Kahn’s Principle and the Semantics of Discrete Event Systems

Xiaojun Liu

EECS 290N Report
December 17, 2004

University of California at Berkeley
Berkeley, CA 94720, USA
liuxj@eecs.berkeley.edu

Abstract

Kahn process networks (KPN) is an elegant model of computation for deterministic concurrent processes. The denotational semantics of KPN is based on the theory of partially order sets. This report explores the application of this approach to the semantics of discrete event systems.

1 Introduction

In Kahn process networks [3], computation is performed by a set of independent processes. Processes communicate streams of data asynchronously through unbounded FIFO channels. In the denotational semantics of KPN, a prefix ordering is defined on tuples of streams, which then form a CPO. If processes are continuous functions from their input tuple of streams to output, then Kahn’s principle applies: any network of processes is a continuous function from its input to output.

The derivation of Kahn’s principle is valid as long as the signals between processes are a CPO and the processes are continuous. In section 2, we use the tagged signal model [5] to give a very general definition of signals and a prefix order. The set of signals with the prefix order is a CPO. An extended Kahn’s principle follows naturally.

Only limited timing information is present in a KPN — the ordering within each stream of data. Yates and Gao [6] extended Kahn’s principle to networks of real-time processes. The processes communicate timed streams. A timed stream is a sequence of time-stamped tokens. The time stamps in a timed stream are strictly increasing and have a minimum time interval. A real-time process is a function from its input streams to output streams, and is required to introduce a minimum delay. Some common processes, such as timed merge, are not monotonic (hence not continuous), so Kahn’s principle cannot be applied directly. A novel definition of the network functional – for real-time networks that may contain nonmonotonic processes – is presented and shown to be continuous. From this, Kahn’s principle is extended to real-time networks. We present an alternative approach in section 2, applying the general signal definition to discrete event (DE) signals. Compared to [6], ours is a more direct extension of the principle, and is more general in some respects. For example, processes are not required to have a minimum delay.

Our work is part of the Ptolemy project [1]. One focus of the project is to study the simulation and programming models of various models of computation (MoC). In section 4, we turn to the operational semantics of real-time processes and DE systems. Our formulation of DE semantics leads to an alternative development of the Chandy-Misra approach [2] to distributed DE simulation, and suggests a way to handle multirate signals and delta delays in DE systems.

An alternative approach to the semantics of real-time processes is presented in [4]. It uses the theory of metric spaces to study the semantics of real-time networks. The connection and contrast between the two approaches will be presented in a future report.

2 Tagged signal model and prefix order

A partially ordered set of tags T capture the timing or ordering information in signals. For example, a tag may be the time stamp of an event, or the sequence number of a token in a stream of data. Let $L(T)$ be the set of lower sets (also called down sets) of T. $L(T)$, treated as a poset with the subset order, is a complete lattice.

2.1 Tagged signal model

A tagged signal is a function that maps each element of the set of tags T to a stream of data. We use the notation $s : T \rightarrow S$ to denote a tagged signal, where S is the set of signals. For example, $s(t)$ represents the value of the signal at tag t. The set of all tagged signals is denoted by $T(S)$.

2.2 Prefix order on signals

The prefix order on tagged signals is defined as follows: if $s, t : T \rightarrow S$ are two tagged signals, then $s \leq t$ if and only if $s(t) \preceq t(t)$ for all $t \in T$, where \preceq is the prefix order on the set of streams. The prefix order is a partial order on the set of tagged signals $T(S)$.

The set of tagged signals $T(S)$, together with the prefix order, forms a complete lattice. This lattice can be used to reason about the behavior of tagged signals in Kahn process networks.

2.3 Continuous functions on tagged signals

A function $f : T(S) \rightarrow T(S')$ is continuous if and only if for any tagged signal s and any lower set $L \subseteq T(S)$, the image $f(s) \cap L' \subseteq T(S')$ for some lower set $L' \subseteq T(S')$. This notion of continuity allows us to reason about the behavior of tagged signals in Kahn process networks.

2.4 Application to real-time systems

Real-time systems can be modeled as networks of real-time processes. A real-time process is a function from its input tagged signals to output tagged signals. The prefix order on tagged signals allows us to reason about the behavior of real-time systems in Kahn process networks.

2.5 Conclusion

In this section, we have presented a general definition of tagged signals and a prefix order on tagged signals. This allows us to reason about the behavior of real-time systems in Kahn process networks. The prefix order on tagged signals forms a complete lattice, which can be used to reason about the behavior of tagged signals.

