
Synchronous Reactive Modular Code Generation Project Report

Dai Bui
Mentor: Stavros Tripakis

May 15, 2009

Abstract

Opaque composite actors with monolithic fire func-
tions can result in inefficient executions of Syn-
chronous Reactive (SR) models because, although the
causality interfaces of the composite actors may de-
tect that there are no causality loops, the outside
directors have no way of firing internal actors that
their inputs are known, as a result SR models are
executed several times until fixed points are reached.

To improve the performance, we employ a new
technique, called modular interface, in which each
composite actor could have multiple fire interface
functions so that an outside director can invoke ap-
propriate interface functions based on the presence
of respective inputs. We implement this with some
clustering techniques. In addition, generating a com-
posite actor so that other users do not need to know
about the internal structure of the actor without sac-
rificing performance might be a good approach for
intellectual property protection.

1 Introduction

In this project, we explore modular code genera-
tion from SR [1] domain in Ptolemy II meaning that
we synthesize modular composite actors, similar to
atomic actors, from composite actors. The modular
code generation idea proposed in [3, 2] preserves the
concept of hierarchy, which is often discarded due to
flattening block diagrams, so-called composite actors
in Ptolemy. The causality interfaces [4] analysis is
used to derive dependency graphs for scheduling ac-
tors to minimize the number of firings in a composite
actor.

Flattening composite actors increases the number
of actors in a model, and thus increases the scheduling
computation of external directors. Furthermore, flat-
tening composite actors is not always possible when
the composite actors are intellectual property (IP)
composite actors. However, one monolithic fire func-
tion approach currently used in Ptolemy can reduce
performance of SR models since composite actors
might have to fire several times before the models

reach fixed points as shown in Section 4.
The modular code generated for each composite

actor should be independent from context the com-
posite actor can be used. This can be achieved by
generating a set of fire interface functions for each
composite actor. The provided information about
the interface functions is used by outside directors to
make decisions on which fire interface function should
be invoked based on the outside directors’ scheduling
algorithm.

2 Background

2.1 Synchronous Reactive

The Synchronous Reactive (SR) [1] domain in
Ptolemy II models a system by composing multiple
actors (blocks) into a model (diagram) and the actors
are connected by zero-delay wires. Each zero-delay
wire conveys a signal, which either has a known value
or is absent. A SR director will fire actors in a model
until all signals on the zero-delay wires in the model
reach a fixed point.

2.2 Causality interfaces

Causality interfaces [4] in Ptolemy II construct a de-
pendency graph between actors in a model. The de-
pendency graph shows the order of firing actors in a
model with a mechanism that if a downstream actor
needs signals from upstream actors to fire, the down-
stream actor should not be fired before upstream ac-
tors that it depends on are fired.

3 Implementation

3.1 Usage scenarios

To use the modular code generation, users need to
use a normal composite actor and open the composite
actor. In the composite actor, users add a SR Mod-
ularDirector and a SRModularCodeGenerator, other
actors, ports and then connect ports of actors as in
Figure 2. After fishing a composite actor, one can

1



click on SRModularCodeGenerator, the code gener-
ation framework will create an entry for a newly cre-
ated modular composite actor in User Library in the
actor tree of Ptolemy. The entry will point to a Java
class of the actor. The newly created modular com-
posite actor is like an atomic actor.

3.2 Code generation mechanism

We have implemented a code generator actor that
generates a modular composite actor with a Java
class from a composite actor and stores it in the user
library. The generated class has multiple interface
functions with an internal director that can fire with
different schedules according to which interface func-
tion is chosen.

The generated composite actor class also provides
a standard interface, called ModularInterface, so that
an outside director can detect its number of interface
functions as well as ports belonging to each interface
functions.

