</td>
<td>01</td>
</tr>
</tbody>
</table>

Different state encodings make circuits no longer amenable to combinational logic equivalence checking.

Different Encodings

ALU "ADD"s on 00

- x and y are 32-bit inputs.
- alu_out is a 32-bit output.
- clk is a clock signal.

ALU "ADD"s on 11

- x and y are 32-bit inputs.
- alu_out is a 32-bit output.
- clk is a clock signal.
Example OR’ing of ROBDDs

New created graph

After reduction

Verification Using Boolean Graphs

Construct Boolean graphs for the two circuits
Verify the equivalence of the Boolean graphs
 – Can’t really “simulate” one graph on the other, without unfolding it.
 – Have to store and manipulate both graphs.
Free Boolean Graphs

Verifying the equivalence of free Boolean graphs is co-NP-complete
- Satisfiability in linear time
- Probabilistic verification possible in polynomial time