2.6 Future work

Future work includes extending this approach to other models of computation, such as concurrent constraint programming and distributed systems. Additionally, we plan to investigate the application of this approach to the simulation of real-time systems.
Define 1 (Signal) Given a tag set T and a value set V, a signal is a function $s : L \to V$ where $L \in \mathbb{L}(T)$. Let $\mathbb{S}(T, V)$ denote the set of all signals with domain in $\mathbb{L}(T)$ and codomain V.

Sometimes a value set V is augmented with a special element ε denoting the absence of value, $V_\varepsilon = V \cup \{\varepsilon\}$, or \perp denoting unknown or undefined, $V_\perp = V \cup \{\perp\}$. Following are some examples of tag sets and signals:

- Any set A can be treated as a poset with the discrete order. $\mathbb{S}(A, V)$ is the set of all partial functions from A to V.
- T is \mathbb{R}_+, the set of nonnegative real numbers with the usual order. $\mathbb{S}(\mathbb{R}_+, \mathbb{Z}_\varepsilon)$ is the set of DE signals with integer values.

Definition 2 (Prefix order) For any poset T of tags and set V of values, the prefix order relation \leq_p on $\mathbb{S}(T, V)$ is, given $s_1 : L_1 \to V$ and $s_2 : L_2 \to V$,

$$s_1 \leq_p s_2 \iff L_1 \subseteq L_2 \text{ and } \forall t \in L_1, s_1(t) = s_2(t)$$

Claim 1 For any poset T of tags and set V of values, $(\mathbb{S}(T, V), \leq_p)$ is

- a poset.
- a CPO.
- a complete lower semilattice.

Proof.

It is straightforward to verify that \leq_p is a partial order.

Let S be a directed subset of $(\mathbb{S}(T, V), \leq_p)$. For any two signals $s_1 : L_1 \to V$ and $s_2 : L_2 \to V$, there exists $s_3 : L_3 \to V$ in S such that

$$s_1 \leq_p s_3 \text{ and } s_2 \leq_p s_3$$

For all $t \in L_1 \cap L_2$, $s_1(t) = s_3(t) = s_2(t)$. Define $s' \in \mathbb{S}(T, V)$ where

$$\text{dom}(s') = \bigcup_{s \in S} \text{dom}(s)$$

$$s'(t) = s(t), s \in S \text{ and } t \in \text{dom}(s)$$

s' is the LUB of S. $(\mathbb{S}(T, V), \leq_p)$ is a CPO.

To prove that $(\mathbb{S}(T, V), \leq_p)$ is a complete lower semilattice, we need to show that any subset $S' \subseteq \mathbb{S}(T, V)$ has a GLB. Let $E \subseteq \bigcap_{s \in S'} \text{dom}(s)$ be

$$E = \{t \in T \mid \forall s_1, s_2 \in S', s_1(t) = s_2(t)\}$$

Define $\hat{s} \in \mathbb{S}(T, V)$ where dom(\hat{s}) is the largest lower set of T contained in E, and

$$\hat{s}(t) = s(t), s \in S' \text{ and } t \in \text{dom}(s)$$

\hat{s} is the GLB of S'.

Claim 2 (Generalized Kahn’s principle) If all processes in a network are continuous functions from input signals to output signals, then the network computes a continuous function from its input to output. The function is the least fixed point of a continuous functional determined by the network structure and the functions computed by the processes.

The proof is a straightforward extension of that for the original Kahn’s principle [3].

3 Discrete event semantics

3.1 DE signals

The tag set of discrete event signals is \mathbb{R}_+, a totally ordered set.

Lemma 1 If the tag set T is totally ordered, then any directed subset of $\mathbb{S}(T, V)$ is a chain.

When specifying a DE signal s, we use the convention that for all $t \in \text{dom}(s)$, $s(t)$ is absent ($= \varepsilon$) if not defined explicitly. Some examples of DE signals are:

- clock : $\mathbb{R}_+ \to \mathbb{Z}_\varepsilon$

$$\text{clock}(n) = 1, \forall n \in \mathbb{N} \quad (1)$$

- zeno : $\mathbb{R}_+ \to \mathbb{Z}_\varepsilon$

$$\text{zeno}(t) = 1, \forall t \in \mathbb{N} \cup \{1 - 2^{-n} \mid n \in \mathbb{N}\} \quad (2)$$

- reverse-zeno : $\mathbb{R}_+ \to \mathbb{Z}_\varepsilon$

$$\text{reverse-zeno}(t) = 1, \forall t \in \mathbb{N} \cup \{2^{-n} \mid n \in \mathbb{N}\} \quad (3)$$