A new director, called SR ModularDirector, that
can exploit new features of new modular generated
composite actors was also implemented. This is im-
plemented by a new causality interface that can con-
struct a dependency graph for each interface function
of an actor instead of one monolithic fire interface
function of the actor. Whenever the new causality
interface encounters an actor, it will ask if the ac-
tor implements the ModularInterface standard inter-
face. If an actor implements the interface, the new
causality interface will ask the actor about its inter-
face functions. Based on the information the causal-
ity interface acquires, it will derive a static schedule
for the director so that only interface functions that
that have known values at their inputs are invoked.
This avoids the unnecessary iterations as in mono-
lithic fire interface function case. More details will
be discussed in the Section 4.

Whenever a modular composite actor is fired, the
outside director can use the ModularInterface that
provides a function to set an index parameter, called
interface function index, so that the respective inter-
face function will fire. In case the external director
is not aware of the interface and does not set the in-
dex parameter, the conventional fire function will be
invoked.

A composite actor is stored in user library point-
ing to a Java class similar to an atomic actor. For
example, the twoScales actor in Figure 3 will have
a twoScales class in a twoScales.java. When the
class is instantiated, in the constructor of the Java
class, subactors and connections between subactors
are created, however, they are hidden from users as
in Figure 1, and users cannot delete internal actors.
With this mechanism, whenever a new Java class

is generated when updating a composite actor, any
model that uses the modular composite actor gener-
ated from the composite actor will be updated auto-
matically since the structure of the modular compos-
ite actor is constructed by the Java class.

Figure 1: Actors are hidden from users

3.3 Clustering

We implement clustering algorithms proposed in [2,
3]. The set of outputs of a composite actor C is parti-
tioned into the minimal number of k disjoint subsets
C0, . . . , Ck−1 such that ∀i = 0, . . . , k − 1, all out-
puts in Ci depend on the same set of inputs of the
composite actor. Each interface function now is as-
sociated one subset Ci. For example, as in Figure 5,
two interface functions are created for two clusters
of output ports, each interface function contains one
Scale actor. The two interface functions can fire in-
dependently.

Each modular composite actor by default imple-
ments a postfire function that invokes the postfire
function of all subactors.

For each cluster of output ports, the upstream
actors of each cluster will form a firing sequence
that creates the interface function for that cluster.
The upstream actors of a clusters are actors that
their output signals influences any output port of
that cluster in one tick. Therefore, an upstream
actor of a NonStrictDelay actor of a cluster, does
not belong to the interface function of that clus-
ter if it does not connect to any other actor of
that cluster. For example, as in Figure 4, actors
Scale, NonStrictDelay2, Scale3 do not belong to the
only interface function of the modular composite ac-
tor. We put all actors that do not belong to any
cluster in the postfire function of the modular com-
posite actor. The postfire function of the modular
composite actor in Figure 4 would have a firing se-
quence like:

Fire: Scale
Fire: NonStrictDelay2
Fire: Scale3
Postfire of all fired actors

2



3.4 Compatibility

Newly generated modular composite actors can still
fire normally when the external director is a conven-
tional SR director.

4 Examples

4.1 Double parallel scales inside a
modular composite actor

We create a model as in Figure 3, in which modular
composite actors Scales have internal structure as in
Figure 2. The internal structure of the Scales actor
will be mapped into two interface functions, each has
one Scale actor. The two interface functions can be
invoked separately from outside directors.

Figure 2: The twoScales composite actor

Figure 3: Using the ”twoScales” modular composite
actor (automatically generated from Figure 2

The firing sequence of the model at one tick is as
follows:

Firing: Ramp interface function -1
Firing: twoScales interface function 1
Firing: twoScales2 interface function 1
Firing: twoScales interface function 0
Firing: twoScales2 interface function 0
Firing: Display interface function -1

The interface function -1 denotes the default con-
ventional fire interface function. The above firing se-
quence shows that the fixed point is found after 1
iteration. No actor has to fire twice as in conven-
tional SR case below, in which the two actor Scales
and Scales2 have to fire twice until a fixed point is
reached.

Firing: Ramp
Firing: Scales
Firing: Scales2
Firing: Scales
Firing: Scales2
Firing: Display

In this case the causality interface can detect that
there is no causality loop even with only one fire in-
terface function. However, it takes two iterations to
reach a fixed point.