3.2 DE processes

Most common DE processes are continuous with respect to the prefix order in definition 2. For example,

- add

Given the addition function $+: V \times V \to V$, define $+_\varepsilon : V_\varepsilon \times V_\varepsilon \to V_\varepsilon$ as

$$+_{\varepsilon} \begin{array}{c|c|c} v_1 & 0 & v_1 \\ \hline v_2 & v_1 + v_2 & v_2 \\ \hline 0 & v_1 & \varepsilon \\ \hline \end{array}$$

Define $s = \text{add}(s_1, s_2)$ as

$$\text{dom}(s) = \text{dom}(s_1) \cap \text{dom}(s_2)$$

$$s(t) = s_1(t) +_{\varepsilon} s_2(t), \forall t \in \text{dom}(s)$$
3.5 Discrete signals

The number of input events is causal but not continuous. Causality – the process that “looks ahead by 1” is continuous but not causal, nor does causality imply continuity – the process that “looks ahead by 1” is continuous but not causal. For such processes, we use the tag set \(\mathbb{N} \times \mathbb{N} \) with the lexicographical order – a total order – to define DE signals. It is straightforward to generalize the previous definitions and claims. The generalization can handle the delta delay operations in VHDL as well.

4 Operational semantics

4.1 Signal representation

We can represent a discrete signal by a sequence of time-stamped tokens. For example, a representation of the clock signal defined in equation (1) is \(\{(n, 1) \mid n \in \mathbb{N}\} \). Only including the “present” events in the sequence is not adequate. Consider these signals

\[
\begin{align*}
 u_0 &: [0, 1] \to \mathbb{Z}_c \quad \text{such that} \quad u_0(0) = 1 \\
 u_1 &: [0, 1] \to \mathbb{Z}_c \quad \text{such that} \quad u_1(0) = u_1(1) = 1
\end{align*}
\]

If the signal representation only includes present events, then the representation of \(u_0 \) is \(\{(0, 1)\} \), a prefix of that of \(u_1 - \{(0, 1), (1, 1)\} \).
4.2 Null events

We solve this problem by including “null events” in the signal representation. The representation of \(u_0 \) becomes \(\{(0, 1), (1, \varepsilon)\} \), making it clear that \(u_0 \) is not a prefix of \(u_1 \).

4.3 Timed streams

It is also necessary for the signal representation to distinguish between \(u_0 \) and \(u_2 \): \(\{(0, 1), (1, \varepsilon)\} \). Let \(TS \) denote the set of time stamps. Extend the usual order on \(\mathbb{R}^+ \) to \(TS \) by letting

\[
\forall r < t^-, r < t, t < t^+.
\]

Definition 4 (Time stamp) A time stamp is: \(t \in \mathbb{R}^+ \), or \(t^- \) for \(t \in \mathbb{R}^+ \setminus \{0\} \), or \(\infty \). Let \(TS \) denote the set of time stamps. Extend the usual order on \(\mathbb{R}^+ \) to \(TS \) by letting

\[
r < t^- < t, \forall r < t.
\]

Definition 5 (Timed stream) A timed stream is an element of \((TS \times V_{\varepsilon})^\ast \) (a finite or infinite sequence of tuples \((ts, v)\) with \(ts \in TS \) and \(v \in V_{\varepsilon} \)) such that the time stamps in the sequence are strictly increasing.

We can represent the signal \(u_2 \) with the timed stream \(\{(0, 1), (1^-, \varepsilon)\} \). We can formulate a (many-to-one) mapping from timed streams to discrete signals, and show that the discrete signals are the subset of DE signals representable by timed streams.

We define an equivalence relation between timed streams as: two streams are equivalent if they represent the same discrete signal. We can later show that a DE process computes equivalent output streams from equivalent input streams.

4.4 Discrete event process networks

We extend KPN by replacing data streams with timed streams, and Kahn processes with DE processes. Ours is an alternative development of the Chandy-Misra approach.

4.5 Snapshots of DE processes

Given any causal DE process \(P \) and its input up to \(t \), its input-output behavior at \(t \) is a (continuous) Kahn process. The simulation of a DE system at \(t \) can be treated as a Kahn process network.

5 Conclusion and future work

Using the tagged signal model, we propose a general definition of signals and a prefix order of signals. We show that the signals form a CPO, and present a generalized Kahn’s principle. We apply the general principle to study the semantics of discrete event systems. We plan to implement a DE simulator using the proposed operational semantics and compare it with other strategies.

References