The preinitialize function of the code generated
from the composite actor is as follows:

public void preinitialize()
throws IllegalActionException {
super.preinitialize();
removeDependency(_nameToPort.get("in2"),
_nameToPort.get("out1"));

removeDependency(_nameToPort.get("in1"),
_nameToPort.get("out2"));

SRModularDirector director =
(SRModularDirector)getDirector();

director.
addActorFireFunctionIndexToInterfaceFunction(
_nameToActor.get("Scale"), -1, 0);

director.
addActorFireFunctionIndexToInterfaceFunction(
_nameToActor.get("Scale2"), -1, 1);

addInterfaceFunctionsOutputPort(0,
_nameToPort.get("out2"));

addInterfaceFunctionsOutputPort(1,
_nameToPort.get("out1"));

_numInterfaceFunctions = 2;
};

We only quote the preinitialize function because
we do most of the initialization of the actor in this
function. In which, the dependencies between input
and output ports are specified. If one output port
does not depend on some input port in one tick, the
dependency between the two ports is removed. The
removed dependency helps the causality interface de-
tect false loops. After that, the interface functions
of this actor are initialized by adding each subactor’s
interface function to the sequence of firings of that re-
spective interface function. Then, the set of clustered
ports of each interface function is initialized so that
external director can ask the list of ports of each in-
terface function when deriving a scheduling sequence.
Then the number of interface functions of this mod-
ular composite actor is specified.

4.2 NonStrictDelay to break the loop
inside a modular composite actor

Figure 5 shows the model of this example. The
internal structure of the composite actor is as in

3



Figure 4 in which the NonStrictDelay actor will
break the causality loop. The NonStrictDelay and
Scale2 actors will be fired in interface function 0.
NonStrictDelay2 and Scale1 and Scale actors will
be fired in postfire of the modular composite actor.

Figure 4: The DelayScale composite actor

Figure 5: Using the ”DelayScale” modular composite
actor (automatically generated from Figure 4

When the model in Figure 5 runs, each actor also
only needs to fire once every clock tick.

Firing: DelayScale interface function 0
Firing: Display interface function -1

In conventional SR, the composite actor has to fire
twice to reach a fixed point.

5 Conclusion and future work

The implementation of modular composite actors can
improve the performance of SR models. The genera-
tion of modular composite actors also provides a good
way of updating actors in a model whenever the ac-
tor library changes. Possible extensions of this work
are: (1) to support modal models with multiple dy-
namic interfaces, and (2) to study modular interfaces
for other Ptolemy domains, in particular SDF.

References

[1] Stephen A. Edwards and Edward A. Lee. The
semantics and execution of a synchronous block-
diagram language. Sci. Comput. Program.,
48(1):21–42, 2003.

[2] Roberto Lublinerman, Christian Szegedy, and
Stavros Tripakis. Modular code generation from

synchronous block diagrams: modularity vs. code
size. In POPL ’09: Proceedings of the 36th annual
ACM SIGPLAN-SIGACT symposium on Princi-
ples of programming languages, pages 78–89, New
York, NY, USA, 2009. ACM.

[3] Roberto Lublinerman and Stavros Tripakis. Mod-
ularity vs. reusability: code generation from syn-
chronous block diagrams. In DATE ’08: Proceed-
ings of the conference on Design, automation and
test in Europe, pages 1504–1509, New York, NY,
USA, 2008. ACM.

[4] Ye Zhou and Edward A. Lee. Causality interfaces
for actor networks. Trans. on Embedded Comput-
ing Sys., 7(3):1–35, 2008.

4


	Introduction
	Background
	Synchronous Reactive
	Causality interfaces

	Implementation
	Usage scenarios
	Code generation mechanism
	Clustering
	Compatibility

	Examples
	Double parallel scales inside a modular composite actor
	NonStrictDelay to break the loop inside a modular composite actor

	Conclusion and future work

